# PIE Dataset Card for "conll2003" This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the [BRAT Huggingface dataset loading script](https://huggingface.co./datasets/DFKI-SLT/brat). ## Data Schema The document type for this dataset is `BratDocument` or `BratDocumentWithMergedSpans`, depending on if the data was loaded with `merge_fragmented_spans=True` (default: `False`). They define the following data fields: - `text` (str) - `id` (str, optional) - `metadata` (dictionary, optional) and the following annotation layers: - `spans` (annotation type: `LabeledMultiSpan` in the case of `BratDocument` and `LabeledSpan` and in the case of `BratDocumentWithMergedSpans`, target: `text`) - `relations` (annotation type: `BinaryRelation`, target: `spans`) - `span_attributes` (annotation type: `Attribute`, target: `spans`) - `relation_attributes` (annotation type: `Attribute`, target: `relations`) The `Attribute` annotation type is defined as follows: - `annotation` (type: `Annotation`): the annotation to which the attribute is attached - `label` (type: `str`) - `value` (type: `str`, optional) - `score` (type: `float`, optional, not included in comparison) See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/annotations.py) for the remaining annotation type definitions. ## Document Converters The dataset provides no predefined document converters because the BRAT format is very flexible and can be used for many different tasks. You can add your own document converter by doing the following: ```python import dataclasses from typing import Optional from pytorch_ie.core import AnnotationList, annotation_field from pytorch_ie.documents import TextBasedDocument from pytorch_ie.annotations import LabeledSpan from pie_datasets import DatasetDict # define your document class @dataclasses.dataclass class MyDocument(TextBasedDocument): my_field: Optional[str] = None my_span_annotations: AnnotationList[LabeledSpan] = annotation_field(target="text") # define your document converter def my_converter(document: BratDocumentWithMergedSpans) -> MyDocument: # create your document with the data from the original document. # The fields "text", "id" and "metadata" are derived from the TextBasedDocument. my_document = MyDocument(id=document.id, text=document.text, metadata=document.metadata, my_field="my_value") # create a new span annotation new_span = LabeledSpan(label="my_label", start=2, end=10) # add the new span annotation to your document my_document.my_span_annotations.append(new_span) # add annotations from the document to your document for span in document.spans: # we need to copy the span because an annotation can only be attached to one document my_document.my_span_annotations.append(span.copy()) return my_document # load the dataset. We use the "merge_fragmented_spans" dataset variant here # because it provides documents of type BratDocumentWithMergedSpans. dataset = DatasetDict.load_dataset("pie/brat", name="merge_fragmented_spans", data_dir="path/to/brat/data") # attach your document converter to the dataset dataset.register_document_converter(my_converter) # convert the dataset converted_dataset = dataset.to_document_type(MyDocument) ```