GeomUtil module — pxr-usd-api 105.1 documentation pxr-usd-api » Modules » GeomUtil module   # GeomUtil module Summary: The GeomUtil module contains utilities to help image common geometry. Utilities to help image common geometry. Classes: CapsuleMeshGenerator This class provides an implementation for generating topology and point positions on a capsule. ConeMeshGenerator This class provides an implementation for generating topology and point positions on a cone of a given radius and height. CuboidMeshGenerator This class provides an implementation for generating topology and point positions on a rectangular cuboid given the dimensions along the X, Y and Z axes. CylinderMeshGenerator This class provides an implementation for generating topology and point positions on a cylinder with a given radius and height. SphereMeshGenerator This class provides an implementation for generating topology and point positions on a sphere with a given radius. class pxr.GeomUtil.CapsuleMeshGenerator This class provides an implementation for generating topology and point positions on a capsule. The simplest form takes a radius and height and is a cylinder capped by two hemispheres that is centered at the origin. The generated capsule is made up of circular cross-sections in the XY plane. Each cross-section has numRadial segments. Successive cross-sections for each of the hemispheres are generated at numCapAxial locations along the Z and -Z axes respectively. The height is aligned with the Z axis and represents the height of just the cylindrical portion. An optional transform may be provided to GeneratePoints to orient the capsule as necessary (e.g., whose height is along the Y axis). An additional overload of GeneratePoints is provided to specify different radii and heights for the bottom and top caps, as well as the sweep angle for the capsule about the +Z axis. When the sweep is less than 360 degrees, the generated geometry is not closed. Usage: const size_t numRadial = 4, numCapAxial = 4; const size_t numPoints = GeomUtilCapsuleMeshGenerator::ComputeNumPoints(numRadial, numCapAxial); const float radius = 1, height = 2; MyPointContainer points(numPoints); GeomUtilCapsuleMeshGenerator::GeneratePoints( points.begin(), numRadial, numCapAxial, radius, height); Methods: ComputeNumPoints classmethod ComputeNumPoints(numRadial, numCapAxial, closedSweep) -> int GeneratePoints classmethod GeneratePoints(iter, numRadial, numCapAxial, radius, height, framePtr) -> None GenerateTopology classmethod GenerateTopology(numRadial, numCapAxial, closedSweep) -> MeshTopology Attributes: minNumCapAxial minNumRadial static ComputeNumPoints() classmethod ComputeNumPoints(numRadial, numCapAxial, closedSweep) -> int Parameters numRadial (int) – numCapAxial (int) – closedSweep (bool) – static GeneratePoints() classmethod GeneratePoints(iter, numRadial, numCapAxial, radius, height, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – numCapAxial (int) – radius (ScalarType) – height (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, numRadial, numCapAxial, bottomRadius, topRadius, height, bottomCapHeight, topCapHeight, sweepDegrees, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – numCapAxial (int) – bottomRadius (ScalarType) – topRadius (ScalarType) – height (ScalarType) – bottomCapHeight (ScalarType) – topCapHeight (ScalarType) – sweepDegrees (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, arg2) -> None Parameters iter (PointIterType) – arg2 – static GenerateTopology() classmethod GenerateTopology(numRadial, numCapAxial, closedSweep) -> MeshTopology Parameters numRadial (int) – numCapAxial (int) – closedSweep (bool) – minNumCapAxial = 1 minNumRadial = 3 class pxr.GeomUtil.ConeMeshGenerator This class provides an implementation for generating topology and point positions on a cone of a given radius and height. The cone is made up of circular cross-sections in the XY plane and is centered at the origin. Each cross-section has numRadial segments. The height is aligned with the Z axis, with the base of the object at Z = -h/2 and apex at Z = h/2. An optional transform may be provided to GeneratePoints to orient the cone as necessary (e.g., whose height is along the Y axis). An additional overload of GeneratePoints is provided to specify the sweep angle for the cone about the +Z axis. When the sweep is less than 360 degrees, the generated geometry is not closed. Usage: const size_t numRadial = 8; const size_t numPoints = GeomUtilConeMeshGenerator::ComputeNumPoints(numRadial); const float radius = 1, height = 2; MyPointContainer points(numPoints); GeomUtilConeMeshGenerator::GeneratePoints( points.begin(), numRadial, radius, height); Methods: ComputeNumPoints classmethod ComputeNumPoints(numRadial, closedSweep) -> int GeneratePoints classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None GenerateTopology classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology Attributes: minNumRadial static ComputeNumPoints() classmethod ComputeNumPoints(numRadial, closedSweep) -> int Parameters numRadial (int) – closedSweep (bool) – static GeneratePoints() classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – radius (ScalarType) – height (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, numRadial, radius, height, sweepDegrees, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – radius (ScalarType) – height (ScalarType) – sweepDegrees (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, arg2) -> None Parameters iter (PointIterType) – arg2 – static GenerateTopology() classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology Parameters numRadial (int) – closedSweep (bool) – minNumRadial = 3 class pxr.GeomUtil.CuboidMeshGenerator This class provides