Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Swati
Size:
10K<n<100K
License:
File size: 5,145 Bytes
562ad9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Named entity annotated data from the NCHLT Text Resource Development: Phase II Project for Siswati"""
from __future__ import absolute_import, division, print_function
import logging
import os
import datasets
_CITATION = """\
@inproceedings{siswati_ner_corpus,
author = {B.B. Malangwane and
M.N. Kekana and
S.S. Sedibe and
B.C. Ndhlovu and
Roald Eiselen},
title = {NCHLT Siswati Named Entity Annotated Corpus},
booktitle = {Eiselen, R. 2016. Government domain named entity recognition for South African languages. Proceedings of the 10th Language Resource and Evaluation Conference, Portorož, Slovenia.},
year = {2016},
url = {https://repo.sadilar.org/handle/20.500.12185/346},
}
"""
_DESCRIPTION = """\
Named entity annotated data from the NCHLT Text Resource Development: Phase II Project, annotated with PERSON, LOCATION, ORGANISATION and MISCELLANEOUS tags.
"""
_HOMEPAGE = "https://repo.sadilar.org/handle/20.500.12185/346"
_LICENSE = "Creative Commons Attribution 2.5 South Africa License"
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://repo.sadilar.org/bitstream/handle/20.500.12185/346/nchlt_siswati_named_entity_annotated_corpus.zip?sequence=3&isAllowed=y"
_EXTRACTED_FILE = "NCHLT Siswati Named Entity Annotated Corpus/Dataset.NCHLT-II.ss.NER.Full.txt"
class SiswatiNerCorpusConfig(datasets.BuilderConfig):
"""BuilderConfig for SiswatiNerCorpus"""
def __init__(self, **kwargs):
"""BuilderConfig for SiswatiNerCorpus.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SiswatiNerCorpusConfig, self).__init__(**kwargs)
class SiswatiNerCorpus(datasets.GeneratorBasedBuilder):
""" SiswatiNerCorpus Ner dataset"""
BUILDER_CONFIGS = [
SiswatiNerCorpusConfig(
name="siswati_ner_corpus",
version=datasets.Version("1.0.0"),
description="SiswatiNerCorpus dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"OUT",
"B-PERS",
"I-PERS",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
"B-MISC",
"I-MISC",
]
)
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, _EXTRACTED_FILE)},
),
]
def _generate_examples(self, filepath):
logging.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
if line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
splits = line.split("\t")
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
|