Datasets:

Languages:
Swati
License:
File size: 5,145 Bytes
562ad9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Named entity annotated data from the NCHLT Text Resource Development: Phase II Project for Siswati"""

from __future__ import absolute_import, division, print_function

import logging
import os

import datasets


_CITATION = """\
@inproceedings{siswati_ner_corpus,
  author    = {B.B. Malangwane and
               M.N. Kekana and
               S.S. Sedibe and
               B.C. Ndhlovu and
              Roald Eiselen},
  title     = {NCHLT Siswati Named Entity Annotated Corpus},
  booktitle = {Eiselen, R. 2016. Government domain named entity recognition for South African languages. Proceedings of the 10th      Language Resource and Evaluation Conference, Portorož, Slovenia.},
  year      = {2016},
  url       = {https://repo.sadilar.org/handle/20.500.12185/346},
}
"""


_DESCRIPTION = """\
Named entity annotated data from the NCHLT Text Resource Development: Phase II Project, annotated with PERSON, LOCATION, ORGANISATION and MISCELLANEOUS tags.
"""


_HOMEPAGE = "https://repo.sadilar.org/handle/20.500.12185/346"


_LICENSE = "Creative Commons Attribution 2.5 South Africa License"


# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://repo.sadilar.org/bitstream/handle/20.500.12185/346/nchlt_siswati_named_entity_annotated_corpus.zip?sequence=3&isAllowed=y"

_EXTRACTED_FILE = "NCHLT Siswati Named Entity Annotated Corpus/Dataset.NCHLT-II.ss.NER.Full.txt"


class SiswatiNerCorpusConfig(datasets.BuilderConfig):
    """BuilderConfig for SiswatiNerCorpus"""

    def __init__(self, **kwargs):
        """BuilderConfig for SiswatiNerCorpus.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SiswatiNerCorpusConfig, self).__init__(**kwargs)


class SiswatiNerCorpus(datasets.GeneratorBasedBuilder):
    """ SiswatiNerCorpus Ner dataset"""

    BUILDER_CONFIGS = [
        SiswatiNerCorpusConfig(
            name="siswati_ner_corpus",
            version=datasets.Version("1.0.0"),
            description="SiswatiNerCorpus dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "OUT",
                                "B-PERS",
                                "I-PERS",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                                "B-MISC",
                                "I-MISC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": os.path.join(data_dir, _EXTRACTED_FILE)},
            ),
        ]

    def _generate_examples(self, filepath):
        logging.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    splits = line.split("\t")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }