solution
stringlengths
11
983k
difficulty
int64
0
21
language
stringclasses
2 values
#include <bits/stdc++.h> inline int min(int x, int y) { return x < y ? x : y; } inline int getch() { int ch = getchar(); while (!isdigit(ch)) ch = getchar(); return ch; } int n; int main() { scanf("%d", &n); int NOE = 0; for (register int i = 1; i <= n; ++i) { int ch = getch(); if (ch == '8') ++NOE; } printf("%d\n", min(NOE, n / 11)); return 0; }
7
CPP
#include <bits/stdc++.h> using namespace std; int32_t main() { long long m; long long n, k = 0, k1 = 0, k0 = 0, sm = 0, mn = 1e5, sm_original = 0, f = 0, k2 = 0, t, mx = -1; string s; cin >> n; cin >> s; for (long long i = 0; i < s.size(); i++) if (s[i] == '8') k++; n = s.size() / 11; cout << min(n, k); }
7
CPP
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int an = 0; char a[100]; for (int i = 0; i < n; i++) { cin >> a[i]; if (a[i] == '8') { an++; } } int m = n / 11; cout << min(m, an); }
7
CPP
#include <bits/stdc++.h> using namespace std; mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count() * ((uint64_t) new char | 1)); long long get_random_int(long long a, long long b) { return uniform_int_distribution<long long>(a, b)(rng); } int main() { ios_base::sync_with_stdio(false); cout << fixed; cout.precision(10); int n; cin >> n; string s; cin >> s; int cnt8 = 0; int cntr = 0; for (int i = 0; i < n; ++i) { if (s[i] == '8') { cnt8++; } else { cntr++; } } int res = 0; for (int i = cnt8; i >= 0; --i) { res = max(res, min(i, cntr / 10)); cntr++; } cout << res; return 0; }
7
CPP
#include <bits/stdc++.h> using namespace std; long long n; string s; long long cnt[10]; int main(void) { ios::sync_with_stdio(0); cin.tie(0); cin >> n; cin >> s; for (long long(i) = (0); (i) <= (n - 1); (i)++) cnt[s[i] - '0']++; cout << min(n / 11, cnt[8]) << endl; return 0; }
7
CPP
n = int(input()) s = input() c, nph = s.count('8'), n//11 print(min(c,nph))
7
PYTHON3
n=int(input()) s=input() num_eight=0 for i in range(n): if s[i]=='8': num_eight+=1 phone_num=n//11 if num_eight<=phone_num: print(num_eight) else: print(phone_num)
7
PYTHON3
long = int(input()) ch = input() nb = 0 for i in range(0, long): if ch[i] == '8': nb += 1 div=long//11 if long>=11: print(min(div,nb)) else: print(0)
7
PYTHON3
n = int(input()) s = input() m = s.count("8") n if m == 0 or n < 11: print(0) else: lo,hi = 1,m while lo <= hi: mid = (lo+hi) // 2 if mid * 10 <= n - mid: lo = mid + 1 else: hi = mid - 1 print(hi)
7
PYTHON3
n=int(input()) s=input() eight=s.count('8') print(min(eight,int(n//11)))
7
PYTHON3
x=int(input()) s=input() d=x//11 e=s.count('8') print(min(e,d))
7
PYTHON3
#include <bits/stdc++.h> using namespace std; int n, ans; char str[1000]; int main() { while (cin >> n) { cin >> str; ans = 0; for (int i = 0; i < n; ++i) if (str[i] == '8') ans++; ans = min(ans, n / 11); cout << ans << endl; } return 0; }
7
CPP
n=int(input()) s=input() k=s.count('8') if(n//11<=k): print(n//11) else: print(k)
7
PYTHON3
#include <bits/stdc++.h> using namespace std; int n, num, ans, cnt = 0; char x; int main() { cin >> n; for (int i = 1; i <= n; i++) { cin >> x; if (x == '8') num++; } for (int i = 1; i <= num; i++) { for (int j = 1; j <= 11; j++) cnt++; if (cnt > n) { ans = i - 1; break; } if (cnt == n) { ans = i; break; } } if (cnt < n) ans = num; cout << ans; return 0; }
7
CPP
n = int(input()) s = input() if n >= 11: print(min(s.count('8'), n // 11)) else: print(0)
7
PYTHON3
n = int(input()) m = input() t = 0 for i in range (len(m)): if (m[i]=='8'): t=t+1 if (n//11<=t): print (n//11) print () else: print (t) print ()
7
PYTHON3
def counter(cards, n): if(n<11): return 0 else: max_by_len = n // 11 count_of_eight = 0 for c in cards: if c == '8': count_of_eight += 1 if count_of_eight >= max_by_len: break return count_of_eight def stand_input(): n = int(input()) cards = input() res = counter(cards, n) print(res) stand_input()
7
PYTHON3
n=int(input()) c=0 x=input() for i in range(len(x)): if x[i]=='8': c+=1 if c==0: #print (0) print(0) else: a=[n//11,c] print(min(a))
7
PYTHON3
import math n=int(input()) s=input() c=0 d=s.count('8') print(min(n//11,d))
7
PYTHON3
a=int(input()) s=str(input()) l=list(s) k=l.count('8') m=min(int(a/11),k) print(m)
7
PYTHON3
a=input() b=input() cont=0 i=0 while(i<int(a) and cont<=int(a)//11-1): if b[i]=="8": cont=cont+1 i=i+1 print(cont)
7
PYTHON3
#include <bits/stdc++.h> using namespace std; int main() { int n, count = 0; string s; cin >> n >> s; for (int i = 0; i < n; i++) { if (s[i] == '8') count++; } if (n < 11) cout << "0" << endl; else { cout << min(count, n / 11) << endl; } return 0; }
7
CPP
import collections def solve(): n = int(input()) cards = collections.Counter(input()) eights = cards['8'] ans: int = min(eights, n // 11) print(ans) if __name__ == '__main__': solve()
7
PYTHON3
#include <bits/stdc++.h> using namespace std; int n, con; char a[100000]; int main() { scanf("%d", &n); scanf("%s", a); for (int i = 0; i < n; ++i) if (a[i] == '8') con++; printf("%d\n", min(con, n / 11)); return 0; }
7
CPP
#include <bits/stdc++.h> using namespace std; signed main() { int n, cnt = 0; char s[105]; cin >> n; scanf("%s", s); for (int i = 0; i < n; i++) cnt += s[i] == '8'; cout << min(cnt, n / 11); }
7
CPP
n=int(input()) number=str(input()) ndiv=int(n/11) if(n<11): print('0') else: nume=number.count("8") if nume>=ndiv: print(ndiv) else : print(nume)
7
PYTHON3
#include <bits/stdc++.h> #pragma GCC optimize(2) using namespace std; const int inf = 0x3f3f3f3f; string s; int len; int fac[101]; inline char nc() { static char buf[100000], *p1 = buf, *p2 = buf; if (p1 == p2) { p2 = (p1 = buf) + fread(buf, 1, 100000, stdin); if (p1 == p2) return EOF; } return *p1++; } inline void read(int &x) { char c = getchar(); int b = 1; for (; c < '0' || c > '9'; c = getchar()) if (c == '-') b = -1; for (x = 0; c >= '0' && c <= '9'; x = x * 10 + c - '0', c = getchar()) ; x = x * b; } inline void read(long long &x) { char c = getchar(); int b = 1; for (; c < '0' || c > '9'; c = getchar()) if (c == '-') b = -1; for (x = 0; c >= '0' && c <= '9'; x = x * 10 + c - '0', c = getchar()) ; x = x * b; } int main(int argc, char *argv[]) { int flag = 0, sum = 0; read(len); cin >> s; for (int i = (0); i <= (len - 1); i++) { if (s[i] == '8') flag = 1, sum++; } if (!flag || len <= 10) { printf("0\n"); return 0; } for (int i = (sum); i >= (1); i--) if (i + i * 10 <= len) { printf("%d\n", i); return 0; } return 0; }
7
CPP
n = int(input()) s = input() n8 = 0 for x in s: if x == '8': n8 += 1 print(min(n8, n // 11))
7
PYTHON3
n = int(input()) lst = list(input()) print(min(lst.count('8'), n // 11))
7
PYTHON3
n = int(input()) num = int(input()) p = 0 count = 0 c = 0 a=[0] while n != 0: if (num % 10) == 8: p += 1 c-=1 num //= 10 c += 1 n-=1 #print(c,p) while c >= 10 and p > 0: c -= 10 p -= 1 count += 1 #print(c,p) if p>0: count=count+(c+p)//11 print(count)
7
PYTHON3
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int coun = 0; string s; cin >> s; for (int i = 0; i < n; i += 1) { if (s[i] == '8') coun++; } cout << min(coun, n / 11); return 0; }
7
CPP
n=int(input()) s=list(str(input())) e,m=0,0 if '8' not in s or n<11: print(0) else: e=s.count('8') m=n//11 print(min(e,m))
7
PYTHON3
n = int(input()) s = input() eights = s.count('8') print(min(eights, len(s) // 11))
7
PYTHON3
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; string s; cin >> s; int count = 0; for (int i = 0; i < s.size(); i++) { if (s[i] == '8') { count++; } } if (n == 11 && count >= 1) { cout << 1 << "\n"; } else { int a = n / 11; if (count >= a) { cout << a << "\n"; } else { cout << count << "\n"; } } return 0; }
7
CPP
n=int(input()) s=input() c=0 for i in range(len(s)): if(s[i]=='8'): c=c+1 a=n//11 print(min(c,a))
7
PYTHON3
# A. Phone Numbers n=int(input()) s=input() m=s.count("8") ans=min(m,n//11) print(ans)
7
PYTHON3
from collections import Counter n = int(input()) c = Counter(input()) if '8' in list(c): print(min(n//11,c['8'])) else: print(0)
7
PYTHON3
#include <bits/stdc++.h> using namespace std; int main() { int n, count = 0; char st[100]; cin >> n; cin >> st; if (n >= 11) { for (int i = 0; i <= n; i++) { if (st[i] == '8') count++; else continue; } if (count == 0) { count = 0; } else if (count != 0 && n / count >= 11) { count = count; } else { count = n / 11; } } cout << count; }
7
CPP
#include <bits/stdc++.h> using namespace std; template <typename T> void read(T& x) { x = 0; T f = 1; char ch = getchar(); while (!isdigit(ch)) f = ch == '-' ? -f : f, ch = getchar(); while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar(); x *= f; } template <typename T> void viet(T x) { if (x > 9) viet(x / 10); putchar(x % 10 + '0'); } int n, cnt, ret; string s; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> s; for (int i = 0; i < s.size(); i++) { if (s[i] == '8') cnt++; } n -= cnt; int foo = min(cnt, n / 10); ret += foo; cnt -= foo; n -= foo * 10; if (cnt > 0) ret += (cnt + n) / 11; cout << ret << endl; }
7
CPP
#include <bits/stdc++.h> using namespace std; const long long MAXN = 1123456; template <typename T> T sqr(T x) { return x * x; } template <typename T> void vout(T s) { cout << s << "\n"; exit(0); } long long bp(long long a, long long n) { long long res = 1; while (n) { if (n % 2) res *= a; a *= a; n >>= 1; } return res; } long long f(long long x) { long long res = 0; while (x) { res += x % 10; x /= 10; } return res; } long long a[MAXN]; int main() { ios_base ::sync_with_stdio(0); cin.tie(0); long long n, kol = 0; cin >> n; for (int i = 0; i < n; i++) { char cc; cin >> cc; if (cc == '8') kol++; } cout << min(kol, n / 11) << "\n"; cerr << "Time execute: " << clock() / (double)CLOCKS_PER_SEC << " sec" << "\n"; return 0; }
7
CPP
n = int(input()) s = input() n8 = 0 for i in range(n): if s[i] == '8': n8 += 1 ans = 0 for i in range(n8, 0, -1): if (n - i) // 10 >= i: ans = i break print(ans)
7
PYTHON3
#include <bits/stdc++.h> const int MAXN = 1e5 + 20; int n, k, M; int inv[MAXN], pre_inv[MAXN]; void math_pre() { inv[1] = 1; for (int i = 2; i <= ((n < 4) ? 4 : n); ++i) inv[i] = 1ll * (M - M / i) * inv[M % i] % M; for (int i = 1; i <= n; ++i) pre_inv[i] = (pre_inv[i - 1] + inv[i]) % M; } struct map { static const int MAXMap = 2; int tot; struct pad { int key, val; pad() {} pad(const int &KEY, const int &VAL) : key(KEY), val(VAL) {} } node[MAXMap + 1]; map() { tot = 0; } pad *find(const int &key) { pad *ret = node; while (ret - node < tot && ret->key != key) ++ret; return ret; } void insert(const pad &new_element) { node[tot++] = new_element; } pad *begin() { return &node[0]; } pad *end() { return &node[tot]; } } Map; void solve(const int &l, const int &r, const int &h) { if (l >= r || h <= 1) { int len = r - l + 1; map::pad *it = Map.find(len); if (it == Map.end()) Map.insert(map::pad(len, 1)); else ++it->val; return; } int mid = (l + r) >> 1; solve(l, mid, h - 1), solve(mid + 1, r, h - 1); } int calc(const int &len1, const int &len2) { int ret = 0; for (int i = 1; i <= len1; ++i) ret = ((ret + 1ll * inv[2] * len2 % M - (pre_inv[i + len2] - pre_inv[i + 1 - 1])) % M + M) % M; return ret; } int main() { scanf("%d%d%d", &n, &k, &M); math_pre(); solve(1, n, k); int ans = 0; for (map::pad *it = Map.begin(); it != Map.end(); ++it) { int len = it->key, cnt = it->val; ans = (ans + 1ll * cnt * len % M * (len - 1) % M * inv[4] % M) % M; } for (map::pad *it1 = Map.begin(); it1 != Map.end(); ++it1) for (map::pad *it2 = Map.begin(); it2 != Map.end(); ++it2) { if (it1 == it2) { int len = it1->key, cnt = 1ll * (0 + (it1->val - 1)) * it1->val / 2 % M; ans = (ans + 1ll * cnt * calc(len, len) % M) % M; } else if (it1->key < it2->key) { int len1 = it1->key, len2 = it2->key, cnt = 1ll * it1->val * it2->val % M; ans = (ans + 1ll * cnt * calc(len1, len2) % M) % M; } } printf("%d", ans); }
13
CPP
#include <bits/stdc++.h> using namespace std; long long mod = 998244353; const long long N = 1e5 + 5; inline long long read() { long long x = 0, f = 1; char ch = getchar(); while ((ch > '9' || ch < '0')) { if (ch == '-') f = -1; ch = getchar(); } while ('0' <= ch && ch <= '9') x = x * 10 + (ch ^ 48), ch = getchar(); return x * f; } inline long long ksm(long long x, long long y = mod - 2, long long z = mod) { long long ret = 1; while (y) { if (y & 1LL) ret = ret * x % mod; x = x * x % mod; y >>= 1LL; } return ret; } long long inv[N], sum[N]; void init(long long n) { inv[1] = 1; for (register signed i = 2; i <= n; i++) inv[i] = inv[mod % i] * (mod - mod / i) % mod; for (register signed i = 1; i <= n; i++) sum[i] = (sum[i - 1] + inv[i]) % mod; } long long k, n, ans; map<long long, long long> S; void MS(long long l, long long r, long long h) { if (h == k || l == r) { S[r - l + 1]++; return; } long long mid = (l + r) >> 1; MS(l, mid, h + 1); MS(mid + 1, r, h + 1); } long long calc(long long x, long long y) { long long res = x * y % mod; for (register signed i = 1; i <= x; ++i) res -= (sum[i + y] - sum[i]) * 2, res %= mod; return (res % mod + mod) % mod; } signed main() { n = read(); k = read(); mod = read(); init(n); MS(1, n, 1); for (map<long long, long long>::iterator X = S.begin(); X != S.end(); X++) { long long x = X->first, y = X->second; ans += x * (x - 1) % mod * inv[2] % mod * y % mod; ans %= mod; ans += y * (y - 1) % mod * inv[2] % mod * calc(x, x) % mod; ans %= mod; } for (map<long long, long long>::iterator X = S.begin(); X != S.end(); X++) for (map<long long, long long>::iterator Y = S.begin(); Y != S.end(); Y++) { long long x = X->first, y = Y->first, a = X->second, b = Y->second; if (x >= y) continue; ans += calc(x, y) * a % mod * b % mod; ans %= mod; } ans = ans * inv[2] % mod; ans += mod; ans %= mod; cout << ans << '\n'; }
