Update demo-leaderboard/gpt2-demo/results_2023-11-21T18-10-08.json
Browse files
demo-leaderboard/gpt2-demo/results_2023-11-21T18-10-08.json
CHANGED
@@ -1,15 +1,436 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
},
|
7 |
-
"
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
},
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"results": {
|
3 |
+
"multimedqa": {
|
4 |
+
"alias": "stem",
|
5 |
+
"acc_norm,none": 0.33614369501466274,
|
6 |
+
"acc_norm_stderr,none": 0.006394243385413683,
|
7 |
+
"acc,none": 0.3666430092264017,
|
8 |
+
"acc_stderr,none": 0.005640719286996951
|
9 |
+
},
|
10 |
+
"medmcqa": {
|
11 |
+
"acc,none": 0.34305522352378676,
|
12 |
+
"acc_stderr,none": 0.007340986677455324,
|
13 |
+
"acc_norm,none": 0.34305522352378676,
|
14 |
+
"acc_norm_stderr,none": 0.007340986677455324,
|
15 |
+
"alias": " - medmcqa"
|
16 |
+
},
|
17 |
+
"medqa_4options": {
|
18 |
+
"acc,none": 0.31343283582089554,
|
19 |
+
"acc_stderr,none": 0.013006792288528347,
|
20 |
+
"acc_norm,none": 0.31343283582089554,
|
21 |
+
"acc_norm_stderr,none": 0.013006792288528347,
|
22 |
+
"alias": " - medqa_4options"
|
23 |
+
},
|
24 |
+
"mmlu_anatomy": {
|
25 |
+
"alias": " - anatomy (mmlu)",
|
26 |
+
"acc,none": 0.3925925925925926,
|
27 |
+
"acc_stderr,none": 0.0421850621536888
|
28 |
+
},
|
29 |
+
"mmlu_clinical_knowledge": {
|
30 |
+
"alias": " - clinical_knowledge (mmlu)",
|
31 |
+
"acc,none": 0.46037735849056605,
|
32 |
+
"acc_stderr,none": 0.030676096599389188
|
33 |
+
},
|
34 |
+
"mmlu_college_biology": {
|
35 |
+
"alias": " - college_biology (mmlu)",
|
36 |
+
"acc,none": 0.3402777777777778,
|
37 |
+
"acc_stderr,none": 0.03962135573486219
|
38 |
+
},
|
39 |
+
"mmlu_college_medicine": {
|
40 |
+
"alias": " - college_medicine (mmlu)",
|
41 |
+
"acc,none": 0.37572254335260113,
|
42 |
+
"acc_stderr,none": 0.036928207672648664
|
43 |
},
|
44 |
+
"mmlu_medical_genetics": {
|
45 |
+
"alias": " - medical_genetics (mmlu)",
|
46 |
+
"acc,none": 0.42,
|
47 |
+
"acc_stderr,none": 0.04960449637488584
|
48 |
+
},
|
49 |
+
"mmlu_professional_medicine": {
|
50 |
+
"alias": " - professional_medicine (mmlu)",
|
51 |
+
"acc,none": 0.29044117647058826,
|
52 |
+
"acc_stderr,none": 0.027576468622740522
|
53 |
+
},
|
54 |
+
"pubmedqa": {
|
55 |
+
"acc,none": 0.678,
|
56 |
+
"acc_stderr,none": 0.02091666833001987,
|
57 |
+
"alias": " - pubmedqa"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"groups": {
|
61 |
+
"multimedqa": {
|
62 |
+
"alias": "stem",
|
63 |
+
"acc_norm,none": 0.33614369501466274,
|
64 |
+
"acc_norm_stderr,none": 0.006394243385413683,
|
65 |
+
"acc,none": 0.3666430092264017,
|
66 |
+
"acc_stderr,none": 0.005640719286996951
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"group_subtasks": {
|
70 |
+
"multimedqa": [
|
71 |
+
"mmlu_college_biology",
|
72 |
+
"mmlu_professional_medicine",
|
73 |
+
"mmlu_medical_genetics",
|
74 |
+
"mmlu_college_medicine",
|
75 |
+
"mmlu_clinical_knowledge",
|
76 |
+
"mmlu_anatomy",
|
77 |
+
"medqa_4options",
|
78 |
+
"medmcqa",
|
79 |
+
"pubmedqa"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
"configs": {
|
83 |
+
"medmcqa": {
|
84 |
+
"task": "medmcqa",
|
85 |
+
"dataset_path": "medmcqa",
|
86 |
+
"training_split": "train",
