system HF staff commited on
Commit
4f4eb13
·
1 Parent(s): ad31813

Update files from the datasets library (from 1.16.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.16.0

Files changed (2) hide show
  1. dataset_infos.json +1 -1
  2. librispeech_asr.py +45 -26
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"clean": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.100": {"name": "train.100", "num_bytes": 11823891, "num_examples": 28539, "dataset_name": "librispeech_asr"}, "train.360": {"name": "train.360", "num_bytes": 43049490, "num_examples": 104014, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 894510, "num_examples": 2703, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 868614, "num_examples": 2620, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/dev-clean.tar.gz": {"num_bytes": 337926286, "checksum": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3"}, "http://www.openslr.org/resources/12/test-clean.tar.gz": {"num_bytes": 346663984, "checksum": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23"}, "http://www.openslr.org/resources/12/train-clean-100.tar.gz": {"num_bytes": 6387309499, "checksum": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2"}, "http://www.openslr.org/resources/12/train-clean-360.tar.gz": {"num_bytes": 23049477885, "checksum": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf"}}, "download_size": 30121377654, "post_processing_size": null, "dataset_size": 56636505, "size_in_bytes": 30178014159}, "other": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "other", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.500": {"name": "train.500", "num_bytes": 59561081, "num_examples": 148688, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 907644, "num_examples": 2864, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 934838, "num_examples": 2939, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/test-other.tar.gz": {"num_bytes": 328757843, "checksum": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29"}, "http://www.openslr.org/resources/12/dev-other.tar.gz": {"num_bytes": 314305928, "checksum": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365"}, "http://www.openslr.org/resources/12/train-other-500.tar.gz": {"num_bytes": 30593501606, "checksum": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2"}}, "download_size": 31236565377, "post_processing_size": null, "dataset_size": 61403563, "size_in_bytes": 31297968940}}
 
1
+ {"clean": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n```\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "_storage_dtype": "struct", "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.100": {"name": "train.100", "num_bytes": 6619683041, "num_examples": 28539, "dataset_name": "librispeech_asr"}, "train.360": {"name": "train.360", "num_bytes": 23898214592, "num_examples": 104014, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 359572231, "num_examples": 2703, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 367705423, "num_examples": 2620, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/dev-clean.tar.gz": {"num_bytes": 337926286, "checksum": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3"}, "http://www.openslr.org/resources/12/test-clean.tar.gz": {"num_bytes": 346663984, "checksum": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23"}, "http://www.openslr.org/resources/12/train-clean-100.tar.gz": {"num_bytes": 6387309499, "checksum": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2"}, "http://www.openslr.org/resources/12/train-clean-360.tar.gz": {"num_bytes": 23049477885, "checksum": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf"}}, "download_size": 30121377654, "post_processing_size": null, "dataset_size": 31245175287, "size_in_bytes": 61366552941}, "other": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n```\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "_storage_dtype": "struct", "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "other", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.500": {"name": "train.500", "num_bytes": 31810256902, "num_examples": 148688, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 337283304, "num_examples": 2864, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 352396474, "num_examples": 2939, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/test-other.tar.gz": {"num_bytes": 328757843, "checksum": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29"}, "http://www.openslr.org/resources/12/dev-other.tar.gz": {"num_bytes": 314305928, "checksum": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365"}, "http://www.openslr.org/resources/12/train-other-500.tar.gz": {"num_bytes": 30593501606, "checksum": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2"}}, "download_size": 31236565377, "post_processing_size": null, "dataset_size": 32499936680, "size_in_bytes": 63736502057}}
librispeech_asr.py CHANGED
@@ -17,9 +17,6 @@
17
  """Librispeech automatic speech recognition dataset."""
18
 
19
 
20
- import glob
21
- import os
22
-
23
  import datasets
24
  from datasets.tasks import AutomaticSpeechRecognition
25
 
@@ -93,6 +90,7 @@ class LibrispeechASRConfig(datasets.BuilderConfig):
93
  class LibrispeechASR(datasets.GeneratorBasedBuilder):
94
  """Librispeech dataset."""
95
 
 
96
  BUILDER_CONFIGS = [
97
  LibrispeechASRConfig(name="clean", description="'Clean' speech."),
98
  LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
@@ -118,41 +116,62 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
118
  )
119
 
120
  def _split_generators(self, dl_manager):
121
- archive_path = dl_manager.download_and_extract(_DL_URLS[self.config.name])
122
 
