import json import logging import pandas as pd from datasets import load_dataset, Dataset train_dataset = load_dataset("OpenAssistant/oasst1")["train"] def get_children(df, parent_ids): children = df[df['parent_id'].isin(parent_ids)] return children.sort_values('rank', ascending=True).drop_duplicates('parent_id') def trace_conversations(df, parent_ids): conversations = [] children = get_children(df, parent_ids) while not children.empty: conversations.extend(children.to_dict('records')) parent_ids = children['message_id'] children = get_children(df, parent_ids) return conversations # Convert the HuggingFace's dataset to pandas dataframe df = pd.DataFrame.from_records(train_dataset) # Get the root nodes root_nodes = df[df['parent_id'].isnull()] conversations = [] for idx, root in root_nodes.iterrows(): conversation_chain = [root.to_dict()] conversation_chain.extend(trace_conversations(df, [root['message_id']])) conversations.append(conversation_chain) # Select only necessary columns for each conversation for conversation in conversations: for message in conversation: keys_to_delete = set(message.keys()) - {'message_id', 'parent_id', 'role', 'text'} for key in keys_to_delete: del message[key] # Create a new dataframe with only the 'conversations' field result_df = pd.DataFrame({'conversations': conversations}) # Convert dataframe back to HuggingFace's dataset result_dataset = Dataset.from_pandas(result_df) logging.info(result_dataset) with open("guanaco.jsonl", "w") as f: for row in result_dataset: f.write(json.dumps(row))