|
87 |
+
"validation_split": "validation",
|
88 |
+
"test_split": "validation",
|
89 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Question: <question>\n Choices:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n Answer:\n \"\"\"\n choices = [doc[\"opa\"], doc[\"opb\"], doc[\"opc\"], doc[\"opd\"]]\n option_choices = {\n \"A\": choices[0],\n \"B\": choices[1],\n \"C\": choices[2],\n \"D\": choices[3],\n }\n\n prompt = \"Question: \" + doc[\"question\"] + \"\\nChoices:\\n\"\n for choice, option in option_choices.items():\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
90 |
+
"doc_to_target": "cop",
|
91 |
+
"doc_to_choice": [
|
92 |
+
"A",
|
93 |
+
"B",
|
94 |
+
"C",
|
95 |
+
"D"
|
96 |
+
],
|
97 |
+
"description": "",
|
98 |
+
"target_delimiter": " ",
|
99 |
+
"fewshot_delimiter": "\n\n",
|
100 |
+
"metric_list": [
|
101 |
+
{
|
102 |
+
"metric": "acc",
|
103 |
+
"aggregation": "mean",
|
104 |
+
"higher_is_better": true
|
105 |
},
|
106 |
+
{
|
107 |
+
"metric": "acc_norm",
|
108 |
+
"aggregation": "mean",
|
109 |
+
"higher_is_better": true
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"output_type": "multiple_choice",
|
113 |
+
"repeats": 1,
|
114 |
+
"should_decontaminate": true,
|
115 |
+
"doc_to_decontamination_query": "{{question}}"
|
116 |
+
},
|
117 |
+
"medqa_4options": {
|
118 |
+
"task": "medqa_4options",
|
119 |
+
"dataset_path": "GBaker/MedQA-USMLE-4-options-hf",
|
120 |
+
"training_split": "train",
|
121 |
+
"validation_split": "validation",
|
122 |
+
"test_split": "test",
|
123 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n option_choices = {\n \"A\": doc[\"ending0\"],\n \"B\": doc[\"ending1\"],\n \"C\": doc[\"ending2\"],\n \"D\": doc[\"ending3\"],\n }\n answers = \"\".join((f\"{k}. {v}\\n\") for k, v in option_choices.items())\n return f\"Question: {doc['sent1']}\\n{answers}Answer:\"\n",
|
124 |
+
"doc_to_target": "def doc_to_target(doc) -> int:\n return doc[\"label\"]\n",
|
125 |
+
"doc_to_choice": [
|
126 |
+
"A",
|
127 |
+
"B",
|
128 |
+
"C",
|
129 |
+
"D"
|
130 |
+
],
|
131 |
+
"description": "",
|
132 |
+
"target_delimiter": " ",
|
133 |
+
"fewshot_delimiter": "\n\n",
|
134 |
+
"metric_list": [
|
135 |
+
{
|
136 |
+
"metric": "acc",
|
137 |
+
"aggregation": "mean",
|
138 |
+
"higher_is_better": true
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"metric": "acc_norm",
|
142 |
+
"aggregation": "mean",
|
143 |
+
"higher_is_better": true
|
144 |
+
}
|
145 |
+
],
|
146 |
+
"output_type": "multiple_choice",
|
147 |
+
"repeats": 1,
|
148 |
+
"should_decontaminate": false
|
149 |
+
},
|
150 |
+
"mmlu_anatomy": {
|
151 |
+
"task": "mmlu_anatomy",
|
152 |
+
"task_alias": "anatomy (mmlu)",
|
153 |
+
"group": "multimedqa",
|
154 |
+
"group_alias": "stem",
|
155 |
+
"dataset_path": "hails/mmlu_no_train",
|
156 |
+
"dataset_name": "anatomy",
|
157 |
+
"test_split": "test",
|
158 |
+
"fewshot_split": "dev",
|
159 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
160 |
+
"doc_to_target": "answer",
|
161 |
+
"doc_to_choice": [
|
162 |
+
"A",
|
163 |
+
"B",
|
164 |
+
"C",
|
165 |
+
"D"
|
166 |
+
],
|
167 |
+
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
|
168 |
+
"target_delimiter": " ",
|
169 |
+