13
CPP
#include <bits/stdc++.h> const int N = 200005; int n, k, q, mod, cnt[2]; int sH[N], ans; void up(int &x, int y) { x += y - mod, x += x >> 31 & mod; } void up(int &x, int y, int z) { x = (x + (long long)y * z) % mod; } int c(int n) { return (long long)n * (n - 1) / 2 % mod; } void solve(int n, int m) { if (m == 1 || n == 1) return void(++cnt[n - q]); solve(n >> 1, m - 1), solve(n + 1 >> 1, m - 1); } int f(int a, int b) { return ((long long)a * b % mod * (mod + 1 >> 1) + mod + sH[a] + sH[b] - sH[a + b]) % mod; } int main() { std::ios::sync_with_stdio(0), std::cin.tie(0); std::cin >> n >> k >> mod; q = n >> std::min(k - 1, 20), solve(n, k); sH[1] = 1; for (int i = 2; i <= n; ++i) sH[i] = (long long)(mod - mod / i) * sH[mod % i] % mod; for (int i = 2; i <= n; ++i) up(sH[i], sH[i - 1]); for (int i = 2; i <= n; ++i) up(sH[i], sH[i - 1]); up(ans, (long long)c(q) * (mod + 1 >> 1) % mod, cnt[0]); up(ans, (long long)c(q + 1) * (mod + 1 >> 1) % mod, cnt[1]); up(ans, f(q, q), c(cnt[0])); up(ans, f(q + 1, q + 1), c(cnt[1])); up(ans, f(q, q + 1), (long long)cnt[0] * cnt[1] % mod); std::cout << ans << '\n'; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int md; inline void add(int &a, int b) { a += b; if (a >= md) a -= md; } inline void sub(int &a, int b) { a -= b; if (a < 0) a += md; } inline int mul(int a, int b) { return (int)((long long)a * b % md); } inline int power(int a, long long b) { int res = 1; while (b > 0) { if (b & 1) { res = mul(res, a); } a = mul(a, a); b >>= 1; } return res; } inline int inv(int a) { a %= md; if (a < 0) a += md; int b = md, u = 0, v = 1; while (a) { int t = b / a; b -= t * a; swap(a, b); u -= t * v; swap(u, v); } assert(b == 1); if (u < 0) u += md; return u; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k >> md; if (k >= 20 || n <= (1 << (k - 1))) { cout << 0 << '\n'; return 0; } int bc = (1 << (k - 1)); int small_size = n / bc; int big_size = small_size + 1; int big_cnt = n % bc; int small_cnt = bc - big_cnt; vector<int> blocks(bc); for (int i = 0; i < n; i++) { blocks[i % (int)blocks.size()]++; } map<int, int> mp; for (int x : blocks) { mp[x]++; } vector<int> fact(n + 1), inv_fact(n + 1); fact[0] = inv_fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = mul(fact[i - 1], i); inv_fact[i] = inv(fact[i]); } int ans = 0; for (int b1id = 0; b1id < bc; b1id++) { int b = blocks[b1id]; add(ans, mul(mul(b, b - 1), inv(4))); } vector<int> sum_inv(n + 1); for (int i = 0; i < n; i++) { sum_inv[i + 1] = sum_inv[i]; add(sum_inv[i + 1], inv(i + 1)); } for (int b1id = 0; b1id < bc; b1id++) { int b1 = blocks[b1id]; if (b1 == small_size) small_cnt--; else big_cnt--; for (int x = 2; x <= b1; x++) { if (small_cnt > 0) { int aux = sum_inv[x + small_size]; sub(aux, sum_inv[x]); int prob = mul(x - 1, aux); add(ans, mul(small_cnt, mul(prob, inv(2)))); } if (big_cnt > 0) { int aux = sum_inv[x + big_size]; sub(aux, sum_inv[x]); int prob = mul(x - 1, aux); add(ans, mul(big_cnt, mul(prob, inv(2)))); } } if (b1 == small_size) small_cnt++; else big_cnt++; } cout << ans << '\n'; return 0; }
13
CPP
#include <bits/stdc++.h> using std::cerr; using std::endl; const int N = 1e5 + 10; int n, K, P, inv[N], sum[N], ans; std::map<int, int> map; void divide(int l, int r, int dep) { if (l == r || dep == K) { return ++map[r - l + 1], void(); } int mid = (l + r) >> 1; divide(l, mid, dep + 1); divide(mid + 1, r, dep + 1); } inline long long calc(int x, int y) { int ret = 1ll * x * y % P * inv[2] % P; for (int i = 1; i <= x; ++i) ret = (ret - sum[i + y] + sum[i]) % P; ret = (ret % P + P) % P; return ret; } int main() { scanf("%d %d %d", &n, &K, &P); divide(1, n, 1); inv[1] = sum[1] = 1; for (int i = 2, lim = std::max(4, n); i <= lim; ++i) { inv[i] = P - 1ll * P / i * inv[P % i] % P; sum[i] = (sum[i - 1] + inv[i]) % P; } for (auto m : map) { ans = (ans + 1ll * m.first * (m.first - 1) % P * inv[4] % P * m.second) % P; ans = (ans + calc(m.first, m.first) * m.second % P * (m.second - 1) % P * inv[2]) % P; } for (auto m1 : map) for (auto m2 : map) if (m1.first < m2.first) ans = (ans + calc(m1.first, m2.first) * m1.second % P * m2.second) % P; std::cout << ans << '\n'; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; using ull = uint64_t; using ll = int64_t; using ld = long double; int mod; ll pw(ll a, int b) { if (!b) { return 1; } ll v = pw(a, b / 2); v = (v * v) % mod; if (b & 1) { v = (v * a) % mod; } return v; } ll ans = 0; ll norm(ll x) { x %= mod; if (x < 0) { x += mod; } return x; } const int N = 300228; ll invs[N]; void go(ll mul, int a, int b) { mul %= mod; ll cans = 0; for (int i = 2; i <= a + b; ++i) { int al = max(1, i - b); int ar = min(a, i - 1); if (al <= ar) { ll c = ar - al + 1; cans += c * invs[i]; cans %= mod; } } ans = (ans + cans * mul) % mod; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cout.setf(ios::fixed); cout.precision(20); int n, k; cin >> n >> k >> mod; for (int i = 1; i <= n; ++i) { invs[i] = pw(i, mod - 2); } int c = 1; for (int i = 1; i < k; ++i) { c *= 2; if (c >= n) { cout << 0 << "\n"; return 0; } } int sz = n / c; ll bc = n % c; go(bc * (bc - 1), sz + 1, sz + 1); go((c - bc) * (c - bc - 1), sz, sz); go(2ll * bc * (c - bc), sz, sz + 1); ll all = ll(n) * ll(n - 1) / 2; cout << norm((all - ans) * invs[2]) << "\n"; }
13
CPP
#include <bits/stdc++.h> using namespace std; int n, k; int Mod; int inv4; int inv[200010]; int sum[200010]; int fpow(int a, int b) { int ans = 1, t = a; while (b) { if (b & 1) ans = 1ll * ans * t % Mod; t = 1ll * t * t % Mod; b >>= 1; } return ans; } void init() { int N = 200000; for (int i = 1; i <= N; i++) { inv[i] = fpow(i, Mod - 2); sum[i] = (sum[i - 1] + inv[i]) % Mod; } return; } int mn = 0; int cnt[100010]; int calc(int x, int y) { int ans = 1ll * x * y % Mod * inv[2] % Mod; for (int i = 1; i <= x; i++) ans = ((ans - sum[i + y] + sum[i]) % Mod + Mod) % Mod; return ans; } void divide(int l, int r, int d) { if (l == r || d <= 1) { cnt[r - l + 1]++; mn = min(mn, r - l + 1); return; } int mid = (l + r) >> 1; divide(l, mid, d - 1); divide(mid + 1, r, d - 1); return; } int main() { scanf("%d %d %d", &n, &k, &Mod); mn = n; init(); divide(1, n, k); int s = mn, t = mn + 1; int x = cnt[mn], y = cnt[mn + 1]; int ans = 0; ans = (ans + 1ll * s * (s - 1) % Mod * inv[4] % Mod * x) % Mod; ans = (ans + 1ll * t * (t - 1) % Mod * inv[4] % Mod * y) % Mod; ans = (ans + 1ll * x * (x - 1) % Mod * inv[2] % Mod * calc(s, s)) % Mod; ans = (ans + 1ll * y * (y - 1) % Mod * inv[2] % Mod * calc(t, t)) % Mod; ans = (ans + 1ll * x * y % Mod * calc(s, t)) % Mod; printf("%d\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int mod; const int maxn = 200111; map<int, int> mp; int n, k; long long inv[maxn]; int id[maxn], g[maxn], gn; long long sum; long long calc(long long a, long long b) { long long ret = 0; for (int i = 2; i <= a + b; i++) { long long l = max(1ll, i - b), r = min(i - 1ll, a); long long cnt = max(0ll, r - l + 1); ret = (ret + cnt * inv[i]) % mod; } return ret; } void solve(int l, int r, int k) { if (l == r || k == 1) { gn++; for (int i = l; i <= r; i++) id[i] = i - l + 1, g[i] = gn; mp[r - l + 1]++; return; } int m = l + r >> 1; solve(l, m, k - 1); solve(m + 1, r, k - 1); } int main() { cin >> n >> k >> mod; inv[1] = 1; for (int i = 2; i < maxn; i++) inv[i] = mod - 1ll * (mod / i) * inv[mod % i] % mod; solve(1, n, k); long long ans = (1ll * n * (n - 1) / 2) % mod; for (auto x : mp) { for (auto y : mp) { if (x.first > y.first) continue; if (x.first == y.first) { ans = (ans - 2ll * (1ll * x.second * (x.second - 1) / 2) % mod * calc(x.first, x.first)) % mod; } else ans = (ans - 2ll * x.second * y.second % mod * calc(x.first, y.first)) % mod; } } cout << ((ans * inv[2] % mod) + mod) % mod << endl; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <typename T1, typename T2> inline T1 max(T1 a, T2 b) { return a < b ? b : a; } template <typename T1, typename T2> inline T1 min(T1 a, T2 b) { return a < b ? a : b; } const char lf = '\n'; namespace ae86 { const int bufl = 1 << 15; char buf[bufl], *s = buf, *t = buf; inline int fetch() { if (s == t) { t = (s = buf) + fread(buf, 1, bufl, stdin); if (s == t) return EOF; } return *s++; } inline int ty() { int a = 0; int b = 1, c = fetch(); while (!isdigit(c)) b ^= c == '-', c = fetch(); while (isdigit(c)) a = a * 10 + c - 48, c = fetch(); return b ? a : -a; } } // namespace ae86 using ae86::ty; const int _ = 100007; int mo; template <typename T1, typename T2> inline T1 ad(T1 &a, T2 b) { return a = a + b >= mo ? a + b - mo : a + b; } template <typename T1, typename T2> inline T1 dl(T1 &a, T2 b) { return a = a >= b ? a - b : a - b + mo; } template <typename T1, typename T2> inline T1 add(T1 a, T2 b) { return a + b >= mo ? a + b - mo : a + b; } template <typename T1, typename T2> inline T1 del(T1 a, T2 b) { return a >= b ? a - b : a - b + mo; } long long powa(long long a, long long t) { long long b = 1; a = (a + mo) % mo; while (t) { if (t & 1) b = b * a % mo; a = a * a % mo, t >>= 1; } return b; } inline long long inva(long long a) { return powa(a, mo - 2); } long long ri[_] = {0}, sri[_] = {0}; void fuck(int n = _ - 1) { ri[0] = 0, sri[0] = 0; ri[1] = 1, sri[1] = ri[1]; for (int i = 2; i <= n; i++) ri[i] = ri[mo % i] * (mo - mo / i) % mo, sri[i] = add(sri[i - 1], ri[i]); } map<int, int> cnt; void dfs(int x, int l, int r) { if (x <= 1 || l == r) { cnt[r - l + 1]++; return; } int mid = (l + r) >> 1; dfs(x - 1, l, mid), dfs(x - 1, mid + 1, r); } long long sumri(long long a, long long b) { long long ans = a * b % mo; for (int i = 1; i <= a; i++) dl(ans, del(sri[i + b], sri[i]) * 2 % mo); return ans; } int n, tim; int main() { ios::sync_with_stdio(0), cout.tie(nullptr); n = ty(), tim = ty(), mo = ty(); fuck(); dfs(tim, 1, n); long long ans = 0; for (auto i : cnt) { long long a = i.first, b = i.second; ad(ans, a * (a - 1) % mo * ri[2] % mo * b % mo); ad(ans, b * (b - 1) % mo * ri[2] % mo * sumri(a, a) % mo); for (auto j : cnt) { long long c = j.first, d = j.second; if (a >= c) continue; ad(ans, sumri(a, c) * b % mo * d % mo); } } cout << ans * ri[2] % mo << lf; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int p; int Pow(int a, int b) { int ans = 1; for (; b; b >>= 1, a = 1ll * a * a % p) { if (b & 1) ans = 1ll * ans * a % p; } return ans; } int solve(int a, int b) { if (a <= 0 || b <= 0) return 0; int ans = 0; for (int sm = 2; sm <= a + b; sm++) ans = (1ll * (min(a, sm - 1) - max(1, sm - b) + 1) * (sm - 2) % p * Pow(2 * sm, p - 2) % p + 1ll * ans) % p; return ans; } int C(int n) { return (1ll * n * (n - 1) / 2) % p; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k >> p; int iv = (p + 1) / 2; pair<int, int> A = {n, 1}, B = {0, 0}; while (--k) { if (A.first & 1) { B = {(A.first / 2) + 1, A.second}; A.first /= 2; break; } A.first /= 2, A.second *= 2; } if (k != 0) { while (--k) { if (A.first & 1) { B.first /= 2, B.second = 2 * B.second + A.second; A.first /= 2; } else { A.first /= 2, A.second = 2 * A.second + B.second; B.first = (B.first + 1) / 2; } } } int ans = 0; ans = (1ll * C(A.first) * iv % p * A.second + 1ll * ans) % p; ans = (1ll * C(B.first) * iv % p * B.second + 1ll * ans) % p; ans = (1ll * C(A.second) * solve(A.first, A.first) + 1ll * ans) % p; ans = (1ll * C(B.second) * solve(B.first, B.first) + 1ll * ans) % p; ans = (1ll * A.second * B.second % p * solve(A.first, B.first) + 1ll * ans) % p; return cout << ans << endl, 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; vector<int> vec; int n, k, q, cnt[100005]; inline int power(int a, int b) { int ans = 1; for (; b; a = 1LL * a * a % q, b >>= 1) ans = b & 1 ? 1LL * ans * a % q : ans; return ans; } inline int inv(int a) { return power(a, q - 2); } void partition(int a, int b) { if (min(a, b) == 1) { if (!cnt[a]++) vec.push_back(a); return; } partition(a >> 1, --b); partition(a + 1 >> 1, b); } int main() { cin >> n >> k >> q; partition(n, k); int ans = 0; for (auto x : vec) { for (auto y : vec) if (x <= y) { int res = 1LL * x * y % q * inv(2) % q; for (int i = 2; i <= x + y; i++) (res += q - (i - max(i - x - 1, 0) - max(i - y - 1, 0) - 1LL) * inv(i) % q) %= q; (ans += 1LL * res * cnt[x] % q * (x ^ y ? cnt[y] : (cnt[y] - 1LL) * inv(2) % q) % q) %= q; } (ans += (x - 1LL) * x % q * inv(4) % q * cnt[x] % q) %= q; } cout << ans; }
13
CPP
#include <bits/stdc++.h> using namespace std; long long inv[100005], n, k, p, cnt[3], len[3], sum[100005], ans; void gb(long long l, long long r, long long h) { if (h <= 1 || l == r) { if (!len[1] || len[1] == r - l + 1) len[1] = r - l + 1, cnt[1]++; else len[2] = r - l + 1, cnt[2]++; return; } long long mid = l + r >> 1; gb(l, mid, h - 1), gb(mid + 1, r, h - 1); } inline long long work(long long x, long long y) { long long s = inv[2] * x % p * y % p; for (long long i = 1; i <= x; i++) s = (s - sum[i + y] + sum[i]) % p; return (s + p) % p; } signed main() { cin >> n >> k >> p; inv[1] = 1; for (long long i = 2; i <= max(n, 4ll); i++) inv[i] = inv[p % i] * (p - p / i) % p; for (long long i = 1; i <= n; i++) sum[i] = (sum[i - 1] + inv[i]) % p; gb(1, n, k); ans = (len[1] * (len[1] - 1) % p * cnt[1] % p * inv[4] + len[2] * (len[2] - 1) % p * cnt[2] % p * inv[4]) % p; ans = (ans + cnt[1] * (cnt[1] - 1) % p * inv[2] % p * work(len[1], len[1])) % p; ans = (ans + cnt[2] * (cnt[2] - 1) % p * inv[2] % p * work(len[2], len[2])) % p; ans = (ans + cnt[1] * cnt[2] % p * work(len[1], len[2])) % p; printf("%lld", ans); }