an implementation for generating topology and point positions on a rectangular cuboid given the dimensions along the X, Y and Z axes. The generated cuboid is centered at the origin. An optional transform may be provided to GeneratePoints to orient the cuboid as necessary. Usage: const size_t numPoints = GeomUtilCuboidMeshGenerator::ComputeNumPoints(); const float l = 5, b = 4, h = 3; MyPointContainer points(numPoints); GeomUtilCuboidMeshGenerator::GeneratePoints( points.begin(), l, b, h); Methods: ComputeNumPoints classmethod ComputeNumPoints() -> int GeneratePoints classmethod GeneratePoints(iter, xLength, yLength, zLength, framePtr) -> None GenerateTopology classmethod GenerateTopology() -> MeshTopology static ComputeNumPoints() classmethod ComputeNumPoints() -> int static GeneratePoints() classmethod GeneratePoints(iter, xLength, yLength, zLength, framePtr) -> None Parameters iter (PointIterType) – xLength (ScalarType) – yLength (ScalarType) – zLength (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, arg2) -> None Parameters iter (PointIterType) – arg2 – static GenerateTopology() classmethod GenerateTopology() -> MeshTopology class pxr.GeomUtil.CylinderMeshGenerator This class provides an implementation for generating topology and point positions on a cylinder with a given radius and height. The cylinder is made up of circular cross-sections in the XY plane and is centered at the origin. Each cross-section has numRadial segments. The height is aligned with the Z axis, with the base at Z = -h/2. An optional transform may be provided to GeneratePoints to orient the cone as necessary (e.g., whose height is along the Y axis). An additional overload of GeneratePoints is provided to specify different radii for the bottom and top discs of the cylinder and a sweep angle for cylinder about the +Z axis. When the sweep is less than 360 degrees, the generated geometry is not closed. Setting one radius to 0 in order to get a cone is inefficient and could result in artifacts. Clients should use GeomUtilConeMeshGenerator instead. Usage: const size_t numRadial = 8; const size_t numPoints = GeomUtilCylinderMeshGenerator::ComputeNumPoints(numRadial); const float radius = 1, height = 2; MyPointContainer points(numPoints); GeomUtilCylinderMeshGenerator::GeneratePoints( points.begin(), numRadial, radius, height); Methods: ComputeNumPoints classmethod ComputeNumPoints(numRadial, closedSweep) -> int GeneratePoints classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None GenerateTopology classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology Attributes: minNumRadial static ComputeNumPoints() classmethod ComputeNumPoints(numRadial, closedSweep) -> int Parameters numRadial (int) – closedSweep (bool) – static GeneratePoints() classmethod GeneratePoints(iter, numRadial, radius, height, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – radius (ScalarType) – height (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, numRadial, bottomRadius, topRadius, height, sweepDegrees, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – bottomRadius (ScalarType) – topRadius (ScalarType) – height (ScalarType) – sweepDegrees (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, arg2) -> None Parameters iter (PointIterType) – arg2 – static GenerateTopology() classmethod GenerateTopology(numRadial, closedSweep) -> MeshTopology Parameters numRadial (int) – closedSweep (bool) – minNumRadial = 3 class pxr.GeomUtil.SphereMeshGenerator This class provides an implementation for generating topology and point positions on a sphere with a given radius. The sphere is made up of circular cross-sections in the XY plane and is centered at the origin. Each cross-section has numRadial segments. Successive cross-sections are generated at numAxial locations along the Z axis, with the bottom of the sphere at Z = -r and top at Z = r. An optional transform may be provided to GeneratePoints to orient the sphere as necessary (e.g., cross-sections in the YZ plane). An additional overload of GeneratePoints is provided to specify a sweep angle for the sphere about the +Z axis. When the sweep is less than 360 degrees, the generated geometry is not closed. Usage: const size_t numRadial = 4, numAxial = 4; const size_t numPoints = GeomUtilSphereMeshGenerator::ComputeNumPoints(numRadial, numAxial); const float radius = 5; MyPointContainer points(numPoints); GeomUtilSphereMeshGenerator::GeneratePoints( points.begin(), numRadial, numAxial, radius); Methods: ComputeNumPoints classmethod ComputeNumPoints(numRadial, numAxial, closedSweep) -> int GeneratePoints classmethod GeneratePoints(iter, numRadial, numAxial, radius, framePtr) -> None GenerateTopology classmethod GenerateTopology(numRadial, numAxial, closedSweep) -> MeshTopology Attributes: minNumAxial minNumRadial static ComputeNumPoints() classmethod ComputeNumPoints(numRadial, numAxial, closedSweep) -> int Parameters numRadial (int) – numAxial (int) – closedSweep (bool) – static GeneratePoints() classmethod GeneratePoints(iter, numRadial, numAxial, radius, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – numAxial (int) – radius (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, numRadial, numAxial, radius, sweepDegrees, framePtr) -> None Parameters iter (PointIterType) – numRadial (int) – numAxial (int) – radius (ScalarType) – sweepDegrees (ScalarType) – framePtr (Matrix4d) – GeneratePoints(iter, arg2) -> None Parameters iter (PointIterType) – arg2 – static GenerateTopology() classmethod GenerateTopology(numRadial, numAxial, closedSweep) -> MeshTopology Parameters numRadial (int) – numAxial (int) – closedSweep (bool) – minNumAxial = 2 minNumRadial = 3 © Copyright 2019-2023, NVIDIA. Last updated on Nov 14, 2023.