# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Filtered Bengali ASR corpus collected from madasr, indictts, kathbath, openslr53, openslr37, and ai4bharat corpora filtered for duration between 2 - 30 secs""" import json import os import datasets _CITATION = """ """ _DESCRIPTION = """\ The corpus contains roughly 500 hours of audio and transcripts in Bangla language. The transcripts have beed de-duplicated using exact match deduplication and audio has be converted to 16000 samples """ _HOMEPAGE = "" _LICENSE = "https://creativecommons.org/licenses/" _METADATA_URLS = { "train": "data/train.jsonl", } _URLS = { "train": "data/train.tar.gz", } class BengaliASRCorpus(datasets.GeneratorBasedBuilder): """Bengali ASR Corpus contains transcribed speech corpus for training ASR systems for Bengali language.""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "audio": datasets.Audio(sampling_rate=16_000), "path": datasets.Value("string"), "sentence": datasets.Value("string"), "duration": datasets.Value("float"), "transcript_length": datasets.Value("float") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=("sentence", "label"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): metadata_paths = dl_manager.download(_METADATA_URLS) train_archive = dl_manager.download(_URLS["train"]) local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None train_dir = "mp3" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "metadata_path": metadata_paths["train"], "local_extracted_archive": local_extracted_train_archive, "path_to_clips": train_dir, "audio_files": dl_manager.iter_archive(train_archive), }, ), ] def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files): """Yields examples as (key, example) tuples.""" examples = {} with open(metadata_path, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) examples[data["path"]] = data inside_clips_dir = False id_ = 0 for path, f in audio_files: if path.startswith(path_to_clips): inside_clips_dir = True if path in examples: result = examples[path] path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path result["audio"] = {"path": path, "bytes": f.read()} result["path"] = path yield id_, result id_ += 1 elif inside_clips_dir: break