13
CPP
#include <bits/stdc++.h> const int MAXN = 100007; long long MOD; inline long long FST(long long base, int times) { long long ret = 1; while (times) { if (times & 1) ret = ret * base % MOD; times >>= 1; base = base * base % MOD; } return ret; } long long seg[MAXN], tot_seg; long long inv[MAXN], invS[MAXN]; void getSeg(const int &l, const int &r, const int &h) { if (h <= 1 || l == r) { seg[++tot_seg] = r - l + 1; return; } const int &mid = (l + r) >> 1; getSeg(l, mid, h - 1); getSeg(mid + 1, r, h - 1); return; } inline long long calc(long long max_i, long long max_j) { long long ret = max_i * max_j % MOD; for (int i = 1; i <= max_i; ++i) ret = (ret - (invS[i + max_j] - invS[i]) * 2) % MOD; return ret; } long long buc[2][2]; int main() { int n, k; scanf("%d%d%I64d", &n, &k, &MOD); inv[1] = 1; for (int i = 2; i <= n; ++i) inv[i] = inv[i - 1] * i % MOD; inv[n] = FST(inv[n], MOD - 2); for (int i = n; i > 1; --i) { long long tmp_inv = inv[i]; inv[i] = inv[i - 1] * inv[i] % MOD; inv[i - 1] = tmp_inv * i % MOD; } for (int i = 1; i <= n; ++i) invS[i] = (invS[i - 1] + inv[i]) % MOD; inv[2] = FST(2, MOD - 2); long long ans = 0; getSeg(1, n, k); for (int i = 1; i <= tot_seg; ++i) { if (!buc[0][0]) buc[0][0] = seg[i]; if (seg[i] == buc[0][0]) ++buc[0][1]; else { if (!buc[1][0]) buc[1][0] = seg[i]; ++buc[1][1]; } ans = (ans + seg[i] * (seg[i] - 1) / 2 % MOD) % MOD; } for (int i = 0; i < 2; ++i) if (buc[i][1] >= 2) ans = (ans + calc(buc[i][0], buc[i][0]) * (buc[i][1] * (buc[i][1] - 1) / 2 % MOD) % MOD) % MOD; if (buc[0][0] && buc[0][1]) ans = (ans + calc(buc[0][0], buc[1][0]) * (buc[1][1] * buc[0][1] % MOD) % MOD) % MOD; ans = ans * inv[2] % MOD; printf("%I64d\n", (ans + MOD) % MOD); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0, f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -1; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; return x * f; } const int MAXN = 100010; const int INF = 2147483600; long long Mod; int N, K, Q; int mn = 100000; long long inv[MAXN << 1], sm[MAXN << 1]; long long cnt[MAXN << 1]; long long ans; inline void div(int l, int r, int x) { if (x == 1 || l == r) { mn = min(mn, r - l + 1); ++cnt[r - l + 1]; return; } int mid = (l + r) >> 1; div(l, mid, x - 1); div(mid + 1, r, x - 1); } inline void calc(int x) { (ans += cnt[x] * x % Mod * (x - 1) % Mod * inv[4] % Mod) %= Mod; } int main() { N = read(), K = read(), Mod = read(); div(1, N, K); inv[1] = 1; for (int i = 2; i <= 2 * N + 2; i++) inv[i] = (Mod - (Mod / i) * inv[Mod % i] % Mod) % Mod; for (int i = 1; i <= 2 * N + 2; i++) sm[i] = (sm[i - 1] + inv[i]) % Mod; calc(mn); calc(mn + 1); for (int i = 1; i <= mn; i++) { (ans += inv[2] * cnt[mn] % Mod * (cnt[mn] - 1) % Mod * inv[2] % Mod * (mn) % Mod) %= Mod; ans = (ans - cnt[mn] % Mod * (cnt[mn] - 1) % Mod * inv[2] % Mod * ((sm[mn + i] - sm[i] + Mod) % Mod) % Mod + Mod) % Mod; (ans += inv[2] * cnt[mn] % Mod * cnt[mn + 1] % Mod * (mn + 1) % Mod) %= Mod; ans = (ans - cnt[mn] * cnt[mn + 1] % Mod * ((sm[mn + i + 1] - sm[i] + Mod) % Mod) % Mod + Mod) % Mod; (ans += inv[2] * cnt[mn + 1] % Mod * (cnt[mn + 1] - 1) % Mod * inv[2] % Mod * (mn + 1) % Mod) %= Mod; ans = (ans - cnt[mn + 1] % Mod * (cnt[mn + 1] - 1) % Mod * inv[2] % Mod * ((sm[mn + i + 1] - sm[i] + Mod) % Mod) % Mod + Mod) % Mod; } int i = mn + 1; (ans += inv[2] * cnt[mn + 1] % Mod * (cnt[mn + 1] - 1) % Mod * inv[2] % Mod * (mn + 1) % Mod) %= Mod; ans = (ans - cnt[mn + 1] % Mod * (cnt[mn + 1] - 1) % Mod * inv[2] % Mod * ((sm[mn + i + 1] - sm[i] + Mod) % Mod) % Mod + Mod) % Mod; cout << ans << endl; return 0; }
13
CPP
#include <bits/stdc++.h> const int N = 100005; int n, d, inv[N << 1], P, Inv2; int c[N]; void getp(int l, int r, int dep) { if (dep <= 1 || l == r) { ++c[r - l + 1]; return; } int mid = (l + r) >> 1; getp(l, mid, dep - 1); getp(mid + 1, r, dep - 1); } int ans; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(0); std::cin >> n >> d >> P; inv[1] = 1; for (int i = 2; i <= n + n; ++i) { inv[i] = 1ll * (P - P / i) * inv[P % i] % P; } Inv2 = inv[2]; getp(1, n, d); for (int i = 1; i <= n; ++i) { if (c[i]) { ans = (ans + 1ll * i * (i - 1) / 2 % P * Inv2 % P * c[i]) % P; for (int j = i; j <= n; ++j) { if (c[j]) { int sum = 0; for (int k = 2; k <= i + j; ++k) { int t = std::min(i, k - 1) - std::max(1, k - j) + 1; sum = (sum + 1ll * t * (k - 2) % P * inv[k]) % P; } sum = 1ll * sum * Inv2 % P; int t = i == j ? 1ll * c[i] * (c[i] - 1) / 2 % P : 1ll * c[i] * c[j] % P; ans = (ans + 1ll * t * sum) % P; } } } } std::cout << ans << std::endl; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class t> inline t read(t &x) { char c = getchar(); bool f = 0; x = 0; while (!isdigit(c)) f |= c == '-', c = getchar(); while (isdigit(c)) x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); if (f) x = -x; return x; } template <class t, class... A> inline void read(t &x, A &...a) { read(x); read(a...); } template <class t> inline void write(t x) { if (x < 0) putchar('-'), write(-x); else { if (x > 9) write(x / 10); putchar('0' + x % 10); } } const long long N = 1e5 + 5; long long ans, a1, a2, b1, b2, n, k, inv[N << 1], mod; long long fpow(long long x, long long y) { long long res = 1; for (; y; y >>= 1, x = x * x % mod) if (y & 1) res = res * x % mod; return res; } void dico(long long l, long long r, long long h) { if (h == 1 || l == r) { l = r - l + 1; if (!a1) a1 = l, b1 = 1; else if (a1 == l) b1++; else a2 = l, b2++; return; } long long mid = l + r >> 1; dico(l, mid, h - 1); dico(mid + 1, r, h - 1); } long long calc(long long n, long long m) { long long res = 0; for (long long i = 2; i <= n + m; i++) res = (res + inv[i] * min(i - 1, n + m - i + 1) % mod) % mod; return mod - res; } void init(long long n) { inv[1] = 1; for (long long i = 2; i <= n; i++) inv[i] = (mod - mod / i) * inv[mod % i] % mod; } signed main() { read(n, k, mod); ans = n * (n - 1) / 2 * (mod + 1 >> 1) % mod; init(n << 1); dico(1, n, k); ans = (ans + b1 * (b1 - 1) / 2 * calc(a1, a1) % mod) % mod; if (a2) { ans = (ans + b2 * (b2 - 1) / 2 * calc(a2, a2) % mod) % mod; ans = (ans + b1 * b2 % mod * calc(a1, a2) % mod) % mod; } write(ans); }
13
CPP
#include <bits/stdc++.h> using namespace std; template <typename T> inline T gi() { T f = 1, x = 0; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return f * x; } const int INF = 0x3f3f3f3f, N = 100003, M = N << 1; int n, k, mod; pair<int, int> p[2]; long long inv[N], sum[N]; inline long long qpow(long long a, long long b) { long long res = 1; while (b) { if (b & 1) res = res * a % mod; a = a * a % mod, b >>= 1; } return res; } inline void pre() { for (int i = 1; i <= max(n, 4); i += 1) inv[i] = qpow(i, mod - 2), sum[i] = (sum[i - 1] + inv[i]) % mod; return; } inline long long solve(long long len1, long long len2) { long long res = 0; for (int i = 1; i <= len1; i += 1) res = ((res + len2 * inv[2] % mod - (sum[i + len2] - sum[i]) % mod) % mod + mod) % mod; return res; } int main() { n = gi<int>(), k = gi<int>(), mod = gi<int>(); --k; if (k > 20) k = 20; int u = min(n, 1 << k); int a = n / u, b = a + 1, cnta = b * u - n, cntb = u - cnta; p[0] = {a, cnta}, p[1] = {b, cntb}; pre(); long long ans = 0; for (int i = 0; i <= 1; i += 1) { int len = p[i].first, cnt = p[i].second; ans = (ans + 1ll * cnt * len % mod * (len - 1) % mod * inv[4] % mod) % mod; } for (int i = 0; i <= 1; i += 1) for (int j = 0; j <= 1; j += 1) { if (i == j) { long long len = p[i].first, cnt = 1ll * p[i].second * (p[i].second - 1) / 2 % mod; ans = (ans + 1ll * cnt * solve(len, len) % mod) % mod; } else if (p[i].first < p[j].first) { long long len1 = p[i].first, len2 = p[j].first, cnt = 1ll * p[i].second * p[j].second % mod; ans = (ans + 1ll * cnt * solve(len1, len2) % mod) % mod; } } printf("%lld\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; inline long long read() { long long x = 0; char ch = getchar(); bool d = 1; for (; !isdigit(ch); ch = getchar()) if (ch == '-') d = 0; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0'; return d ? x : -x; } inline unsigned long long rnd() { return ((unsigned long long)rand() << 30 ^ rand()) << 4 | rand() % 4; } const int N = 1e5 + 5; int a[N], mo, inv2; int C(int n) { return (long long)(n - 1) * n % mo * inv2 % mo; } int ksm(int x, int p) { int res = 1; for (; p; p >>= 1, x = (long long)x * x % mo) { if (p & 1) res = (long long)res * x % mo; } return res; } vector<long long> v; int sum[N], tong[N]; void solve(int l, int r, int k) { if (k <= 1 || l == r) { if (!tong[r - l + 1]) v.push_back(r - l + 1); tong[r - l + 1]++; return; } int mid = l + r >> 1; solve(l, mid, k - 1); solve(mid + 1, r, k - 1); } int calc(int x, int y) { int res = (long long)x * y % mo * inv2 % mo; for (int i = (int)(1); i <= (int)(x); i++) { int ssw = (sum[i + y] - sum[i] + mo) % mo; res = (res - ssw + mo) % mo; } return res; } int main() { int n = read(), k = read(); mo = read(); inv2 = (mo + 1) / 2; for (int i = (int)(1); i <= (int)(n); i++) { int inv = ksm(i, mo - 2); sum[i] = (sum[i - 1] + inv) % mo; } solve(1, n, k); int ans = 0; for (auto x : v) { ans = (ans + (long long)C(x) * inv2 % mo * tong[x]) % mo; ans = (ans + (long long)C(tong[x]) * calc(x, x)) % mo; } for (auto x : v) for (auto y : v) if (x > y) { ans = (ans + (long long)tong[x] * tong[y] % mo * calc(x, y)) % mo; } cout << ans; }
13
CPP
#include <bits/stdc++.h> using namespace std; const long long N = 200005; long long n, k, mo, gs[3], len[3], top, inv[N], s[N], ans; map<long long, long long> ma; inline long long read() { long long ret = 0, ff = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') ff = -1; ch = getchar(); } while (isdigit(ch)) { ret = ret * 10 + (ch ^ 48); ch = getchar(); } return ret * ff; } void write(long long x) { if (x < 0) { x = -x, putchar('-'); } if (x > 9) write(x / 10); putchar(x % 10 + 48); } void writeln(long long x) { write(x), puts(""); } void writesp(long long x) { write(x), putchar(' '); } void mergesort(long long l, long long r, long long h) { if (l == r || h <= 1) { ma[r - l + 1]++; return; } long long mid = (l + r) >> 1; mergesort(l, mid, h - 1), mergesort(mid + 1, r, h - 1); } long long calc(long long x, long long y) { long long res = x * y % mo * inv[2] % mo; for (long long i = 1; i <= x; i++) res = (res - (s[i + y] - s[i]) % mo + mo) % mo; return res; } signed main() { n = read(), k = read(), mo = read(); mergesort(1, n, k); for (map<long long, long long>::iterator it = ma.begin(); it != ma.end(); it++) { len[++top] = it->first; gs[top] = it->second; } inv[0] = inv[1] = 1; s[0] = 1, s[1] = 2; for (long long i = 2; i <= 200000; i++) inv[i] = (mo - mo / i) * inv[mo % i] % mo, s[i] = (s[i - 1] + inv[i]) % mo; ans = (ans + gs[1] * len[1] % mo * (len[1] - 1) % mo * inv[4] % mo) % mo; ans = (ans + gs[2] * len[2] % mo * (len[2] - 1) % mo * inv[4] % mo) % mo; ans = (ans + gs[1] * (gs[1] - 1) % mo * inv[2] % mo * calc(len[1], len[1]) % mo) % mo; ans = (ans + gs[2] * (gs[2] - 1) % mo * inv[2] % mo * calc(len[2], len[2]) % mo) % mo; ans = (ans + gs[1] * gs[2] % mo * calc(len[1], len[2]) % mo) % mo; write(ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; inline long long Getint() { char ch = getchar(); long long x = 0, fh = 1; while (ch < '0' || ch > '9') { if (ch == '-') fh = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { (x *= 10) += ch ^ 48; ch = getchar(); } return fh * x; } const int N = 200005; int n, h; long long mod, fc[N], fiv[N], inv[N], sm[N]; int su[N]; struct nod { int a, l; nod(int x = 0, int y = 0) { a = x; l = y; } }; vector<nod> a; inline long long Solve(int l1, int l2) { long long Ans = 1ll * l1 * l2 % mod * inv[2] % mod; for (int i = 1; i <= l1; i++) (Ans += sm[i] - sm[i + l2] + mod) %= mod; return (Ans % mod + mod) % mod; } void Build(int l, int r, int h) { if (h == 1) { su[r - l + 1]++; return; } if (l == r) { su[1]++; return; } int mid = l + r >> 1; Build(l, mid, h - 1); Build(mid + 1, r, h - 1); } int main() { n = Getint(); h = Getint(); mod = Getint(); fc[0] = fc[1] = fiv[0] = fiv[1] = inv[0] = inv[1] = 1; for (int i = 2; i <= N - 1; i++) { fc[i] = fc[i - 1] * i % mod; inv[i] = (mod - mod / i) * inv[mod % i] % mod; fiv[i] = fiv[i - 1] * inv[i] % mod; } for (int i = 1; i <= N - 1; i++) { sm[i] = (sm[i - 1] + inv[i]) % mod; } Build(1, n, h); long long Ans = 0; for (int i = 1; i <= n; i++) { if (!su[i]) continue; a.push_back(nod(su[i], i)); (Ans += 1ll * su[i] * i % mod * (i - 1) % mod * inv[4]) %= mod; } for (int i = 0; i <= int(a.size()) - 1; i++) { (Ans += 1ll * a[i].a * (a[i].a - 1) % mod * inv[2] % mod * Solve(a[i].l, a[i].l)) %= mod; for (int j = i + 1; j <= int(a.size()) - 1; j++) { (Ans += 1ll * a[i].a * a[j].a % mod * Solve(a[i].l, a[j].l)) %= mod; } } cout << Ans % mod << '\n'; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class T> inline void rd(T &x) { char ch; x = 0; bool fl = false; while (!isdigit(ch = getchar())) (ch == '-') && (fl = true); for (x = (ch ^ '0'); isdigit(ch = getchar()); x = x * 10 + (ch ^ '0')) ; (fl == true) && (x = -x); } template <class T> inline void output(T x) { if (x / 10) output(x / 10); putchar(x % 10 + '0'); } template <class T> inline void ot(T x) { if (x < 0) putchar('-'), x = -x; output(x); putchar(' '); } template <class T> inline void prt(T a[], int st, int nd) { for (register int i = st; i <= nd; ++i) ot(a[i]); putchar('\n'); } namespace Modulo { int mod; inline int ad(int x, int y) { return x + y >= mod ? x + y - mod : x + y; } inline int sub(int x, int y) { return ad(x, mod - y); } inline int mul(int x, int y) { return (long long)x * y % mod; } inline void inc(int &x, int y) { x = ad(x, y); } inline void inc2(int &x, int y) { x = mul(x, y); } inline int qm(int x, int y = mod - 2) { int ret = 1; while (y) { if (y & 1) ret = mul(x, ret); x = mul(x, x); y >>= 1; } return ret; } template <class... Args> inline int ad(const int a, const int b, const Args &...args) { return ad(ad(a, b), args...); } template <class... Args> inline int mul(const int a, const int b, const Args &...args) { return mul(mul(a, b), args...); } } // namespace Modulo using namespace Modulo; namespace Miracle { const int N = 1e5 + 5; int n, k; int iv[N], s[N]; int l1, l2, c1, c2; void divi(int l, int r, int d) { if (d == k || l == r) { if (!l1) { l1 = r - l + 1; ++c1; } else if (r - l + 1 == l1) ++c1; else if (!l2) l2 = r - l + 1, ++c2; else ++c2; return; } int mid = (l + r) >> 1; divi(l, mid, d + 1); divi(mid + 1, r, d + 1); } int calc(int l1, int l2) { if (!l1 || !l2) return 0; int ret = mul(l1, l2, qm(2)); for (register int i = 1; i <= l1; ++i) { ret = sub(ret, sub(s[i + l2], s[i])); } return ret; } int main() { rd(n); rd(k); rd(mod); iv[1] = 1; for (register int i = 2; i <= n; ++i) { iv[i] = mul(mod - mod / i, iv[mod % i]); } for (register int i = 1; i <= n; ++i) s[i] = ad(s[i - 1], iv[i]); divi(1, n, 1); int ans = ad(mul(c1, l1, (l1 - 1), qm(4)), mul(c2, l2, (l2 - 1), qm(4))); inc(ans, mul(c1, c1 - 1, qm(2), calc(l1, l1))); inc(ans, mul(c2, c2 - 1, qm(2), calc(l2, l2))); inc(ans, mul(c1, c2, calc(l1, l2))); ot(ans); return 0; } } // namespace Miracle signed main() { Miracle::main(); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int read() { int x = 0, sgn = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1; for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48); return x * sgn; } const int N = 2e5 + 10; int n, k, mod; long long sum[N], inv[N]; map<int, int> m; map<int, int>::iterator it, it1; long long ans; long long qp(long long x, int t) { long long res = 1; for (; t; t >>= 1, x = x * x % mod) if (t & 1) res = res * x % mod; return res; } void divide(int l, int r, int k) { if (l == r || k <= 1) { m[r - l + 1]++; return; } int mid = l + r >> 1; divide(l, mid, k - 1); divide(mid + 1, r, k - 1); } long long calc(int x, int y) { long long res = 1ll * x * y % mod; for (int i = 1; i <= x; i++) res = (res - 2 * sum[i + y] + 2 * sum[i] + mod) % mod; return (res + mod) % mod; } int main() { n = read(), k = read(), mod = read(); for (int i = 1; i < N; i++) inv[i] = qp(i, mod - 2); for (int i = 1; i < N; i++) sum[i] = (sum[i - 1] + inv[i]) % mod; divide(1, n, k); for (it = m.begin(); it != m.end(); it++) { long long x = it->first, s = it->second; ans = (ans + x * (x - 1) % mod * inv[2] % mod * inv[2] % mod * s % mod) % mod; ans = (ans + s * (s - 1) % mod * inv[2] % mod * inv[2] % mod * calc(x, x) % mod) % mod; } for (it = m.begin(); it != m.end(); it++) for (it1 = m.begin(); it1 != m.end(); it1++) { long long x1 = it->first, s1 = it->second, x2 = it1->first, s2 = it1->second; if (x1 >= x2) continue; ans = (ans + s1 * s2 % mod * inv[2] % mod * calc(x1, x2) % mod) % mod; } printf("%lld\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int n, k, mod; long long inv[100009], sum[100009], ans; map<int, int> tag; map<int, int>::iterator it1, it2; long long Read() { long long x = 0; char c = getchar(); bool f = 0; while (!isdigit(c)) { if (c == '-') f = 1; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } long long Pow(long long x, long long y) { long long ans = 1; while (y) { if (y & 1) ans = ans * x % mod; x = x * x % mod; y >>= 1; } return ans; } void Fix(long long &x) { x = x >= mod ? x - mod : x; } long long C(long long n) { return n * (n - 1) / 2 % mod; } void Solve(int l, int r, int k) { if (k == 1 || l == r) { tag[r - l + 1]++; return; } int mid = (l + r) >> 1; Solve(l, mid, k - 1); Solve(mid + 1, r, k - 1); } long long Calc(int a, int b) { long long ans = 1ll * a * b % mod * inv[2] % mod; for (int i = 1; i <= a; ++i) Fix(ans = ans - (sum[i + b] - sum[i]) + mod); return ans; } int main() { n = Read(), k = Read(), mod = Read(); for (int i = 1; i <= n; ++i) inv[i] = Pow(i, mod - 2), Fix(sum[i] = sum[i - 1] + inv[i]); Solve(1, n, k); for (it1 = tag.begin(); it1 != tag.end(); ++it1) { Fix(ans += C(it1->first) * inv[2] % mod * it1->second % mod); Fix(ans += C(it1->second) * Calc(it1->first, it1->first) % mod); } for (it1 = tag.begin(); it1 != tag.end(); ++it1) for (it2 = tag.begin(); it2 != tag.end(); ++it2) { if (it1->first <= it2->first) break; Fix(ans += 1ll * it1->second * it2->second % mod * Calc(it1->first, it2->first) % mod); } printf("%lld\n", ans); }
13
CPP
#include <bits/stdc++.h> using namespace std; map<int, int> mp; int n, k, mod, inv2; int ans = 0; inline void add(int& a, int b) { a += b; if (a >= mod) a -= mod; if (a < 0) a += mod; } inline int ksm(int a, int b) { int ans = 1; for (; b; b >>= 1, a = (long long)a * a % mod) if (b & 1) ans = (long long)ans * a % mod; return ans; } inline void build(int l, int r, int h) { if (l < r) { if (h <= 1) { int len = r - l + 1; mp[len]++; add(ans, (long long)len * (len - 1) / 2ll % mod * inv2 % mod); } else { int mid = (l + r) >> 1; build(l, mid, h - 1); build(mid + 1, r, h - 1); } } else mp[1]++; } signed main() { cin >> n >> k >> mod; inv2 = ksm(2, mod - 2); build(1, n, k); for (auto i : mp) { for (auto j : mp) { int gs = (long long)i.second * (j.second - (i.first == j.first)) % mod; for (int l = 2; l <= i.first + j.first; ++l) { int minn = max(1, l - j.first); int maxx = min(i.first, l - 1); int tmp = (long long)gs * (maxx - minn + 1) % mod * (inv2 - ksm(l, mod - 2)) % mod * inv2 % mod; add(ans, tmp); } } } cout << ans; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; using LL = long long; template <typename T> T inverse(T a, T m) { T u = 0, v = 1; while (a != 0) { T t = m / a; m -= t * a; swap(a, m); u -= t * v; swap(u, v); } assert(m == 1); return u; } template <typename T> class Modular { public: using Type = typename decay<decltype(T::value)>::type; constexpr Modular() : value() {} template <typename U> Modular(const U& x) { value = normalize(x); } template <typename U> static Type normalize(const U& x) { Type v; if (-mod() <= x && x < mod()) v = static_cast<Type>(x); else v = static_cast<Type>(x % mod()); if (v < 0) v += mod(); return v; } const Type& operator()() const { return value; } template <typename U> explicit operator U() const { return static_cast<U>(value); } constexpr static Type mod() { return T::value; } Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; } Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; } template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); } template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); } Modular& operator++() { return *this += 1; } Modular& operator--() { return *this -= 1; } Modular operator++(int) { Modular result(*this); *this += 1; return result; } Modular operator--(int) { Modular result(*this); *this -= 1; return result; } Modular operator-() const { return Modular(-value); } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) { value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value)); return *this; } template <typename U = T> typename enable_if<is_same<typename Modular<U>::Type, long long>::value, Modular>::type& operator*=(const Modular& rhs) { long long q = static_cast<long long>(static_cast<long double>(value) * rhs.value / mod()); value = normalize(value * rhs.value - q * mod()); return *this; } template <typename U = T> typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) { value = normalize(value * rhs.value); return *this; } Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); } friend const Type& abs(const Modular& x) { return x.value; } template <typename U> friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs); template <typename U> friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs); template <typename V, typename U> friend V& operator>>(V& stream, Modular<U>& number); private: Type value; }; template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; } template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); } template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; } template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); } template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); } template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; } template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; } template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; } template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; } template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; } template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; } template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; } template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; } template <typename T, typename U> Modular<T> power(const Modular<T>& a, const U& b) { assert(b >= 0); Modular<T> x = a, res = 1; U p = b; while (p > 0) { if (p & 1) res *= x; x *= x; p >>= 1; } return res; } template <typename T> bool IsZero(const Modular<T>& number) { return number() == 0; } template <typename T> string to_string(const Modular<T>& number) { return to_string(number()); } template <typename U, typename T> U& operator<<(U& stream, const Modular<T>& number) { return stream << number(); } template <typename U, typename T> U& operator>>(U& stream, Modular<T>& number) { typename common_type<typename Modular<T>::Type, long long>::type x; stream >> x; number.value = Modular<T>::normalize(x); return stream; } using ModType = int; struct VarMod { static ModType value; }; ModType VarMod::value; ModType& md = VarMod::value; using Mint = Modular<VarMod>; Mint Solve(int a, int b) { Mint ans = 0, p5 = Mint(1) / 2; for (int i = 2; i <= a + b; ++i) { int mina = max(1, i - b); int maxa = min(a, i - 1); ans += (p5 - Mint(1) / i) * (maxa - mina + 1); } return ans; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k >> md; if (n == 1) { cout << 0 << endl; return 0; } map<int, int> s; s[n] = 1; while (--k) { map<int, int> t; for (auto [a, b] : s) { if (a == 1) { t[a] += b; } else { t[a / 2] += b; t[a - a / 2] += b; } } s = std::move(t); if (s.size() == 1 && s.begin()->first == 1) break; } if (s.size() == 1) { int a1 = s.begin()->first, b1 = s.begin()->second; Mint c1 = Solve(a1, a1); cout << Mint(a1) * (a1 - 1) / 4 * b1 + c1 * b1 * (b1 - 1) / 2 << endl; } else { int a1 = s.begin()->first, b1 = s.begin()->second; int a2 = s.rbegin()->first, b2 = s.rbegin()->second; Mint c1 = Solve(a1, a1), c2 = Solve(a2, a2), c3 = Solve(a1, a2); cout << Mint(a1) * (a1 - 1) / 4 * b1 + Mint(a2) * (a2 - 1) / 4 * b2 + c1 * b1 * (b1 - 1) / 2 + c2 * b2 * (b2 - 1) / 2 + c3 * b1 * b2 << endl; } return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int maxn = 100010; int n, K, P, ans, cnt[maxn], inv[maxn], pre[maxn]; int qp(int x, int y) { int z = 1; for (; y; y >>= 1, x = 1LL * x * x % P) { if (y & 1) z = 1LL * z * x % P; } return z; } int main() { scanf("%d %d %d", &n, &K, &P); for (int i = 1; i <= n; i++) { inv[i] = qp(i, P - 2); pre[i] = (pre[i - 1] + inv[i]) % P; } int inv2 = (P + 1) >> 1; function<void(int, int, int)> solve = [&](int l, int r, int h) { if (l > r) return; if (h == 1 || l == r) { cnt[r - l + 1]++; ans = (ans + 1LL * (r - l) * (r - l + 1) / 2 % P * inv2) % P; } else { int mid = (l + r) >> 1; solve(l, mid, h - 1), solve(mid + 1, r, h - 1); } }; solve(1, n, K); auto calc = [&](int n, int m) { int ans = 0; auto solve = [&]() { for (int i = 1; i <= n; i++) { ans = (ans + 1LL * inv2 * i % P * (pre[i + m] - pre[i] + P)) % P; ans = (ans - 1LL * inv2 * (pre[i + m] - pre[i] + P) % P + P) % P; } }; solve(), swap(n, m), solve(); return ans; }; vector<int> V; for (int i = 1; i <= n; i++) { if (cnt[i]) V.push_back(i); } assert(V.size() <= 2); for (int x : V) { ans = (ans + 1LL * cnt[x] * (cnt[x] - 1) / 2 % P * calc(x, x)) % P; } if (V.size() == 2) { ans = (ans + 1LL * cnt[V[0]] * cnt[V[1]] % P * calc(V[0], V[1])) % P; } printf("%d\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> const int MN = 200000 + 5; using namespace std; template <typename T> inline T& IN(T& in) { in = 0; char c = getchar(); int f = 1; while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) in = in * 10 + c - '0', c = getchar(); return in *= f; } int n, k, P; long long ans; map<int, int> len; long long inv[MN], s[MN]; long long qp(long long a, long long b) { long long c = 1; for (; b; b >>= 1, a = a * a % P) if (b & 1) c = c * a % P; return c; } void build(int l, int r, int k) { if (k == 1 || l == r) return len[r - l + 1]++, void(); int mid = l + r >> 1; build(l, mid, k - 1), build(mid + 1, r, k - 1); } long long calc(long long