123
  if self.config.name == "clean":
124
  train_splits = [
125
- datasets.SplitGenerator(name="train.100", gen_kwargs={"archive_path": archive_path["train.100"]}),
126
- datasets.SplitGenerator(name="train.360", gen_kwargs={"archive_path": archive_path["train.360"]}),
 
 
 
 
127
  ]
128
  elif self.config.name == "other":
129
  train_splits = [
130
- datasets.SplitGenerator(name="train.500", gen_kwargs={"archive_path": archive_path["train.500"]}),
 
 
131
  ]
132
 
133
  return train_splits + [
134
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path["dev"]}),
135
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path["test"]}),
 
 
 
 
136
  ]
137
 
138
- def _generate_examples(self, archive_path):
139
  """Generate examples from a LibriSpeech archive_path."""
140
- transcripts_glob = os.path.join(archive_path, "LibriSpeech", "*/*/*/*.txt")
141
  key = 0
142
- for transcript_path in sorted(glob.glob(transcripts_glob)):
143
- transcript_dir_path = os.path.dirname(transcript_path)
144
- with open(transcript_path, "r", encoding="utf-8") as f:
 
 
 
 
145
  for line in f:
146
- line = line.strip()
147
- id_, transcript = line.split(" ", 1)
148
- audio_file = f"{id_}.flac"
149
- speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
150
- yield key, {
151
- "id": id_,
152
- "speaker_id": speaker_id,
153
- "chapter_id": chapter_id,
154
- "file": os.path.join(transcript_dir_path, audio_file),
155
- "audio": os.path.join(transcript_dir_path, audio_file),
156
- "text": transcript,
157
- }
 
 
 
 
 
 
158
  key += 1
 
 
 
17
  """Librispeech automatic speech recognition dataset."""
18
 
19
 
 
 
 
20
  import datasets
21
  from datasets.tasks import AutomaticSpeechRecognition
22
 
 
90
  class LibrispeechASR(datasets.GeneratorBasedBuilder):
91
  """Librispeech dataset."""
92
 
93
+ DEFAULT_WRITER_BATCH_SIZE = 256
94
  BUILDER_CONFIGS = [
95
  LibrispeechASRConfig(name="clean", description="'Clean' speech."),
96
  LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
 
116
  )
117
 
118
  def _split_generators(self, dl_manager):
119
+ archive_path = dl_manager.download(_DL_URLS[self.config.name])
120
 
121
  if self.config.name == "clean":
122
  train_splits = [
123
+ datasets.SplitGenerator(
124
+ name="train.100", gen_kwargs={"files": dl_manager.iter_archive(archive_path["train.100"])}
125
+ ),
126
+ datasets.SplitGenerator(
127
+ name="train.360", gen_kwargs={"files": dl_manager.iter_archive(archive_path["train.360"])}
128
+ ),
129
  ]
130
  elif self.config.name == "other":
131
  train_splits = [
132
+ datasets.SplitGenerator(
133
+ name="train.500", gen_kwargs={"files": dl_manager.iter_archive(archive_path["train.500"])}
134
+ ),
135
  ]
136
 
137
  return train_splits + [
138
+ datasets.SplitGenerator(
139
+ name=datasets.Split.VALIDATION, gen_kwargs={"files": dl_manager.iter_archive(archive_path["dev"])}
140
+ ),
141
+ datasets.SplitGenerator(
142
+ name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive_path["test"])}
143
+ ),
144
  ]
145
 
146
+ def _generate_examples(self, files):
147
  """Generate examples from a LibriSpeech archive_path."""
 
148
  key = 0
149
+ audio_data = {}
150
+ transcripts = []
151
+ for path, f in files:
152
+ if path.endswith(".flac"):
153
+ id_ = path.split("/")[-1][: -len(".flac")]
154
+ audio_data[id_] = f.read()
155
+ elif path.endswith(".trans.txt"):
156
  for line in f:
157
+ if line:
158
+ line = line.decode("utf-8").strip()
159
+ id_, transcript = line.split(" ", 1)
160
+ audio_file = f"{id_}.flac"
161
+ speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
162
+ transcripts.append(
163
+ {
164
+ "id": id_,
165
+ "speaker_id": speaker_id,
166
+ "chapter_id": chapter_id,
167
+ "file": audio_file,
168
+ "text": transcript,
169
+ }
170
+ )
171
+ if audio_data and len(audio_data) == len(transcripts):
172
+ for transcript in transcripts:
173
+ audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
174
+ yield key, {"audio": audio, **transcript}
175
  key += 1
176
+ audio_data = {}
177
+ transcripts = []