mittal commited on
Commit
f636f37
·
verified ·
1 Parent(s): 4346861

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -3
README.md CHANGED
@@ -1,9 +1,178 @@
1
  ---
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  task_categories:
4
- - automatic-speech-recognition
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- This dataset contains the data presented in [WavePulse: Real-time Content Analytics of Radio Livestreams](https://hf.co/papers/2412.17998).
8
 
9
- Full Dataset Will Be Ready Soon for access!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: apache-2.0
4
+ datasets:
5
+ - nyu-dice-lab/wavepulse-radio-raw-transcripts
6
+ tags:
7
+ - radio
8
+ - news
9
+ - politics
10
+ - media
11
+ - transcription
12
+ - united-states
13
+ - time-series
14
+ - temporal
15
+ - real-time
16
+ - streaming
17
+ - current-events
18
+ - political-discourse
19
+ - media-analysis
20
  task_categories:
21
+ - text-generation
22
+ - text-classification
23
+ task_ids:
24
+ - news-articles-summarization
25
+ - topic-classification
26
+ - sentiment-analysis
27
+ - text-scoring
28
+ size_categories:
29
+ - 100M<n<1B
30
+ pretty_name: WavePulse Radio Raw Transcripts
31
  ---
32
 
33
+ # WavePulse Radio Raw Transcripts
34
 
35
+ ## Dataset Summary
36
+
37
+ WavePulse Radio Raw Transcripts is a large-scale dataset containing segment-level transcripts from 396 radio stations across the United States, collected between June 26, 2024, and Dec 29th, 2024. The dataset comprises approximately 329 million text segments derived from 485,090 hours of radio broadcasts, primarily covering news, talk shows, and political discussions.
38
+
39
+ The summarized version of these transcripts is available [here](https://huggingface.co/datasets/nyu-dice-lab/wavepulse-radio-summarized-transcripts). For more info, visit https://wave-pulse.io
40
+
41
+ ## Dataset Details
42
+
43
+ ### Dataset Sources
44
+
45
+ - **Source**: Live radio streams from 396 stations across all 50 US states and DC
46
+ - **Time Period**: June 26, 2024 - December 29th, 2024
47
+ - **Collection Method**: Automated recording and processing using the WavePulse system
48
+ - **Audio Processing**: WhisperX for transcription and speaker diarization
49
+ - **Format**: Parquet files organized by state and month, with segment-level granularity
50
+
51
+ ### Data Collection Process
52
+
53
+ 1. **Recording**: Continuous recording of radio livestreams
54
+ 2. **Transcription**: Audio processed using WhisperX for accurate transcription
55
+ 3. **Diarization**: Speaker separation and identification
56
+ 4. **Quality Control**: Automated checks for content quality and completeness
57
+ 5. **Removal of personal information** only for cleaning purpose. Radio is fair use.
58
+
59
+ ### Dataset Statistics
60
+
61
+ - Number of Stations: 396
62
+ - Number of States: 50 + DC
63
+ - Total individual 30-minute transcripts - 1,555,032
64
+ - Average Segments per 30-min: ~150
65
+ - Total Segments: 220 million
66
+ - Total Words: >5 billion
67
+
68
+ ## Usage
69
+
70
+ ### Loading the Dataset
71
+
72
+ ```python
73
+ from datasets import load_dataset
74
+
75
+ # Load full dataset
76
+ dataset = load_dataset("nyu-dice-lab/wavepulse-radio-raw-transcripts")
77
+
78
+ # Load specific state
79
+ dataset = load_dataset("nyu-dice-lab/wavepulse-radio-raw-transcripts", "NY")
80
+
81
+ # Filter by date range
82
+ filtered_ds = dataset.filter(
83
+ lambda x: "2024-08-01" <= x['datetime'] <= "2024-08-31"
84
+ )
85
+
86
+ # Filter by station
87
+ station_ds = dataset.filter(lambda x: x['station'] == 'WXYZ')
88
+
89
+ # Get all segments from a specific transcript
90
+ transcript_ds = dataset.filter(lambda x: x['transcript_id'] == 'AK_KAGV_2024_08_25_13_00')
91
+ ```
92
+
93
+ ### Data Schema
94
+
95
+ ```python
96
+ {
97
+ 'transcript_id': str, # e.g., 'AK_KAGV_2024_08_25_13_00'
98
+ 'segment_index': int, # Position in original transcript
99
+ 'start_time': float, # Start time in seconds
100
+ 'end_time': float, # End time in seconds
101
+ 'text': str, # Segment text
102
+ 'speaker': str, # Speaker ID (unique *within* transcript)
103
+ 'station': str, # Radio station callsign
104
+ 'datetime': datetime, # Timestamp in ET
105
+ 'state': str # Two-letter state code
106
+ }
107
+ ```
108
+
109
+ ### Example Entry
110
+
111
+ ```python
112
+ {
113
+ 'transcript_id': 'AK_KAGV_2024_08_25_13_00',
114
+ 'segment_index': 0,
115
+ 'start_time': 0.169,
116
+ 'end_time': 2.351,
117
+ 'text': 'FM 91.9, the Nana.',
118
+ 'speaker': 'SPEAKER_01',
119
+ 'station': 'KAGV',
120
+ 'datetime': '2024-08-25 13:00:00',
121
+ 'state': 'AK'
122
+ }
123
+ ```
124
+
125
+ ### Important Notes
126
+
127
+ - Speaker IDs (e.g., SPEAKER_01) are only unique within a single transcript. The same ID in different transcripts may refer to different speakers.
128
+ - Segments maintain their original order through the segment_index field.
129
+ - All timestamps are relative to the start of their 30-minute transcript.
130
+
131
+ ### Data Quality
132
+
133
+ - Word Error Rate (WER) for transcription: 8.4% ± 4.6%
134
+ - Complete coverage of broadcast hours from 5:00 AM to 3:00 AM ET (i.e. 12 AM PT)
135
+ - Consistent metadata across all entries
136
+ - Preserved temporal relationships between segments
137
+
138
+ ## Intended Uses
139
+
140
+ This dataset is designed to support research in:
141
+
142
+ - Media analysis and content tracking
143
+ - Information dissemination patterns
144
+ - Regional news coverage differences
145
+ - Political narrative analysis
146
+ - Public discourse studies
147
+ - Temporal news analysis
148
+ - Speaker diarization analysis
149
+ - Conversational analysis
150
+ - Turn-taking patterns in radio shows
151
+
152
+ ## Limitations
153
+
154
+ - Limited to stations with internet streams
155
+ - English-language content only
156
+ - Coverage varies by region and time zone
157
+ - Potential transcription errors in noisy segments
158
+ - Some stations have gaps due to technical issues
159
+ - Speaker IDs don't persist across transcripts
160
+ - Background music or effects may affect transcription quality
161
+
162
+ ## Ethical Considerations
163
+
164
+ - Contains only publicly broadcast content
165
+ - Commercial use may require additional licensing
166
+ - Attribution should be given to original broadcasters
167
+ - Content should be used responsibly and in context
168
+
169
+ ## Citation
170
+
171
+ ```bibtex
172
+ @article{mittal2024wavepulse,
173
+ title={WavePulse: Real-time Content Analytics of Radio Livestreams},
174
+ author={Mittal, Govind and Gupta, Sarthak and Wagle, Shruti and Chopra, Chirag and DeMattee, Anthony J and Memon, Nasir and Ahamad, Mustaque and Hegde, Chinmay},
175
+ journal={arXiv preprint arXiv:2412.17998},
176
+ year={2024}
177
+ }
178
+ ```