x, long long y) { long long res = x * y % P * inv[2] % P; for (int i = 1; i <= x; ++i) res = (res - (s[i + y] - s[i]) % P + P) % P; return res; } void input() { IN(n), IN(k), IN(P); int N = 200000; inv[1] = 1, s[1] = 1; for (int i = 2; i <= N; ++i) inv[i] = (P - P / i) * inv[P % i] % P, s[i] = (s[i - 1] + inv[i]) % P; build(1, n, k); for (auto it : len) { long long x = it.first, y = it.second; ans = (ans + x * (x - 1) % P * inv[4] % P * y % P + y * (y - 1) % P * inv[2] % P * calc(x, x) % P) % P; } for (auto x : len) for (auto y : len) if (x.first < y.first) ans = (ans + calc(x.first, y.first) * x.second % P * y.second % P) % P; printf("%lld\n", ans); } int main() { input(); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } const int MAXN = 100000; int n, mxdepth, MOD; int INV2; int inv[2 * MAXN + 1]; vector<int> parts; void rec(int l, int r, int h) { if (l > r) return; if (h == 1 || l == r) { parts.push_back(r - l + 1); return; } int m = (l + r) / 2; rec(l, m, h - 1); rec(m + 1, r, h - 1); } int cntpairs(int sz) { return (long long)sz * (sz - 1) / 2 % MOD; } int calc(int sz) { return (long long)cntpairs(sz) * INV2 % MOD; } int calc(int sza, int szb) { int ret = 0; for (int den = (2); den <= (sza + szb); ++den) { int lo = max(1, den - szb), hi = min(sza, den - 1), cnt = hi - lo + 1; if (lo > hi) continue; int cur = (long long)(den - 2) % MOD * inv[den] % MOD * INV2 % MOD; ret = (ret + (long long)cnt * cur) % MOD; } return ret; } int solve() { INV2 = (MOD + 1) / 2; inv[1] = 1; for (int i = (2); i <= (2 * n); ++i) inv[i] = (long long)(MOD - MOD / i) * inv[MOD % i] % MOD; parts.clear(); rec(1, n, mxdepth); int sz1 = -1, cnt1 = 0, sz2 = -1, cnt2 = 0; for (int i = (0); i < (((int)(parts).size())); ++i) { int x = parts[i]; if (x == sz1) ++cnt1; else if (x == sz2) ++cnt2; else if (sz1 == -1) sz1 = x, ++cnt1; else if (sz2 == -1) sz2 = x, ++cnt2; else assert(false); } int ret = 0; if (cnt1 != 0) ret = (ret + (long long)cnt1 * calc(sz1)) % MOD; if (cnt2 != 0) ret = (ret + (long long)cnt2 * calc(sz2)) % MOD; if (cnt1 != 0) ret = (ret + (long long)cntpairs(cnt1) * calc(sz1, sz1)) % MOD; if (cnt1 != 0 && cnt2 != 0) ret = (ret + (long long)cnt1 * cnt2 % MOD * calc(sz1, sz2)) % MOD; if (cnt2 != 0) ret = (ret + (long long)cntpairs(cnt2) * calc(sz2, sz2)) % MOD; return ret; } void run() { scanf("%d%d%d", &n, &mxdepth, &MOD); printf("%d\n", solve()); } int main() { run(); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; long long P; long long inv[500005], s[500005]; int n, m; int len[2], cnt[2]; void add(long long &x, long long y) { x += y; if (x >= P) x -= P; if (x < 0) x += P; } void init() { inv[0] = inv[1] = 1; for (int i = 2; i <= n + m; i++) inv[i] = (P - P / i) * inv[P % i] % P; for (int i = 1; i <= n + m; i++) s[i] = (s[i - 1] + inv[i]) % P; } long long calc(long long l1, long long l2) { long long ans = l1 * l2 % P * inv[2] % P; for (int i = 1; i <= l1; i++) add(ans, P - (s[i + l2] - s[i]) % P); return ans; } long long sum(long long x) { return x * (x - 1) / 2 % P; } void dfs(int l, int r, int h) { if (h <= 1 || l == r) { if (!len[0] || r - l + 1 == len[0]) len[0] = r - l + 1, cnt[0]++; else if (!len[1] || r - l + 1 == len[1]) len[1] = r - l + 1, cnt[1]++; return; } int mid = (l + r) >> 1; dfs(l, mid, h - 1), dfs(mid + 1, r, h - 1); } int main() { cin >> n >> m >> P; init(); dfs(1, n, m); long long ans = 0; for (int i = 0; i <= 1; i++) { add(ans, sum(len[i]) * inv[2] % P * cnt[i] % P); add(ans, sum(cnt[i]) * calc(len[i], len[i]) % P); } add(ans, cnt[0] * cnt[1] % P * calc(len[0], len[1]) % P); cout << ans << endl; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int N = 100005; int n, K, P, I, ans, inv[N], H[N], len[2], cnt[2]; int ad(int k1, int k2) { return k1 += k2 - P, k1 += k1 >> 31 & P; } int su(int k1, int k2) { return k1 -= k2, k1 += k1 >> 31 & P; } int mu(int k1, int k2) { return 1LL * k1 * k2 % P; } int po(int k1, int k2) { int k3 = 1; for (; k2; k2 >>= 1, k1 = mu(k1, k1)) if (k2 & 1) k3 = mu(k3, k1); return k3; } void sol(int k1, int k2, int k3) { if (k1 >= K || k2 == k3) { int x = 0; if (len[x] && len[x] != k3 - k2 + 1) ++x; len[x] = k3 - k2 + 1; ++cnt[x]; ans = ad(ans, mu(mu(k3 - k2 + 1, k3 - k2 + 1 - 1), mu(I, I))); return; } int mid = (k2 + k3) >> 1; sol(k1 + 1, k2, mid); sol(k1 + 1, mid + 1, k3); } int calc(int x, int y) { if (!x || !y) return 0; int res = mu(mu(x, y), I); for (int i = (1); i <= (x); ++i) { res = su(res, su(H[i + y], H[i])); } return res; } int main() { scanf("%d%d%d", &n, &K, &P); I = po(2, P - 2); inv[0] = inv[1] = 1; for (int i = (2); i <= (N - 1); ++i) inv[i] = mu(P - P / i, inv[P % i]); for (int i = (1); i <= (N - 1); ++i) H[i] = ad(H[i - 1], inv[i]); sol(1, 1, n); auto C2 = [&](int x) { return mu(mu(x, x - 1), I); }; ans = ad(ans, mu(C2(cnt[0]), calc(len[0], len[0]))); ans = ad(ans, mu(C2(cnt[1]), calc(len[1], len[1]))); ans = ad(ans, mu(mu(cnt[0], cnt[1]), calc(len[0], len[1]))); printf("%d\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> int n, m, t, x, y, mod, ans, v[200010]; std::map<int, int> map; void solve(int l, int r, int k) { if (l == r || k <= 1) { map[r - l + 1]++; return; } solve(l, l + r >> 1, k - 1), solve((l + r >> 1) + 1, r, k - 1); } int fpow(long long a, int b) { long long s = 1; for (; b; b >>= 1, a = a * a % mod) if (b & 1) s = s * a % mod; return s; } long long f(long long x) { return (long long)x * (x - 1) % mod * fpow(4, mod - 2) % mod; } long long f(long long x, long long y) { long long res = (long long)x * y % mod * fpow(2, mod - 2) % mod; for (int i = 1; i <= x; i++) res = (res - v[i + y] + v[i]); return (res % mod + mod) % mod; } int main() { scanf("%d%d%d", &n, &m, &mod), solve(1, n, m); for (int i = 0; i <= n + m; i++) v[i] = (v[i - 1] + fpow(i, mod - 2)) % mod; t = map.begin()->first, x = map[t], y = map[t + 1]; printf("%d\n", (x * f(t) + y * f(t + 1) + x * (x - 1) / 2 % mod * f(t, t) + x * y % mod * f(t, t + 1) + y * (y - 1) / 2 % mod * f(t + 1, t + 1)) % mod); }
13
CPP
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int cnt[maxn], mod; int Pow(int x, int p) { int r = 1; while (p) { if (p & 1) r = (long long)x * r % mod; p >>= 1; x = (long long)x * x % mod; } return r; } void dfs(int n, int k) { if (n == 1 || k == 1) { cnt[n]++; return; } dfs(n / 2, k - 1); dfs((n + 1) / 2, k - 1); } int calc(int x, int y) { int res = 0; for (int i = 2; i <= x + y; ++i) res = (res + (long long)min(x + y - i + 1, i - 1) * (i - 2) % mod * Pow(2 * i, mod - 2) % mod) % mod; return res; } int main() { int n, k; scanf("%d %d", &n, &k); scanf("%d", &mod); dfs(n, k); int ans = 0; for (int i = 1; i <= n; ++i) if (cnt[i]) { ans = (ans + (long long)cnt[i] * i % mod * (i - 1) % mod * Pow(4, mod - 2) % mod) % mod; ans = (ans + (long long)cnt[i] * (cnt[i] - 1) / 2 % mod * calc(i, i)) % mod; } for (int i = 1; i <= n; ++i) if (cnt[i]) for (int j = i + 1; j <= n; ++j) if (cnt[j]) ans = (ans + (long long)cnt[i] * cnt[j] % mod * calc(i, j)) % mod; cout << ans << endl; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int n, k, mod; long long inv[100009], sum[100009], ans; map<int, int> tong; map<int, int>::iterator it1, it2; inline long long rd() { long long x = 0; char c = getchar(); bool f = 0; while (!isdigit(c)) { if (c == '-') f = 1; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } inline long long power(long long x, long long y) { long long ans = 1; while (y) { if (y & 1) ans = ans * x % mod; x = x * x % mod; y >>= 1; } return ans; } inline void MOD(long long &x) { x = x >= mod ? x - mod : x; } inline long long C(long long n) { return n * (n - 1) / 2 % mod; } inline void solve(int l, int r, int k) { if (k == 1 || l == r) { tong[r - l + 1]++; return; } int mid = (l + r) >> 1; solve(l, mid, k - 1); solve(mid + 1, r, k - 1); } inline long long calc(int a, int b) { long long ans = 1ll * a * b % mod * inv[2] % mod; for (int i = 1; i <= a; ++i) MOD(ans = ans - (sum[i + b] - sum[i]) + mod); return ans; } int main() { n = rd(); k = rd(); mod = rd(); for (int i = 1; i <= n; ++i) inv[i] = power(i, mod - 2), MOD(sum[i] = sum[i - 1] + inv[i]); solve(1, n, k); for (it1 = tong.begin(); it1 != tong.end(); ++it1) { MOD(ans += C(it1->first) * inv[2] % mod * it1->second % mod); MOD(ans += C(it1->second) * calc(it1->first, it1->first) % mod); } for (it1 = tong.begin(); it1 != tong.end(); ++it1) for (it2 = tong.begin(); it2 != tong.end(); ++it2) { if (it1->first <= it2->first) break; MOD(ans += 1ll * it1->second * it2->second % mod * calc(it1->first, it2->first) % mod); } cout << ans; return 0; }
13
CPP
#include <bits/stdc++.h> const int MAXN = 1e5 + 20; int n, k, M; int inv[MAXN], pre_inv[MAXN]; void math_pre() { inv[1] = 1; for (int i = 2; i <= ((n < 4) ? 4 : n); ++i) inv[i] = 1ll * (M - M / i) * inv[M % i] % M; for (int i = 1; i <= n; ++i) pre_inv[i] = (pre_inv[i - 1] + inv[i]) % M; } struct map { static const int MAXMap = 2; int tot; struct pad { int key, val; pad() {} pad(const int &KEY, const int &VAL) : key(KEY), val(VAL) {} } node[MAXMap + 1]; map() { tot = 0; } pad *find(const int &key) { pad *ret = node; while (ret - node < tot && ret->key != key) ++ret; return ret; } void insert(const pad &new_element) { node[tot++] = new_element; } pad *begin() { return &node[0]; } pad *end() { return &node[tot]; } } Map; void solve(const int &l, const int &r, const int &h) { if (l >= r || h <= 1) { int len = r - l + 1; map::pad *it = Map.find(len); if (it == Map.end()) Map.insert(map::pad(len, 1)); else ++it->val; return; } int mid = (l + r) >> 1; solve(l, mid, h - 1), solve(mid + 1, r, h - 1); } int calc(const int &len1, const int &len2) { int ret = 0; for (int i = 1; i <= len1; ++i) ret = ((ret + 1ll * inv[2] * len2 % M - (pre_inv[i + len2] - pre_inv[i + 1 - 1])) % M + M) % M; return ret; } int main() { scanf("%d%d%d", &n, &k, &M); math_pre(); solve(1, n, k); int ans = 0; for (map::pad *it = Map.begin(); it != Map.end(); ++it) { int len = it->key, cnt = it->val; ans = (ans + 1ll * cnt * len % M * (len - 1) % M * inv[4] % M) % M; } for (map::pad *it1 = Map.begin(); it1 != Map.end(); ++it1) for (map::pad *it2 = Map.begin(); it2 != Map.end(); ++it2) { if (it1 == it2) { int len = it1->key, cnt = 1ll * (0 + (it1->val - 1)) * it1->val / 2 % M; ans = (ans + 1ll * cnt * calc(len, len) % M) % M; } else if (it1->key < it2->key) { int len1 = it1->key, len2 = it2->key, cnt = 1ll * it1->val * it2->val % M; ans = (ans + 1ll * cnt * calc(len1, len2) % M) % M; } } printf("%d", ans); }
13
CPP
#include <bits/stdc++.h> using std::cerr; using std::cout; int mod; inline int add(int a, int b) { a += b - mod; return a + (a >> 31 & mod); } inline int dec(int a, int b) { a -= b; return a + (a >> 31 & mod); } inline int mul(int a, int b) { long long r = (long long)a * b; return r >= mod ? r % mod : r; } inline void Inc(int &a, int b) { a += b - mod; a += a >> 31 & mod; } const int N = 1e5 + 7; int n, k; int inv[N], H[N]; std::map<int, int> cnt; inline void solve(int l, int r, int d) { if (d == 1 || l == r) { cnt[r - l + 1]++; return; } int mid = l + r >> 1; solve(l, mid, d - 1); solve(mid + 1, r, d - 1); } inline int calc(int x, int y) { int ans = mul(x, y); ans = mul(ans, mod + 1 >> 1); for (int register i = 1; i <= x; ++i) Inc(ans, dec(H[i], H[i + y])); return ans; } signed main() { scanf("%d%d%d", &n, &k, &mod); int iv2 = mod + 1 >> 1, iv4 = mul(iv2, iv2); inv[0] = inv[1] = H[0] = H[1] = 1; for (int register i = 2; i <= n; ++i) H[i] = add(H[i - 1], inv[i] = mul(mod - mod / i, inv[mod % i])); solve(1, n, k); int ans = 0; for (auto t : cnt) { Inc(ans, mul(mul(t.first, t.first - 1), mul(iv4, t.second))); Inc(ans, mul(mul(t.second, t.second - 1), mul(iv2, calc(t.first, t.first)))); } for (auto i1 : cnt) for (auto i2 : cnt) if (i1.first < i2.first) { Inc(ans, mul(calc(i1.first, i2.first), mul(i1.second, i2.second))); } cout << ans << "\n"; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int MAXN = 100000; int q; inline int add(int x, int y) { x += y; return x >= q ? x - q : x; } inline int sub(int x, int y) { x -= y; return x < 0 ? x + q : x; } inline int mul(int x, int y) { return (int)(1LL * x * y % q); } int mpow(int b, int p) { int ret; for (ret = 1; p; p >>= 1, b = mul(b, b)) if (p & 1) ret = mul(ret, b); return ret; } int a[MAXN + 5]; void get(int l, int r, int h) { if (l == r || h == 1) a[r - l + 1]++; else { int m = (l + r) >> 1; get(l, m, h - 1), get(m + 1, r, h - 1); } } int inv[MAXN + 5], fct[MAXN + 5], ifct[MAXN + 5]; int comb(int n, int m) { if (n < m || m < 0) return 0; else return mul(fct[n], mul(ifct[m], ifct[n - m])); } int si[MAXN + 5]; void init() { inv[1] = 1; for (int i = 2; i <= MAXN; i++) inv[i] = sub(0, mul(q / i, inv[q % i])); fct[0] = 1; for (int i = 1; i <= MAXN; i++) fct[i] = mul(fct[i - 1], i); ifct[MAXN] = mpow(fct[MAXN], q - 2); for (int i = MAXN - 1; i >= 0; i--) ifct[i] = mul(ifct[i + 1], i + 1); for (int i = 1; i <= MAXN; i++) si[i] = add(si[i - 1], inv[i]); } int b[MAXN + 5], cnt; int main() { int n, k; scanf("%d%d%d", &n, &k, &q), get(1, n, k), init(); for (int i = 1; i <= n; i++) if (a[i]) b[++cnt] = i; int ans = 0; for (int i = 1; i <= cnt; i++) ans = add(ans, mul(mul(mul(mul(b[i], b[i] - 1), inv[2]), inv[2]), a[b[i]])); for (int o1 = 1; o1 <= cnt; o1++) for (int o2 = 1; o2 <= cnt; o2++) { int coef = mul(a[b[o1]], o1 == o2 ? a[b[o2]] - 1 : a[b[o2]]), del = 0; if (coef == 0) continue; for (int i = 1; i <= b[o1]; i++) { int k = add(mul(inv[2], i - 1), 1), c = mul(inv[i + 1], b[o2]), d = sub(si[i + b[o2]], si[i]); del = add(del, mul(k, sub(c, d))); } ans = add(ans, mul(del, coef)); } printf("%d\n", ans); }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class T> void minn(T &a, T b) { a = min(a, b); } template <class T> void maxx(T &a, T b) { a = max(a, b); } void io() { ios_base::sync_with_stdio(false); cin.tie(NULL); } const long long MOD = 1000000007LL; const long long PRIME = 105943LL; const long long INF = 1e18; long long mod; inline long long add(long long a, long long b) { return (a + b) % mod; } inline long long mul(long long a, long long b) { return (1LL * a * b) % mod; } inline long long pow(long long a, long long p) { long long ret = 1LL; while (p) { if (p & 1LL) ret = mul(ret, a); a = mul(a, a), p >>= 1LL; } return ret; } inline long long inv(long long x) { return pow(x, mod - 2); } void go(int l, int r, int h, map<int, int> &cnt) { if (l <= r) if (h <= 1 || l == r) cnt[r - l + 1]++; else { int m = (l + r) / 2; go(l, m, h - 1, cnt); go(m + 1, r, h - 1, cnt); } } long long solve(int x) { return mul(x, mul(x - 1, inv(4))); } long long solve(int x, int y) { long long ret = 0; for (int sz = 2; sz <= (int)x + y; sz++) ret = add(ret, mul(mul(sz - 2, min(x, sz - 1) - max(1, sz - y) + 1), mul(inv(2), inv(sz)))); return ret; } int main() { io(); int n, k; cin >> n >> k >> mod; map<int, int> cnt; go(1, n, k, cnt); assert(cnt.size() < 3); int s = cnt.size(); vector<long long> len, num; for (auto en : cnt) len.push_back(en.first), num.push_back(en.second); long long ans = 0; for (int i = 0; i < (int)(s); i++) { long long temp = mul(num[i], solve(len[i])); ans = add(ans, temp); } for (int i = 0; i < (int)(s); i++) { long long temp = mul(num[i] * (num[i] - 1) / 2, solve(len[i], len[i])); ans = add(ans, temp); } for (int i = 0; i < (int)(s); i++) for (int j = i + 1; j < (int)(s); j++) { long long temp = mul(mul(num[i], num[j]), solve(len[i], len[j])); ans = add(ans, temp); } cout << ans << "\n"; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; long long n, m, mod, inv[300000], ans, cnt[300000], pre[300000]; void upd(long long &x, long long y) { x = (x + y) % mod; } void solve(long long x, long long m) { if (!m || x == 1) { ++cnt[x]; return; } solve((x + 1) / 2, m - 1); solve(x / 2, m - 1); } int main() { scanf("%lld%lld%lld", &n, &m, &mod); m = min(m - 1, 20LL); solve(n, m); long long p = max(n, 4LL); inv[1] = 1; for (long long i = 2; i <= p; ++i) inv[i] = (mod - mod / i) * inv[mod % i] % mod; for (long long i = 1; i <= p; ++i) pre[i] = (pre[i - 1] + inv[i]) % mod; for (long long i : {n >> m, (n >> m) + 1}) { upd(ans, cnt[i] * i % mod * (i - 1) % mod * inv[4]); for (long long j : {n >> m, (n >> m) + 1}) { long long sum = 0; for (long long k = 1; k <= i; ++k) { upd(sum, (k - 1) * (pre[k + j] - pre[k])); } sum = sum * inv[2] % mod; upd(ans, sum * cnt[i] % mod * (i == j ? cnt[i] - 1 : cnt[j])); } } upd(ans, mod); printf("%lld\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; inline long long read() { char ch = getchar(); long long s = 0, w = 1; while (ch < '0' || ch > '9') { if (ch == '-') w = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { s = s * 10 + ch - '0'; ch = getchar(); } return s * w; } inline int lowbit(int x) { return x & (-x); } int mod, n, h; int k[2], m[2]; int ans, inv2; inline int Z(int x) { return (x >= mod ? x - mod : x); } inline int C2(int n) { return 1LL * n * (n - 1) % mod * inv2 % mod; } inline int ksm(int a, int b) { int ans = 1; while (b) { if (b & 1) ans = 1LL * ans * a % mod; b >>= 1; a = 1LL * a * a % mod; } return ans; } void Solve(int l, int r, int h) { if (h == 1 || l == r) { if (!k[0]) { k[0] = r - l + 1; m[0]++; } else if (k[0] == r - l + 1) m[0]++; else k[1] = r - l + 1, m[1]++; ans = Z(ans + 1LL * inv2 * C2(r - l + 1) % mod); return; } Solve(l, ((l + r) >> 1), h - 1); Solve(((l + r) >> 1) + 1, r, h - 1); } inline int calc(int n, int m) { int s = 1LL * inv2 * n % mod * m % mod; int l = 1, r = 0; for (register int S = 2; S <= n + m; S++) { while (l + m < S) l++; while (r < S - 1 && r < n) r++; if (l > r) break; s = Z(s + mod - 1LL * ksm(S, mod - 2) * (r - l + 1) % mod); } return s; } int main() { n = read(), h = read(), mod = read(); inv2 = ksm(2, mod - 2); Solve(1, n, h); if (!k[1]) { ans = Z(ans + 1LL * C2(m[0]) * calc(k[0], k[0]) % mod); } else { ans = Z(ans + 1LL * C2(m[0]) * calc(k[0], k[0]) % mod); ans = Z(ans + 1LL * C2(m[1]) * calc(k[1], k[1]) % mod); ans = Z(ans + 1LL * m[0] * m[1] % mod * calc(k[0], k[1]) % mod); } cout << ans << '\n'; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class T> inline void read(T &x) { x = 0; char c = getchar(); int f = 1; while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); } x *= f; } template <class T> inline void umin(T &x, T y) { x = x < y ? x : y; } template <class T> inline void umax(T &x, T y) { x = x > y ? x : y; } inline unsigned int R() { static unsigned int seed = 416; return seed ^= seed >> 5, seed ^= seed << 17, seed ^= seed >> 13; } const int N = 233333; int n, k, mo, s[N], len; long long res; void solve(int l, int r, int h) { if (l > r) return; if (h <= 1 || l == r) { s[++len] = r - l + 1; return; } int mid = (l + r) >> 1; solve(l, mid, h - 1); solve(mid + 1, r, h - 1); } inline int power(int a, int n) { int res = 1; while (n) { if (n & 1) res = 1LL * res * a % mo; a = 1LL * a * a % mo; n >>= 1; } return res; } long long solve(int n, int m) { long long res = 1LL * n * m % mo * power(2, mo - 2) % mo; for (register int c = (1); c <= (n + m); c++) { int l = max(1, c - m), r = min(n, c - 1); if (r - l + 1 >= 1) res = (res - 1LL * (r - l + 1) * power(c, mo - 2)) % mo; } return res; } int main() { read(n); read(k); read(mo); solve(1, n, k); sort(s + 1, s + len + 1); for (register int i = (1); i <= (len); i++) res += 1LL * s[i] * (s[i] - 1) % mo * power(4, mo - 2) % mo; static pair<int, int> a[N]; int tot = 0; for (register int i = (1); i <= (len); i++) if (a[tot].first == s[i]) a[tot].second++; else a[++tot] = pair<int, int>(s[i], 1); assert(tot <= 2); for (register int i = (1); i <= (tot); i++) res += 1LL * a[i].second * (a[i].second - 1) / 2 % mo * solve(a[i].first, a[i].first) % mo; if (tot == 2) res += 1LL * a[1].second * a[2].second % mo * solve(a[1].first, a[2].first) % mo; printf("%lld", (res % mo + mo) % mo); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10; int n, k, mod, ans; int inv[N], sum[N]; map<int, int> cnt; map<int, int>::iterator it1, it2; int read() { int ret = 0, f = 1; char c = getchar(); while (!isdigit(c)) { if (c == '-') f = 0; c = getchar(); } while (isdigit(c)) ret = ret * 10 + (c ^ 48), c = getchar(); return f ? ret : -ret; } void up(int &x, int y) { x += y; if (x >= mod) x -= mod; if (x < 0) x += mod; } int qpow(int x, int y) { int res = 1; x %= mod; for (; y; y >>= 1, x = (long long)x * x % mod) if (y & 1) res = (long long)res * x % mod; return res; } void init() { n = read(); k = read(); mod = read(); for (int i = 1; i < N; ++i) sum[i] = inv[i] = qpow(i, mod - 2), up(sum[i], sum[i - 1]); } void divide(int l, int r, int dp) { if (dp <= 1 || l == r) { cnt[r - l + 1]++; return; } int mid = (l + r) >> 1; divide(l, mid, dp - 1); divide(mid + 1, r, dp - 1); } int calc(int x, int y) { int res = (long long)x * y % mod; for (int i = 1; i <= x; ++i) up(res, -(sum[i + y] - sum[i]) * 2 % mod); return res; } void solve() { for (it1 = cnt.begin(); it1 != cnt.end(); ++it1) { int t = it1->first, s = it1->second; up(ans, (long long)t * (t - 1) % mod * inv[2] % mod * s % mod); up(ans, (long long)s * (s - 1) % mod * inv[2] % mod * calc(t, t) % mod); } for (it1 = cnt.begin(); it1 != cnt.end(); ++it1) for (it2 = cnt.begin(); it2 != cnt.end(); ++it2) { int x = it1->first, y = it2->first; if (x >= y) continue; up(ans, (long long)calc(x, y) * it1->second % mod * it2->second % mod); } printf("%d\n", (long long)ans * inv[2] % mod); } int main() { init(); divide(1, n, k); solve(); }
13
CPP
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 7; int n, k, p, cnt[N]; long long ifac[N]; inline void solve(int l, int r, int t) { if (t == 1 || l == r) { cnt[r - l + 1]++; return; } int d = (l + r) >> 1; solve(l, d, t - 1), solve(d + 1, r, t - 1); } inline long long getans(int a, int b) { long long sum = (p + 1) / 2, ans = sum * a % p * b % p; for (int i = 1; i <= a; i++) ans = (ans - ifac[i + b] + ifac[i]) % p; return (ans + p) % p; } int main() { cin >> n >> k >> p, ifac[0] = ifac[1] = 1; for (int i = 2; i <= n; i++) ifac[i] = ifac[p % i] * (p - p / i) % p; for (int i = 1; i <= n; i++) ifac[i] = (ifac[i] + ifac[i - 1]) % p; solve(1, n, k); int a = 0, b = 0; for (int i = 1; i <= n; i++) if (cnt[i] && !a) a = i; else if (cnt[i]) b = i; long long s = getans(a, a) * ((1ll * cnt[a] * (cnt[a] - 1) / 2) % p) % p; s = (s + getans(b, b) * ((1ll * cnt[b] * (cnt[b] - 1) / 2) % p)) % p; s = (s + getans(a, b) * cnt[a] % p * cnt[b] % p) % p; s = (s + (1ll * a * (a - 1) / 2 * cnt[a] % p + 1ll * b * (b - 1) / 2 * cnt[b] % p) % p * ((p + 1) / 2)) % p; cout << s << endl; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; int md; inline void add(int &a, int b) { a += b; if (a >= md) a -= md; } inline void sub(int &a, int b) { a -= b; if (a < 0) a += md; } inline int mul(int a, int b) { return (int)((long long)a * b % md); } inline int power(int a, long long b) { int res = 1; while (b > 0) { if (b & 1) { res = mul(res, a); } a = mul(a, a); b >>= 1; } return res; } inline int inv(int a) { a %= md; if (a < 0) a += md; int b = md, u = 0, v = 1; while (a) { int t = b / a; b -= t * a; swap(a, b); u -= t * v; swap(u, v); } assert(b == 1); if (u < 0) u += md; return u; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k >> md; if (k >= 20 || n <= (1 << (k - 1))) { cout << 0 << '\n'; return 0; } int bc = (1 << (k - 1)); int small_size = n / bc; int big_size = small_size + 1; int big_cnt = n % bc; int small_cnt = bc - big_cnt; vector<int> blocks(bc); for (int i = 0; i < n; i++) { blocks[i % (int)blocks.size()]++; } map<int, int> mp; for (int x : blocks) { mp[x]++; } vector<int> fact(n + 1), inv_fact(n + 1); fact[0] = inv_fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = mul(fact[i - 1], i); inv_fact[i] = inv(fact[i]); } int ans = 0; for (int b1id = 0; b1id < bc; b1id++) { int b = blocks[b1id]; add(ans, mul(mul(b, b - 1), inv(4))); } vector<int> sum_inv(n + 1); for (int i = 0; i < n; i++) { sum_inv[i + 1] = sum_inv[i]; add(sum_inv[i + 1], inv(i + 1)); } for (int b1id = 0; b1id < bc; b1id++) { int b1 = blocks[b1id]; if (b1 == small_size) small_cnt--; else big_cnt--; int salt; for (int x = 2; x <= b1; x++) { if (small_cnt > 0) { int aux = sum_inv[x + small_size]; sub(aux, sum_inv[x]); int prob = mul(x - 1, aux); add(ans, mul(small_cnt, mul(prob, inv(2)))); } if (big_cnt > 0) { int aux = sum_inv[x + big_size]; sub(aux, sum_inv[x]); int prob = mul(x - 1, aux); add(ans, mul(big_cnt, mul(prob, inv(2)))); } } if (b1 == small_size) small_cnt++; else big_cnt++; } cout << ans << '\n'; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int maxn = 200100; int mod, n, h; inline void Add(int &a, int b) { a = a + b >= mod ? a + b - mod : a + b; } int inv[maxn], sum[maxn]; inline int Qsum(int l, int r) { return (sum[r] - sum[l - 1] + mod) % mod; } int cnt[maxn], S, L; int ans; inline void getblock(int l, int r, int dep) { if (dep >= h || l == r) { int size = r - l + 1; cnt[size]++; if (L == 0) L = size; else if (L != size) S = size; if (S > L) swap(S, L); Add(ans, 1ll * size * (size - 1) % mod * inv[4] % mod); return; } int mid = (l + r) >> 1; getblock(l, mid, dep + 1); getblock(mid + 1, r, dep + 1); } inline int getans(int size1, int size2) { int ans = 1ll * size1 * size2 * inv[2] % mod; for (int i = 1; i <= size1; i++) Add(ans, mod - Qsum(i + 1, i + size2)); return ans; } int main() { scanf("%d%d%d", &n, &h, &mod); inv[1] = 1; for (int i = 2; i < maxn; i++) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod; for (int i = 1; i < maxn; i++) sum[i] = (sum[i - 1] + inv[i]) % mod; getblock(1, n, 1); if (S == 0) S = L, L = 0; Add(ans, 1ll * getans(S, S) * cnt[S] % mod * (cnt[S] - 1) % mod * inv[2] % mod); if (L) Add(ans, 1ll * getans(L, L) * cnt[L] % mod * (cnt[L] - 1) % mod * inv[2] % mod); if (L) Add(ans, 1ll * getans(S, L) * cnt[S] % mod * cnt[L] % mod); printf("%d", ans); }
13
CPP
