The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Couldn't cast array of type timestamp[s] to null
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp>
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in cast_array_to_feature
                  arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in <listcomp>
                  arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper
                  return func(array, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2116, in cast_array_to_feature
                  return array_cast(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper
                  return func(array, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1962, in array_cast
                  raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}")
              TypeError: Couldn't cast array of type timestamp[s] to null
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

url
string
repository_url
string
labels_url
string
comments_url
string
events_url
string
html_url
string
id
int64
node_id
string
number
int64
title
string
user
dict
labels
sequence
state
string
locked
bool
assignee
null
assignees
sequence
milestone
null
comments
sequence
created_at
int64
updated_at
int64
closed_at
int64
author_association
string
active_lock_reason
null
body
string
reactions
dict
timeline_url
string
performed_via_github_app
null
state_reason
string
draft
float64
pull_request
dict
is_pull_request
bool
https://api.github.com/repos/huggingface/datasets/issues/6507
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6507/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6507/comments
https://api.github.com/repos/huggingface/datasets/issues/6507/events
https://github.com/huggingface/datasets/issues/6507
2,045,152,928
I_kwDODunzps555o6g
6,507
where is glue_metric.py> @Frankie123421 what was the resolution to this?
{ "avatar_url": "https://avatars.githubusercontent.com/u/119146162?v=4", "events_url": "https://api.github.com/users/Mcccccc1024/events{/privacy}", "followers_url": "https://api.github.com/users/Mcccccc1024/followers", "following_url": "https://api.github.com/users/Mcccccc1024/following{/other_user}", "gists_url": "https://api.github.com/users/Mcccccc1024/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mcccccc1024", "id": 119146162, "login": "Mcccccc1024", "node_id": "U_kgDOBxoGsg", "organizations_url": "https://api.github.com/users/Mcccccc1024/orgs", "received_events_url": "https://api.github.com/users/Mcccccc1024/received_events", "repos_url": "https://api.github.com/users/Mcccccc1024/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mcccccc1024/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mcccccc1024/subscriptions", "type": "User", "url": "https://api.github.com/users/Mcccccc1024" }
[]
open
false
null
[]
null
[]
1,702,807,105,000
1,702,807,105,000
null
NONE
null
> @Frankie123421 what was the resolution to this? use glue_metric.py instead of glue.py in load_metric _Originally posted by @Frankie123421 in https://github.com/huggingface/datasets/issues/2117#issuecomment-905093763_
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6507/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6507/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6506
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6506/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6506/comments
https://api.github.com/repos/huggingface/datasets/issues/6506/events
https://github.com/huggingface/datasets/issues/6506
2,044,975,038
I_kwDODunzps5549e-
6,506
Incorrect test set labels for RTE and CoLA datasets via load_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/73316684?v=4", "events_url": "https://api.github.com/users/emreonal11/events{/privacy}", "followers_url": "https://api.github.com/users/emreonal11/followers", "following_url": "https://api.github.com/users/emreonal11/following{/other_user}", "gists_url": "https://api.github.com/users/emreonal11/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/emreonal11", "id": 73316684, "login": "emreonal11", "node_id": "MDQ6VXNlcjczMzE2Njg0", "organizations_url": "https://api.github.com/users/emreonal11/orgs", "received_events_url": "https://api.github.com/users/emreonal11/received_events", "repos_url": "https://api.github.com/users/emreonal11/repos", "site_admin": false, "starred_url": "https://api.github.com/users/emreonal11/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/emreonal11/subscriptions", "type": "User", "url": "https://api.github.com/users/emreonal11" }
[]
open
false
null
[]
null
[]
1,702,764,368,000
1,702,765,666,000
null
NONE
null