"fewshot_delimiter": "\n\n",
|
170 |
+
"fewshot_config": {
|
171 |
+
"sampler": "first_n"
|
172 |
+
},
|
173 |
+
"metric_list": [
|
174 |
+
{
|
175 |
+
"metric": "acc",
|
176 |
+
"aggregation": "mean",
|
177 |
+
"higher_is_better": true
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"output_type": "multiple_choice",
|
181 |
+
"repeats": 1,
|
182 |
+
"should_decontaminate": false,
|
183 |
+
"metadata": {
|
184 |
+
"version": 0.0
|
185 |
+
}
|
186 |
+
},
|
187 |
+
"mmlu_clinical_knowledge": {
|
188 |
+
"task": "mmlu_clinical_knowledge",
|
189 |
+
"task_alias": "clinical_knowledge (mmlu)",
|
190 |
+
"group": "multimedqa",
|
191 |
+
"group_alias": "other",
|
192 |
+
"dataset_path": "hails/mmlu_no_train",
|
193 |
+
"dataset_name": "clinical_knowledge",
|
194 |
+
"test_split": "test",
|
195 |
+
"fewshot_split": "dev",
|
196 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
197 |
+
"doc_to_target": "answer",
|
198 |
+
"doc_to_choice": [
|
199 |
+
"A",
|
200 |
+
"B",
|
201 |
+
"C",
|
202 |
+
"D"
|
203 |
+
],
|
204 |
+
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
|
205 |
+
"target_delimiter": " ",
|
206 |
+
"fewshot_delimiter": "\n\n",
|
207 |
+
"fewshot_config": {
|
208 |
+
"sampler": "first_n"
|
209 |
+
},
|
210 |
+
"metric_list": [
|
211 |
+
{
|
212 |
+
"metric": "acc",
|
213 |
+
"aggregation": "mean",
|
214 |
+
"higher_is_better": true
|
215 |
+
}
|
216 |
+
],
|
217 |
+
"output_type": "multiple_choice",
|
218 |
+
"repeats": 1,
|
219 |
+
"should_decontaminate": false,
|
220 |
+
"metadata": {
|
221 |
+
"version": 0.0
|
222 |
+
}
|
223 |
+
},
|
224 |
+
"mmlu_college_biology": {
|
225 |
+
"task": "mmlu_college_biology",
|
226 |
+
"task_alias": "college_biology (mmlu)",
|
227 |
+
"group": "multimedqa",
|
228 |
+
"group_alias": "stem",
|
229 |
+
"dataset_path": "hails/mmlu_no_train",
|
230 |
+
"dataset_name": "college_biology",
|
231 |
+
"test_split": "test",
|
232 |
+
"fewshot_split": "dev",
|
233 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
234 |
+
"doc_to_target": "answer",
|
235 |
+
"doc_to_choice": [
|
236 |
+
"A",
|
237 |
+
"B",
|
238 |
+
"C",
|
239 |
+
"D"
|
240 |
+
],
|
241 |
+
"description": "The following are multiple choice questions (with answers) about college biology.\n\n",
|
242 |
+
"target_delimiter": " ",
|
243 |
+
"fewshot_delimiter": "\n\n",
|
244 |
+
"fewshot_config": {
|
245 |
+
"sampler": "first_n"
|
246 |
+
},
|
247 |
+
"metric_list": [
|
248 |
+
{
|
249 |
+
"metric": "acc",
|
250 |
+
"aggregation": "mean",
|
251 |
+
"higher_is_better": true
|
252 |
+
}
|
253 |
+
],
|
254 |
+
"output_type": "multiple_choice",
|
255 |
+
"repeats": 1,
|
256 |
+
"should_decontaminate": false,
|
257 |
+
"metadata": {
|
258 |
+
"version": 0.0
|
259 |
+
}
|
260 |
+
},
|
261 |
+
"mmlu_college_medicine": {
|
262 |
+
"task": "mmlu_college_medicine",
|
263 |
+
"task_alias": "college_medicine (mmlu)",
|
264 |
+
"group": "multimedqa",
|
265 |
+
"group_alias": "other",
|
266 |
+
"dataset_path": "hails/mmlu_no_train",
|
267 |
+
"dataset_name": "college_medicine",
|
268 |
+
"test_split": "test",
|
269 |
+
"fewshot_split": "dev",
|
270 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
271 |
+
"doc_to_target": "answer",
|
272 |
+
"doc_to_choice": [
|
273 |
+