#include <bits/stdc++.h> using namespace std; int n, k, mod, num[200005]; void Add(int &a, int b) { ((a += b) >= mod) && (a -= mod); } int ksm(int a, int b) { int ans = 1; while (b) { if (b & 1) ans = 1ll * ans * a % mod; a = 1ll * a * a % mod; b >>= 1; } return ans; } void dfs(int dep, int l, int r) { if (dep == 1) { ++num[r - l + 1]; return; } if (l == r) { ++num[1]; return; } int mid = l + r >> 1; dfs(dep - 1, l, mid); dfs(dep - 1, mid + 1, r); } int ans, sm[200005], inv[200005], ny[200005]; int main() { scanf("%d%d%d", &n, &k, &mod); n <<= 1; sm[0] = ny[0] = 1; for (int i = 1; i <= n; ++i) sm[i] = 1ll * sm[i - 1] * i % mod; inv[n] = ksm(sm[n], mod - 2); for (int i = n - 1; i >= 0; --i) inv[i] = 1ll * inv[i + 1] * (i + 1) % mod; for (int i = 1; i <= n; ++i) ny[i] = 1ll * inv[i] * sm[i - 1] % mod; n >>= 1; dfs(k, 1, n); for (int i = 1; i <= n; ++i) { if (num[i]) { Add(ans, 1ll * i * (i - 1) % mod * ksm(4, mod - 2) % mod * num[i] % mod); } } for (int i = 1; i <= n; ++i) { if (num[i]) for (int j = i; j <= n; ++j) { if (num[j]) { for (int k = 2; k <= i + j; ++k) { if (i == j) Add(ans, 1ll * (k - 2) * ny[2 * k] % mod * min(k - 1, min(k, i) - max(k - j, 1) + 1) % mod * (1ll * num[i] * (num[i] - 1) % mod * ny[2] % mod) % mod); else Add(ans, 1ll * (k - 2) * ny[2 * k] % mod * min(k - 1, min(k, i) - max(k - j, 1) + 1) % mod * num[i] % mod * num[j] % mod); } } } } printf("%d\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <typename T> inline bool chkmin(T &x, T y) { return (y < x) ? (x = y, 1) : 0; } template <typename T> inline bool chkmax(T &x, T y) { return (y > x) ? (x = y, 1) : 0; } inline int read() { int x; char c; int f = 1; while ((c = getchar()) != '-' && (c > '9' || c < '0')) ; if (c == '-') f = -1, c = getchar(); x = c ^ '0'; while ((c = getchar()) >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ '0'); return x * f; } inline long long readll() { long long x; char c; int f = 1; while ((c = getchar()) != '-' && (c > '9' || c < '0')) ; if (c == '-') f = -1, c = getchar(); x = c ^ '0'; while ((c = getchar()) >= '0' && c <= '9') x = (x << 1ll) + (x << 3ll) + (c ^ '0'); return x * f; } int n, m, mod, ans; int ksm(int x, int y) { int res = 1; while (y) { if (y & 1) res = (long long)res * x % mod; x = (long long)x * x % mod; y >>= 1; } return res; } int main() { n = read(), m = read() - 1, mod = read(); for (register int i = 1, iend = m; i <= iend; ++i) if (n / (1 << i) == 0) return printf("0\n"), 0; int u = n / (1 << m), v = u + 1; int t2 = n - ((n / (1 << m)) << m), t1 = (1 << m) - t2; ans = (ans + (long long)u * (u - 1) / 2 % mod * (mod + 1) / 2 % mod * t1) % mod; ans = (ans + (long long)v * (v - 1) / 2 % mod * (mod + 1) / 2 % mod * t2) % mod; for (register int i = 2, iend = u + v; i <= iend; ++i) ans = (ans + (long long)t1 * t2 % mod * (min(i - 1, u) - max(1, i - v) + 1) % mod * (i - 2) % mod * ksm(i * 2, mod - 2)) % mod; for (register int i = 2, iend = u * 2; i <= iend; ++i) ans = (ans + (long long)t1 * (t1 - 1) / 2 % mod * (min(i - 1, u) - max(1, i - u) + 1) % mod * (i - 2) % mod * ksm(i * 2, mod - 2)) % mod; t1 = t2, u = v; for (register int i = 2, iend = u * 2; i <= iend; ++i) ans = (ans + (long long)t1 * (t1 - 1) / 2 % mod * (min(i - 1, u) - max(1, i - u) + 1) % mod * (i - 2) % mod * ksm(i * 2, mod - 2)) % mod; printf("%d\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class S, class T> ostream& operator<<(ostream& o, const pair<S, T>& p) { return o << "(" << p.first << "," << p.second << ")"; } template <class T> ostream& operator<<(ostream& o, const vector<T>& vc) { o << "{"; for (const T& v : vc) o << v << ","; o << "}"; return o; } using ll = long long; template <class T> using V = vector<T>; template <class T> using VV = vector<vector<T>>; constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); } unsigned int mod = 1; struct ModInt { using uint = unsigned int; using ll = long long; using ull = unsigned long long; uint v; ModInt() : v(0) {} ModInt(ll _v) : v(normS(_v % mod + mod)) {} explicit operator bool() const { return v != 0; } static uint normS(const uint& x) { return (x < mod) ? x : x - mod; } static ModInt make(const uint& x) { ModInt m; m.v = x; return m; } ModInt operator+(const ModInt& b) const { return make(normS(v + b.v)); } ModInt operator-(const ModInt& b) const { return make(normS(v + mod - b.v)); } ModInt operator-() const { return make(normS(mod - v)); } ModInt operator*(const ModInt& b) const { return make((ull)v * b.v % mod); } ModInt operator/(const ModInt& b) const { return *this * b.inv(); } ModInt& operator+=(const ModInt& b) { return *this = *this + b; } ModInt& operator-=(const ModInt& b) { return *this = *this - b; } ModInt& operator*=(const ModInt& b) { return *this = *this * b; } ModInt& operator/=(const ModInt& b) { return *this = *this / b; } ModInt& operator++(int) { return *this = *this + 1; } ModInt& operator--(int) { return *this = *this - 1; } ll extgcd(ll a, ll b, ll& x, ll& y) const { ll p[] = {a, 1, 0}, q[] = {b, 0, 1}; while (*q) { ll t = *p / *q; for (int i = 0; i < (int)(3); i++) swap(p[i] -= t * q[i], q[i]); } if (p[0] < 0) for (int i = 0; i < (int)(3); i++) p[i] = -p[i]; x = p[1], y = p[2]; return p[0]; } ModInt inv() const { ll x, y; extgcd(v, mod, x, y); return make(normS(x + mod)); } ModInt pow(ll p) const { if (p < 0) return inv().pow(-p); ModInt a = 1; ModInt x = *this; while (p) { if (p & 1) a *= x; x *= x; p >>= 1; } return a; } bool operator==(const ModInt& b) const { return v == b.v; } bool operator!=(const ModInt& b) const { return v != b.v; } friend istream& operator>>(istream& o, ModInt& x) { ll tmp; o >> tmp; x = ModInt(tmp); return o; } friend ostream& operator<<(ostream& o, const ModInt& x) { return o << x.v; } }; using mint = ModInt; int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); int N, K; cin >> N >> K >> mod; K--; V<int> s = {N}; for (int i = 0; i < (int)(K); i++) { if ((int)s.size() == N) break; V<int> ns; for (int v : s) { ns.push_back((v + 1) / 2); if (v / 2 != 0) ns.push_back(v / 2); } s = ns; } true; sort(s.begin(), s.end()); V<int> v, n; { int c = 0; for (int x : s) if (s[0] == x) c++; v.push_back(s[0]); n.push_back(c); if (c != (int)s.size()) { v.push_back(s.back()); n.push_back((int)s.size() - c); } } mint res = 0; for (int v : s) res += mint(v) * (v - 1) / 4; for (int i = 0; i < (int)(v.size()); i++) for (int j = 0; j < (int)(i + 1); j++) { mint tmp = mint(v[i]) * v[j] / 2; for (int x = 2; x <= v[i] + v[j]; x++) { mint num = x - 1 - max(x - 1 - v[i], 0) - max(x - 1 - v[j], 0); tmp -= num / x; } res += tmp * (i == j ? n[i] * (n[i] - 1) / 2 : n[i] * n[j]); } cout << res << endl; }
13
CPP
#include <bits/stdc++.h> using namespace std; long long mod = 0; inline long long pls(long long a, long long b) { return a + b < mod ? a + b : a + b - mod; } inline long long dec(long long a, long long b) { return a >= b ? a - b : a - b + mod; } int len1 = 0, len2 = 0, c1 = 0, c2 = 0; void dfs(int L, int R, int h) { if (L > R) return; if (h <= 1 || L == R) { int len = R - L + 1; if (len1 == 0) { len1 = len; c1 = 1; } else if (len1 == len) ++c1; else if (len2 == 0) { len2 = len; c2 = 1; } else ++c2; return; } int mid = (L + R) >> 1; dfs(L, mid, h - 1); dfs(mid + 1, R, h - 1); } long long inv[100003], sum[100003]; void pre() { inv[1] = inv[0] = 1; for (int i = 2; i <= 100000; ++i) inv[i] = (mod - mod / i) * inv[mod % i] % mod; for (int i = 1; i <= 100000; ++i) sum[i] = pls(sum[i - 1], inv[i]); } long long calc(int A, int B) { if (A == 0 || B == 0) return 0; long long ret = (long long)A * B % mod * inv[2] % mod; for (int i = 1; i <= A; ++i) ret = dec(ret, dec(sum[i + B], sum[i])); return ret; } int main() { int n = 0, k = 0; scanf("%d %d %lld", &n, &k, &mod); dfs(1, n, k); pre(); long long ans = pls((long long)len1 * (len1 - 1ll) % mod * inv[4] % mod * c1 % mod, (long long)len2 * (len2 - 1ll) % mod * inv[4] % mod * c2 % mod); ans = pls(ans, calc(len1, len1) * c1 % mod * (c1 - 1ll) % mod * inv[2] % mod); ans = pls(ans, calc(len2, len2) * c2 % mod * (c2 - 1ll) % mod * inv[2] % mod); ans = pls(ans, calc(len1, len2) * c1 % mod * c2 % mod); printf("%lld", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class T> int chkmax(T& a, T b) { if (b > a) { a = b; return 1; } return 0; } template <class T> int chkmin(T& a, T b) { if (b < a) { a = b; return 1; } return 0; } template <class iterator> void output(iterator begin, iterator end, ostream& out = cerr) { while (begin != end) { out << (*begin) << " "; begin++; } out << '\n'; } template <class T> void output(T x, ostream& out = cerr) { output(x.begin(), x.end(), out); } void fast_io() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); } int n, k; long long MOD; long long power(long long a, long long deg) { long long res = 1; while (deg) { if ((deg & 1LL) == 0) { a = (a * a) % MOD; deg >>= 1; } else { res = (res * a) % MOD; deg -= 1; } } return res; } long long inv(long long a) { return power(a, MOD - 2); } long long calc(int len1, int len2) { long long res = 0; for (int i = 2; i <= len1 + len2; ++i) { long long cnt = (long long)(min(len1, i - 1) - max(1, i - len2) + 1); res = (res + cnt * inv(i)) % MOD; } long long p_len = ((long long)len1 * (long long)len2) % MOD; res = ((p_len * inv(2) - res) % MOD + MOD) % MOD; return res; } long long calc(int _len) { long long len = (long long)(_len); long long x = (len * (len - 1)) % MOD; x = (x * inv(4)) % MOD; return x; } const int LG = 20; signed main() { cin >> n >> k >> MOD; map<int, int> mp; mp[n] = 1; for (int i = 0; i < min(k - 1, LG); ++i) { map<int, int> new_mp; for (auto pp : mp) { int key = pp.first, val = pp.second; if (key == 1) { new_mp[key] += val; } else { new_mp[key / 2] += val; new_mp[key - key / 2] += val; } } mp = new_mp; } long long ans = 0; vector<pair<int, int> > v; for (auto pp : mp) { v.push_back(pp); } for (int i = 0; i < v.size(); ++i) { ans = (ans + calc(v[i].first) * v[i].second) % MOD; } for (int i = 0; i < v.size(); ++i) { long long cnt = ((v[i].second) * (v[i].second - 1)) % MOD; cnt = (cnt * inv(2)) % MOD; ans = (ans + calc(v[i].first, v[i].first) * cnt) % MOD; } if (v.size() >= 2) { long long cnt = (v[0].second * v[1].second) % MOD; ans = (ans + calc(v[0].first, v[1].first) * cnt) % MOD; } cout << ans << '\n'; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <typename T> inline bool chkmin(T &x, T y) { return y < x ? x = y, 1 : 0; } template <typename T> inline bool chkmax(T &x, T y) { return x < y ? x = y, 1 : 0; } const int INF = 0x3f3f3f3f; const int N = 1e5 + 10; int cnt[N]; int mod; inline int read() { int x = 0, flag = 1; char ch = getchar(); while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') flag = -1, ch = getchar(); while (isdigit(ch)) x = (x << 3) + (x << 1) + (ch - '0'), ch = getchar(); return x * flag; } inline int fpm(int a, int b) { int res = 1; while (b) { if (b & 1) res = 1ll * res * a % mod; a = 1ll * a * a % mod, b /= 2; } return res; } inline void Dfs(int n, int k) { if (n == 1 || k == 1) { cnt[n]++; return; } Dfs(n / 2, k - 1), Dfs((n + 1) / 2, k - 1); } inline int Calc(int x, int y) { int res = 0; for (int i = (2), iend = (x + y); i <= iend; i++) res = (res + 1ll * min(x + y - i + 1, i - 1) * (i - 2) % mod * fpm(2 * i, mod - 2)) % mod; return res; } int main() { int n = read(), k = read(), ans = 0; mod = read(); Dfs(n, k); for (int i = (1), iend = (n); i <= iend; i++) if (cnt[i]) { ans = (ans + 1ll * cnt[i] * i % mod * (i - 1) % mod * fpm(4, mod - 2)) % mod; ans = (ans + 1ll * cnt[i] * (cnt[i] - 1) / 2 % mod * Calc(i, i)) % mod; } for (int i = (1), iend = (n); i <= iend; i++) if (cnt[i]) for (int j = (i + 1), jend = (n); j <= jend; j++) if (cnt[j]) ans = (ans + 1ll * cnt[i] * cnt[j] % mod * Calc(i, j)) % mod; printf("%d\n", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int MAXN = 2e5 + 51; map<int, int> mp; int n, kk, MOD, res, u, v, w, x; int invf[MAXN], pr[MAXN]; inline int read() { register int num = 0, neg = 1; register char ch = getchar(); while (!isdigit(ch) && ch != '-') { ch = getchar(); } if (ch == '-') { neg = -1; ch = getchar(); } while (isdigit(ch)) { num = (num << 3) + (num << 1) + (ch - '0'); ch = getchar(); } return num * neg; } inline void dfs(int l, int r, int depth) { if (depth >= kk || l == r) { return (void)mp[r - l + 1]++; } int mid = (l + r) >> 1; dfs(l, mid, depth + 1), dfs(mid + 1, r, depth + 1); } inline int calc(int x, int y) { int res = 0; for (register int i = 1; i <= x; i++) { res = (res + (pr[i + y] - pr[i] + MOD) % MOD * 2 % MOD) % MOD; } return (((long long int)x * y - res) % MOD + MOD) % MOD; } int main() { n = read(), kk = read(), MOD = read(), invf[1] = pr[1] = 1, dfs(1, n, 1); for (register int i = 2; i <= max(n, 2); i++) { invf[i] = MOD - (long long int)(MOD / i) * invf[MOD % i] % MOD, pr[i] = (pr[i - 1] + invf[i]) % MOD; } for (auto i : mp) { tie(u, v) = i, res = (res + (long long int)u * (u - 1) / 2 % MOD * v) % MOD; v >= 2 ? res = (res + (long long int)v * (v - 1) / 2 % MOD * calc(u, u)) % MOD : 1; } for (auto i : mp) { for (auto j : mp) { if (i.first < j.first) { tie(u, v) = i, tie(w, x) = j; res = (res + (long long int)calc(u, w) * v % MOD * x % MOD) % MOD; } } } printf("%d\n", (long long int)res * invf[2] % MOD); }
13
CPP