### Describe the bug The test set labels for the RTE and CoLA datasets when loading via datasets load_dataset are all -1. Edit: It appears this is also the case for every other dataset except for MRPC (stsb, sst2, qqp, mnli (both matched and mismatched), qnli, wnli, ax) ### Steps to reproduce the bug !pip install datasets from datasets import load_dataset rte_data = load_dataset('glue', 'rte') cola_data = load_dataset('glue', 'cola') print(rte_data['test'][0:30]['label']) print(cola_data['test'][0:30]['label']) Output: [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] The non-label test data seems to be fine: e.g. rte_data['test'][1] is: {'sentence1': "Authorities in Brazil say that more than 200 people are being held hostage in a prison in the country's remote, Amazonian-jungle state of Rondonia.", 'sentence2': 'Authorities in Brazil hold 200 people as hostage.', 'label': -1, 'idx': 1} Training and validation data are also fine: e.g. rte_data['train][0] is: {'sentence1': 'No Weapons of Mass Destruction Found in Iraq Yet.', 'sentence2': 'Weapons of Mass Destruction Found in Iraq.', 'label': 1, 'idx': 0} ### Expected behavior Expected the labels to be binary 0/1 values; Got all -1s instead ### Environment info - `datasets` version: 2.15.0 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.19.4 - PyArrow version: 10.0.1 - Pandas version: 1.5.3 - `fsspec` version: 2023.6.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6506/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6506/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6505
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6505/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6505/comments
https://api.github.com/repos/huggingface/datasets/issues/6505/events
https://github.com/huggingface/datasets/issues/6505
2,044,721,288
I_kwDODunzps553_iI
6,505
Got stuck when I trying to load a dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/18232551?v=4", "events_url": "https://api.github.com/users/yirenpingsheng/events{/privacy}", "followers_url": "https://api.github.com/users/yirenpingsheng/followers", "following_url": "https://api.github.com/users/yirenpingsheng/following{/other_user}", "gists_url": "https://api.github.com/users/yirenpingsheng/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yirenpingsheng", "id": 18232551, "login": "yirenpingsheng", "node_id": "MDQ6VXNlcjE4MjMyNTUx", "organizations_url": "https://api.github.com/users/yirenpingsheng/orgs", "received_events_url": "https://api.github.com/users/yirenpingsheng/received_events", "repos_url": "https://api.github.com/users/yirenpingsheng/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yirenpingsheng/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yirenpingsheng/subscriptions", "type": "User", "url": "https://api.github.com/users/yirenpingsheng" }
[]
open
false
null
[]
null
[]
1,702,727,467,000
1,702,727,467,000
null
NONE
null
### Describe the bug Hello, everyone. I met a problem when I am trying to load a data file using load_dataset method on a Debian 10 system. The data file is not very large, only 1.63MB with 600 records. Here is my code: from datasets import load_dataset dataset = load_dataset('json', data_files='mypath/oaast_rm_zh.json') I waited it for 20 minutes. It still no response. I cannot using Ctrl+C to cancel the command. I have to use Ctrl+Z to kill it. I also try it with a txt file, it still no response in a long time. I can load the same file successfully using my laptop (windows 10, python 3.8.5, datasets==2.14.5). I can also make it on another computer (Ubuntu 20.04.5 LTS, python 3.10.13, datasets 2.14.7). It only takes me 1-2 miniutes. Could you give me some suggestions? Thank you. ### Steps to reproduce the bug from datasets import load_dataset dataset = load_dataset('json', data_files='mypath/oaast_rm_zh.json') ### Expected behavior I hope it can load the file successfully. ### Environment info OS: Debian GNU/Linux 10 Python: Python 3.10.13 Pip list: Package Version ------------------------- ------------ accelerate 0.25.0 addict 2.4.0 aiofiles 23.2.1 aiohttp 3.9.1 aiosignal 1.3.1 aliyun-python-sdk-core 2.14.0 aliyun-python-sdk-kms 2.16.2 altair 5.2.0 annotated-types 0.6.0 anyio 3.7.1 async-timeout 4.0.3 attrs 23.1.0 certifi 2023.11.17 cffi 1.16.0 charset-normalizer 3.3.2 click 8.1.7 contourpy 1.2.0 crcmod 1.7 cryptography 41.0.7 cycler 0.12.1 datasets 2.14.7 dill 0.3.7 docstring-parser 0.15 einops 0.7.0 exceptiongroup 1.2.0 fastapi 0.105.0 ffmpy 0.3.1 filelock 3.13.1 fonttools 4.46.0 frozenlist 1.4.1 fsspec 2023.10.0 gast 0.5.4 gradio 3.50.2 gradio_client 0.6.1 h11 0.14.0 httpcore 1.0.2 httpx 0.25.2 huggingface-hub 0.19.4 idna 3.6 importlib-metadata 7.0.0 importlib-resources 6.1.1 jieba 0.42.1 Jinja2 3.1.2 jmespath 0.10.0 joblib 1.3.2 jsonschema 4.20.0 jsonschema-specifications 2023.11.2 kiwisolver 1.4.5 markdown-it-py 3.0.0 MarkupSafe 2.1.3 matplotlib 3.8.2 mdurl 0.1.2 modelscope 1.10.0 mpmath 1.3.0 multidict 6.0.4 multiprocess 