"A",
|
274 |
+
"B",
|
275 |
+
"C",
|
276 |
+
"D"
|
277 |
+
],
|
278 |
+
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
|
279 |
+
"target_delimiter": " ",
|
280 |
+
"fewshot_delimiter": "\n\n",
|
281 |
+
"fewshot_config": {
|
282 |
+
"sampler": "first_n"
|
283 |
+
},
|
284 |
+
"metric_list": [
|
285 |
+
{
|
286 |
+
"metric": "acc",
|
287 |
+
"aggregation": "mean",
|
288 |
+
"higher_is_better": true
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"output_type": "multiple_choice",
|
292 |
+
"repeats": 1,
|
293 |
+
"should_decontaminate": false,
|
294 |
+
"metadata": {
|
295 |
+
"version": 0.0
|
296 |
+
}
|
297 |
+
},
|
298 |
+
"mmlu_medical_genetics": {
|
299 |
+
"task": "mmlu_medical_genetics",
|
300 |
+
"task_alias": "medical_genetics (mmlu)",
|
301 |
+
"group": "multimedqa",
|
302 |
+
"group_alias": "other",
|
303 |
+
"dataset_path": "hails/mmlu_no_train",
|
304 |
+
"dataset_name": "medical_genetics",
|
305 |
+
"test_split": "test",
|
306 |
+
"fewshot_split": "dev",
|
307 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
308 |
+
"doc_to_target": "answer",
|
309 |
+
"doc_to_choice": [
|
310 |
+
"A",
|
311 |
+
"B",
|
312 |
+
"C",
|
313 |
+
"D"
|
314 |
+
],
|
315 |
+
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
|
316 |
+
"target_delimiter": " ",
|
317 |
+
"fewshot_delimiter": "\n\n",
|
318 |
+
"fewshot_config": {
|
319 |
+
"sampler": "first_n"
|
320 |
+
},
|
321 |
+
"metric_list": [
|
322 |
+
{
|
323 |
+
"metric": "acc",
|
324 |
+
"aggregation": "mean",
|
325 |
+
"higher_is_better": true
|
326 |
}
|
327 |
+
],
|
328 |
+
"output_type": "multiple_choice",
|
329 |
+
"repeats": 1,
|
330 |
+
"should_decontaminate": false,
|
331 |
+
"metadata": {
|
332 |
+
"version": 0.0
|
333 |
+
}
|
334 |
+
},
|
335 |
+
"mmlu_professional_medicine": {
|
336 |
+
"task": "mmlu_professional_medicine",
|
337 |
+
"task_alias": "professional_medicine (mmlu)",
|
338 |
+
"group": "multimedqa",
|
339 |
+
"group_alias": "other",
|
340 |
+
"dataset_path": "hails/mmlu_no_train",
|
341 |
+
"dataset_name": "professional_medicine",
|
342 |
+
"test_split": "test",
|
343 |
+
"fewshot_split": "dev",
|
344 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
345 |
+
"doc_to_target": "answer",
|
346 |
+
"doc_to_choice": [
|
347 |
+
"A",
|
348 |
+
"B",
|
349 |
+
"C",
|
350 |
+
"D"
|
351 |
+
],
|
352 |
+
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
|
353 |
+
"target_delimiter": " ",
|
354 |
+
"fewshot_delimiter": "\n\n",
|
355 |
+
"fewshot_config": {
|
356 |
+
"sampler": "first_n"
|
357 |
+
},
|
358 |
+
"metric_list": [
|
359 |
+
{
|
360 |
+
"metric": "acc",
|
361 |
+
"aggregation": "mean",
|
362 |
+
"higher_is_better": true
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"output_type": "multiple_choice",
|
366 |
+
"repeats": 1,
|
367 |
+
"should_decontaminate": false,
|
368 |
+
"metadata": {
|
369 |
+
"version": 0.0
|
370 |
+
}
|
371 |
+
},
|
372 |
+
"pubmedqa": {
|
373 |
+
"task": "pubmedqa",
|
374 |
+
"dataset_path": "bigbio/pubmed_qa",
|
375 |
+
"dataset_name": "pubmed_qa_labeled_fold0_source",
|
376 |
+
"training_split": "train",
|
377 |
+
"validation_split": "validation",
|
378 |
+
"test_split": "test",
|