#include <bits/stdc++.h> using namespace std; const int N = 100005; int n, k, P; vector<int> pos; int cnt[N]; void solve(int l, int r, int k) { if (k <= 1 || l == r) { if (cnt[r - l + 1] == 0) pos.emplace_back(r - l + 1); cnt[r - l + 1]++; return; } int mid = (l + r) / 2; solve(l, mid, k - 1); solve(mid + 1, r, k - 1); return; } long long inv[N], sinv[N]; void init(int n = 100000) { inv[1] = 1; for (int i = 2; i <= n; i++) inv[i] = (P - P / i) * inv[P % i] % P; sinv[0] = 0; for (int i = 1; i <= n; i++) sinv[i] = (sinv[i - 1] + inv[i]) % P; return; } long long calc(int x, int y) { long long ans = 0; for (int i = 1; i <= x; i++) { long long res = inv[2] * y % P; res = (res - (sinv[i + y] - sinv[i] + P) % P + P) % P; ans = (ans + res) % P; } return ans; } int main() { scanf("%d%d%d", &n, &k, &P); init(); solve(1, n, k); int len = pos.size(); long long ans = 0; for (int i = 0; i < len; i++) ans = (ans + 1LL * pos[i] * (pos[i] - 1) % P * inv[4] % P * cnt[pos[i]] % P) % P; for (int i = 0; i < len; i++) for (int j = i + 1; j < len; j++) ans = (ans + calc(pos[i], pos[j]) * cnt[pos[i]] % P * cnt[pos[j]] % P) % P; for (int i = 0; i < len; i++) ans = (ans + calc(pos[i], pos[i]) * cnt[pos[i]] % P * (cnt[pos[i]] - 1) % P * inv[2] % P) % P; printf("%lld", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int N = 2e5 + 2; int mod, num1 = 0, num2 = 0, cnt1 = 0, cnt2 = 0, rev[N], sum[N]; void add(int &x, int y) { x += y; if (x >= mod) { x -= mod; } } void sub(int &x, int y) { x -= y; if (x < 0) { x += mod; } } int mul(int x, int y) { return (1ll * x * y) % mod; } int binpow(int x, int y) { int tich = 1; while (y) { if (y & 1) { tich = mul(tich, x); } x = mul(x, x); y >>= 1; } return tich; } void recur(int l, int r, int dep) { if (dep < 2 || l == r) { if (!num1 || r - l + 1 == num1) { num1 = r - l + 1; cnt1++; } else { num2 = r - l + 1; cnt2++; } return; } recur(l, (l + r) / 2, dep - 1); recur((l + r) / 2 + 1, r, dep - 1); } signed main() { ios::sync_with_stdio(0); cin.tie(0); int n, i, j, k, l, dep, ans = 0; cin >> n >> dep >> mod; for (i = 1; i < N; i++) { rev[i] = binpow(i, mod - 2); sum[i] = sum[i - 1]; add(sum[i], rev[i]); } recur(1, n, dep); if (num1) { add(ans, mul(cnt1, mul(num1, mul(num1 - 1, rev[4])))); j = mul(mul(cnt1, cnt1 - 1), rev[2]); for (i = 1; i <= num1; i++) { add(ans, mul(mul(rev[2], num1), j)); sub(ans, mul((sum[i + num1] - sum[i] + mod) % mod, j)); } } if (num2) { add(ans, mul(cnt2, mul(num2, mul(num2 - 1, rev[4])))); j = mul(mul(cnt2, cnt2 - 1), rev[2]); for (i = 1; i <= num2; i++) { add(ans, mul(mul(rev[2], num2), j)); sub(ans, mul((sum[i + num2] - sum[i] + mod) % mod, j)); } } if (num1 && num2) { j = mul(cnt1, cnt2); for (i = 1; i <= num1; i++) { add(ans, mul(mul(rev[2], num2), j)); sub(ans, mul((sum[i + num2] - sum[i] + mod) % mod, j)); } } cout << ans; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int MAXN = 2e5 + 5; int n, k, mod, cnt[MAXN], inv[MAXN] = {0, 1}, sum[MAXN]; int a, b, ans; inline int read() { int x = 0; char ch = getchar(); while (!isdigit(ch)) ch = getchar(); while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } return x; } inline void Add(int &x, int y) { x += y, x >= mod && (x -= mod); } inline void prepare() { for (int i = 2; i <= n * 2; i++) inv[i] = mod - 1ll * mod / i * inv[mod % i] % mod; for (int i = 1; i <= n * 2; i++) sum[i] = (sum[i - 1] + inv[i]) % mod; } void dfs_pre(int l, int r, int dep, int &len) { if (dep == k || l == r) return cnt[len = r - l + 1]++, void(); int mid = (l + r) >> 1; dfs_pre(l, mid, dep + 1, len); dfs_pre(mid + 1, r, dep + 1, len); } inline int calc(int x, int y) { int ans = 0; for (int i = 1; i <= x; i++) Add(ans, (mod + sum[i + y] - sum[i]) % mod); return ans; } int main() { n = read(), k = read(), mod = read(); if (k >= 19) { puts("0"); return 0; } dfs_pre(1, n, 1, a), prepare(); if (cnt[a - 1]) b = a - 1; else if (cnt[a + 1]) b = a + 1; assert((cnt[a - 1] & cnt[a + 1]) == 0); Add(ans, 1ll * calc(a, a) * cnt[a] % mod * (cnt[a] - 1) % mod * inv[2] % mod); Add(ans, 1ll * calc(b, b) * cnt[b] % mod * (cnt[b] - 1) % mod * inv[2] % mod); Add(ans, 1ll * calc(a, b) * cnt[a] % mod * cnt[b] % mod); printf("%lld\n", (1ll * n * (n - 1) % mod * inv[4] % mod - ans + mod) % mod); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int N = 1e6 + 7; int n, k, p, sum, a[2], b[2], inv[N], res[N]; inline void adds(int u) { if (a[0] == 0) a[0] = u; else if (a[0] != u) a[1] = u; if (a[0] == u) b[0]++; if (a[1] == u) b[1]++; } inline void solve(int l, int r, int t) { if (t == 1 || l == r) { adds(r - l + 1); return; } int d = (l + r) >> 1; solve(l, d, t - 1), solve(d + 1, r, t - 1); } inline int getsum(int x, int y) { int ans = 0; memset(res, 0, sizeof(res)); for (int i = 1; i <= x; i++) res[i + 1]++, res[i + y + 1]--; for (int i = 1; i <= x + y; i++) res[i] += res[i - 1], ans = (ans + 1ll * res[i] % p * (-inv[i] + inv[2] + p)) % p; return ans; } int main() { cin >> n >> k >> p, solve(1, n, k), inv[0] = inv[1] = 1; for (int i = 2; i <= 123456; i++) inv[i] = 1ll * (p - p / i) * inv[p % i] % p; sum = (1ll * (a[0] - 1) * a[0] % p * inv[4] % p * b[0] % p + 1ll * (a[1] - 1) * a[1] % p * inv[4] % p * b[1] % p) % p; sum = (sum + 1ll * b[0] * b[1] % p * getsum(a[0], a[1])) % p; sum = (sum + 1ll * b[0] * (b[0] - 1) / 2 % p * getsum(a[0], a[0])) % p; sum = (sum + 1ll * b[1] * (b[1] - 1) / 2 % p * getsum(a[1], a[1])) % p; cout << sum << endl; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; using ll = long long; template <class t, class u> void chmax(t& first, u second) { if (first < second) first = second; } template <class t, class u> void chmin(t& first, u second) { if (second < first) first = second; } template <class t> using vc = vector<t>; template <class t> using vvc = vc<vc<t>>; using pi = pair<ll, ll>; using vi = vc<ll>; template <class t, class u> ostream& operator<<(ostream& os, const pair<t, u>& p) { return os << "{" << p.first << "," << p.second << "}"; } template <class t> ostream& operator<<(ostream& os, const vc<t>& v) { os << "{"; for (auto e : v) os << e << ","; return os << "}"; } using uint = unsigned; using ull = unsigned long long; uint mod = 1; struct mint { uint v; mint(ll vv = 0) { s(vv % mod + mod); } mint& s(uint vv) { v = vv < mod ? vv : vv - mod; return *this; } mint operator-() const { return mint() - *this; } mint& operator+=(const mint& rhs) { return s(v + rhs.v); } mint& operator-=(const mint& rhs) { return s(v + mod - rhs.v); } mint& operator*=(const mint& rhs) { v = ull(v) * rhs.v % mod; return *this; } mint& operator/=(const mint& rhs) { return *this *= rhs.inv(); } mint operator+(const mint& rhs) const { return mint(*this) += rhs; } mint operator-(const mint& rhs) const { return mint(*this) -= rhs; } mint operator*(const mint& rhs) const { return mint(*this) *= rhs; } mint operator/(const mint& rhs) const { return mint(*this) /= rhs; } mint pow(ll n) const { mint res(1), x(*this); while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } mint inv() const { return pow(mod - 2); } friend ostream& operator<<(ostream& os, const mint& m) { return os << m.v; } }; const ll Vmax = (1 << 21) + 10; mint fact[Vmax], finv[Vmax], inv[Vmax]; void initfact() { fact[0] = 1; for (ll i = ll(1); i < ll(Vmax); i++) { fact[i] = fact[i - 1] * i; } finv[Vmax - 1] = fact[Vmax - 1].inv(); for (ll i = Vmax - 2; i >= 0; i--) { finv[i] = finv[i + 1] * (i + 1); } for (ll i = Vmax - 1; i >= 1; i--) { inv[i] = finv[i] * fact[i - 1]; } } mint choose(ll n, ll k) { return fact[n] * finv[n - k] * finv[k]; } mint binom(ll first, ll second) { return fact[first + second] * finv[first] * finv[second]; } mint catalan(ll n) { return binom(n, n) - (n - 1 >= 0 ? binom(n - 1, n + 1) : 0); } signed main() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); ll n, h; cin >> n >> h; cin >> mod; initfact(); chmin(h, 20); ll s = min(ll(1) << (h - 1), n); ll sz[2], cnt[2]; sz[0] = n / s; sz[1] = sz[0] + 1; cnt[1] = n % s; cnt[0] = s - cnt[1]; mint ans = 0; for (ll i = ll(1); i < ll(n); i++) { ll k = n - i + 1; mint den = choose(n, k) * k * (k - 1); mint num = 0; for (ll first = ll(0); first < ll(2); first++) for (ll second = ll(0); second < ll(2); second++) { mint wab = cnt[first] * (cnt[second] - (first == second)); mint sum = 0; for (ll c = ll(0); c < ll(2); c++) for (ll d = ll(0); d < ll(2); d++) { mint x = 0; ll rem = n; if (c) rem -= sz[first]; if (d) rem -= sz[second]; if (rem >= k) x = choose(rem, k); if (c ^ d) sum -= x; else sum += x; } num += wab * sum; } ans += (mint(1) - num / den) / 2 * i; } cout << ans << endl; }
13
CPP
#include <bits/stdc++.h> using namespace std; int md; inline void add(int &a, int b) { a += b; if (a >= md) a -= md; } inline void sub(int &a, int b) { a -= b; if (a < 0) a += md; } inline int mul(int a, int b) { return (int)((long long)a * b % md); } inline int power(int a, long long b) { int res = 1; while (b > 0) { if (b & 1) { res = mul(res, a); } a = mul(a, a); b >>= 1; } return res; } inline int inv(int a) { a %= md; if (a < 0) a += md; int b = md, u = 0, v = 1; while (a) { int t = b / a; b -= t * a; swap(a, b); u -= t * v; swap(u, v); } assert(b == 1); if (u < 0) u += md; return u; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k >> md; if (k >= 20 || n <= (1 << (k - 1))) { cout << 0 << '\n'; return 0; } int bc = (1 << (k - 1)); int small_size = n / bc; int big_size = small_size + 1; int big_cnt = n % bc; int small_cnt = bc - big_cnt; vector<int> blocks(bc); for (int i = 0; i < n; i++) { blocks[i % (int)blocks.size()]++; } map<int, int> mp; for (int x : blocks) { mp[x]++; } vector<int> fact(n + 1), inv_fact(n + 1); fact[0] = inv_fact[0] = 1; for (int i = 1; i <= n; i++) { fact[i] = mul(fact[i - 1], i); inv_fact[i] = inv(fact[i]); } int ans = 0; for (int b1id = 0; b1id < bc; b1id++) { int b = blocks[b1id]; add(ans, mul(mul(b, b - 1), inv(4))); } vector<int> sum_inv(n + 1); for (int i = 0; i < n; i++) { sum_inv[i + 1] = sum_inv[i]; add(sum_inv[i + 1], inv(i + 1)); } for (int b1id = 0; b1id < bc; b1id++) { int b1 = blocks[b1id]; if (b1 == small_size) small_cnt--; else big_cnt--; for (int x = 2; x <= b1; x++) { if (small_cnt > 0) { int aux = sum_inv[x + small_size]; sub(aux, sum_inv[x]); int prob = mul(x - 1, aux); add(ans, mul(small_cnt, mul(prob, inv(2)))); } if (big_cnt > 0) { int aux = sum_inv[x + big_size]; sub(aux, sum_inv[x]); int prob = mul(x - 1, aux); add(ans, mul(big_cnt, mul(prob, inv(2)))); } } if (b1 == small_size) small_cnt++; else big_cnt++; } cout << ans << '\n'; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class T> T gi() { T x = 0; bool f = 0; char c = getchar(); while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') f = 1, c = getchar(); while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return f ? -x : x; } const int N = 1e5 + 10; int Mod, inv[N]; unordered_map<int, int> t; void solve(int l, int r, int k) { if (k == 1 || l == r) return (void)t[r - l + 1]++; int mid = (l + r) >> 1; solve(l, mid, k - 1), solve(mid + 1, r, k - 1); } int C(int n) { return 1ll * n * (n - 1) / 2 % Mod; } int calc(int x, int y) { int res = 1ll * (Mod + 1) / 2 * x % Mod * y % Mod; for (int i = 1; i <= x; i++) res = (1ll * res + Mod - inv[i + y] + inv[i]) % Mod; return res; } int main() { int n = gi<int>(), k = gi<int>(), ans = 0; Mod = gi<int>(); inv[1] = 1; for (int i = 2; i <= n; i++) inv[i] = 1ll * (Mod - Mod / i) * inv[Mod % i] % Mod; for (int i = 2; i <= n; i++) (inv[i] += inv[i - 1]) %= Mod; solve(1, n, k); for (auto i : t) ans = (ans + 1ll * C(i.first) * i.second % Mod * ((Mod + 1) / 2)) % Mod, ans = (ans + 1ll * C(i.second) * calc(i.first, i.first)) % Mod; for (auto i : t) for (auto j : t) { if (j.first >= i.first) break; ans = (ans + 1ll * calc(j.first, i.first) * j.second % Mod * i.second) % Mod; } cout << ans << endl; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; template <class T1, class T2> inline void chkmin(T1 &x, T2 y) { if (y < x) x = y; } template <class T1, class T2> inline void chkmax(T1 &x, T2 y) { if (y > x) x = y; } const int BUF_SIZE = 1 << 20; char buf[BUF_SIZE], *P1 = buf, *P2 = buf, obuf[BUF_SIZE], *PO = obuf; inline char getc() { if (P1 == P2) P2 = (P1 = buf) + fread(buf, 1, BUF_SIZE, stdin); return P1 == P2 ? EOF : *P1++; } inline void read(int &x) { register char ch = getc(); x = 0; while (!isdigit(ch)) ch = getc(); while (isdigit(ch)) x = x * 10 + (ch ^ 48), ch = getc(); } inline void flushO() { fwrite(obuf, PO - obuf, 1, stdout); PO = obuf; } inline void putc(char ch) { if (PO == obuf + (BUF_SIZE)) flushO(); *PO++ = ch; } inline void prints(char s[]) { for (char *ss = s; *ss != '\0'; ss++) putc(*ss); } inline void write(long long x) { if (x > 9) write(x / 10); putc(x % 10 ^ 48); } const int N = 100005; int MOD; inline int mo(int x) { return x >= MOD ? x - MOD : x; } struct mint { int x; mint() {} mint(int a) { x = a; } }; inline mint operator+(mint a, mint b) { return mo(a.x + b.x); } inline mint operator+=(mint &a, mint b) { return a = a + b; } inline mint operator-(mint a, mint b) { return mo(a.x + MOD - b.x); } inline mint operator-(mint a) { return mo(MOD - a.x); } inline mint operator-=(mint &a, mint b) { return a = a - b; } inline mint operator*(mint a, mint b) { return 1ll * a.x * b.x % MOD; } inline mint operator*=(mint &a, mint b) { return a = a * b; } inline mint operator^(mint a, int b) { mint res = mint{1}; for (; b; b >>= 1, a *= a) if (b & 1) res *= a; return res; } inline mint Inv(mint a) { return a ^ MOD - 2; } inline mint operator/(mint a, mint b) { return a * Inv(b); } inline mint operator/=(mint &a, mint b) { return a = a / b; } int n, k, la, lb, ca, cb; mint inv[N], sinv[N], ans; inline void math_init(int n) { inv[1] = 1; for (int i = 2; i <= (n); i++) inv[i] = -inv[MOD % i] * (MOD / i); for (int i = 1; i <= (n); i++) sinv[i] = sinv[i - 1] + inv[i]; } void solve(int l, int r, int h) { if (h <= 1 || l == r) { int len = r - l + 1; ans += inv[4] * len * (len - 1) + (ca * la + cb * lb) * inv[2] * len; for (int i = 1; i <= (len); i++) ans -= (sinv[la + i] - sinv[i]) * ca + (sinv[lb + i] - sinv[i]) * cb; if (!la) la = len; if (len != la && !lb) lb = len; if (len == la) ca++; else cb++; return; } int mid = l + r >> 1; solve(l, mid, h - 1); solve(mid + 1, r, h - 1); } int main() { scanf("%d%d%d", &n, &k, &MOD); math_init(max(n, 4)); solve(1, n, k); printf("%d", ans); }
13
CPP