379 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n ctxs = \"\\n\".join(doc[\"CONTEXTS\"])\n return \"Abstract: {}\\nQuestion: {}\\nAnswer:\".format(\n ctxs,\n doc[\"QUESTION\"],\n )\n",
|
380 |
+
"doc_to_target": "final_decision",
|
381 |
+
"doc_to_choice": [
|
382 |
+
"yes",
|
383 |
+
"no",
|
384 |
+
"maybe"
|
385 |
+
],
|
386 |
+
"description": "",
|
387 |
+
"target_delimiter": " ",
|
388 |
+
"fewshot_delimiter": "\n\n",
|
389 |
+
"metric_list": [
|
390 |
+
{
|
391 |
+
"metric": "acc",
|
392 |
+
"aggregation": "mean",
|
393 |
+
"higher_is_better": true
|
394 |
+
}
|
395 |
+
],
|
396 |
+
"output_type": "multiple_choice",
|
397 |
+
"repeats": 1,
|
398 |
+
"should_decontaminate": false,
|
399 |
+
"metadata": {
|
400 |
+
"version": 1.0
|
401 |
+
}
|
402 |
}
|
403 |
+
},
|
404 |
+
"versions": {
|
405 |
+
"medmcqa": "Yaml",
|
406 |
+
"medqa_4options": "Yaml",
|
407 |
+
"mmlu_anatomy": 0.0,
|
408 |
+
"mmlu_clinical_knowledge": 0.0,
|
409 |
+
"mmlu_college_biology": 0.0,
|
410 |
+
"mmlu_college_medicine": 0.0,
|
411 |
+
"mmlu_medical_genetics": 0.0,
|
412 |
+
"mmlu_professional_medicine": 0.0,
|
413 |
+
"pubmedqa": 1.0
|
414 |
+
},
|
415 |
+
"n-shot": {
|
416 |
+
"medmcqa": null,
|
417 |
+
"medqa_4options": null,
|
418 |
+
"mmlu_anatomy": null,
|
419 |
+
"mmlu_clinical_knowledge": null,
|
420 |
+
"mmlu_college_biology": null,
|
421 |
+
"mmlu_college_medicine": null,
|
422 |
+
"mmlu_medical_genetics": null,
|
423 |
+
"mmlu_professional_medicine": null,
|
424 |
+
"multimedqa": null,
|
425 |
+
"pubmedqa": null
|
426 |
+
},
|
427 |
+
"config": {
|
428 |
+
"model_dtype": "torch.float16",
|
429 |
+
"model_name": "demo-leaderboard/gpt2-demo",
|
430 |
+
"model_sha": "ac3299b02780836378b9e1e68c6eead546e89f90"
|
431 |
+
},
|
432 |
+
"git_hash": "a3e56afe",
|
433 |
+
"pretty_env_info": "PyTorch version: 2.1.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: 14.0.0-1ubuntu1.1\nCMake version: version 3.27.9\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.1.58+-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla V100-SXM2-16GB\nNvidia driver version: 535.104.05\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 2\nOn-line CPU(s) list: 0,1\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.00GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 1\nSocket(s): 1\nStepping: 3\nBogoMIPS: 4000.32\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 32 KiB (1 instance)\nL1i cache: 32 KiB (1 instance)\nL2 cache: 1 MiB (1 instance)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0,1\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Mitigation; PTE Inversion\nVulnerability Mds: Vulnerable; SMT Host state unknown\nVulnerability Meltdown: Vulnerable\nVulnerability Mmio stale data: Vulnerable\nVulnerability Retbleed: Vulnerable\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers\nVulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Vulnerable\n\nVersions of relevant libraries:\n[pip3] numpy==1.25.2\n[pip3] torch==2.1.0+cu121\n[pip3] torchaudio==2.1.0+cu121\n[pip3] torchdata==0.7.0\n[pip3] torchsummary==1.5.1\n[pip3] torchtext==0.16.0\n[pip3] torchvision==0.16.0+cu121\n[pip3] triton==2.1.0\n[conda] Could not collect",
|
434 |
+
"transformers_version": "4.38.2",
|
435 |
+
"upper_git_hash": null
|
436 |
}
|