0.70.15 networkx 3.2.1 nltk 3.8.1 numpy 1.26.2 nvidia-cublas-cu12 12.1.3.1 nvidia-cuda-cupti-cu12 12.1.105 nvidia-cuda-nvrtc-cu12 12.1.105 nvidia-cuda-runtime-cu12 12.1.105 nvidia-cudnn-cu12 8.9.2.26 nvidia-cufft-cu12 11.0.2.54 nvidia-curand-cu12 10.3.2.106 nvidia-cusolver-cu12 11.4.5.107 nvidia-cusparse-cu12 12.1.0.106 nvidia-nccl-cu12 2.18.1 nvidia-nvjitlink-cu12 12.3.101 nvidia-nvtx-cu12 12.1.105 orjson 3.9.10 oss2 2.18.3 packaging 23.2 pandas 2.1.4 peft 0.7.1 Pillow 10.1.0 pip 23.3.1 platformdirs 4.1.0 protobuf 4.25.1 psutil 5.9.6 pyarrow 14.0.1 pyarrow-hotfix 0.6 pycparser 2.21 pycryptodome 3.19.0 pydantic 2.5.2 pydantic_core 2.14.5 pydub 0.25.1 Pygments 2.17.2 pyparsing 3.1.1 python-dateutil 2.8.2 python-multipart 0.0.6 pytz 2023.3.post1 PyYAML 6.0.1 referencing 0.32.0 regex 2023.10.3 requests 2.31.0 rich 13.7.0 rouge-chinese 1.0.3 rpds-py 0.13.2 safetensors 0.4.1 scipy 1.11.4 semantic-version 2.10.0 sentencepiece 0.1.99 setuptools 68.2.2 shtab 1.6.5 simplejson 3.19.2 six 1.16.0 sniffio 1.3.0 sortedcontainers 2.4.0 sse-starlette 1.8.2 starlette 0.27.0 sympy 1.12 tiktoken 0.5.2 tokenizers 0.15.0 tomli 2.0.1 toolz 0.12.0 torch 2.1.2 tqdm 4.66.1 transformers 4.36.1 triton 2.1.0 trl 0.7.4 typing_extensions 4.9.0 tyro 0.6.0 tzdata 2023.3 urllib3 2.1.0 uvicorn 0.24.0.post1 websockets 11.0.3 wheel 0.41.2 xxhash 3.4.1 yapf 0.40.2 yarl 1.9.4 zipp 3.17.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6505/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6505/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6504
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6504/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6504/comments
https://api.github.com/repos/huggingface/datasets/issues/6504/events
https://github.com/huggingface/datasets/issues/6504
2,044,541,154
I_kwDODunzps553Tji
6,504
Error Pushing to Hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/55055083?v=4", "events_url": "https://api.github.com/users/Jiayi-Pan/events{/privacy}", "followers_url": "https://api.github.com/users/Jiayi-Pan/followers", "following_url": "https://api.github.com/users/Jiayi-Pan/following{/other_user}", "gists_url": "https://api.github.com/users/Jiayi-Pan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Jiayi-Pan", "id": 55055083, "login": "Jiayi-Pan", "node_id": "MDQ6VXNlcjU1MDU1MDgz", "organizations_url": "https://api.github.com/users/Jiayi-Pan/orgs", "received_events_url": "https://api.github.com/users/Jiayi-Pan/received_events", "repos_url": "https://api.github.com/users/Jiayi-Pan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Jiayi-Pan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jiayi-Pan/subscriptions", "type": "User", "url": "https://api.github.com/users/Jiayi-Pan" }
[]
closed
false
null
[]
null
[]
1,702,688,722,000
1,702,707,653,000
1,702,707,653,000
NONE
null
### Describe the bug Error when trying to push a dataset in a special format to hub ### Steps to reproduce the bug ``` import datasets from datasets import Dataset dataset_dict = { "filename": ["apple", "banana"], "token": [[[1,2],[3,4]],[[1,2],[3,4]]], "label": [0, 1], } dataset = Dataset.from_dict(dataset_dict) dataset = dataset.cast_column("token", datasets.features.features.Array2D(shape=(2, 2),dtype="int16")) dataset.push_to_hub("SequenceModel/imagenet_val_256") ``` Error: ``` ... ConstructorError: could not determine a constructor for the tag 'tag:yaml.org,2002:python/tuple' in "<unicode string>", line 8, column 16: shape: !!python/tuple ^ ``` ### Expected behavior Dataset being pushed to hub ### Environment info - `datasets` version: 2.15.0 - Platform: Linux-5.19.0-1022-gcp-x86_64-with-glibc2.35 - Python version: 3.11.5 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.1.4 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6504/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6504/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6503
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6503/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6503/comments
https://api.github.com/repos/huggingface/datasets/issues/6503/events
https://github.com/huggingface/datasets/pull/6503
2,043,847,591
PR_kwDODunzps5iHgZf
6,503
Fix streaming xnli
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6503). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005003 / 0.011353 (-0.006350) | 0.003020 / 0.011008 (-0.007988) | 0.061370 / 0.038508 (0.022862) | 0.050996 / 0.023109 (0.027887) | 0.243434 / 0.275898 (-0.032464) | 0.266317 / 0.323480 (-0.057163) | 0.003888 / 0.007986 (-0.004098) | 0.002607 / 0.004328 (-0.001721) | 0.047541 / 0.004250 (0.043290) | 0.037933 / 0.037052 (0.000881) | 0.259695 / 0.258489 (0.001206) | 0.279374 / 0.293841 (-0.014467) | 0.027258 / 0.128546 (-0.101288) | 0.010184 / 0.075646 (-0.065462) | 0.207412 / 0.419271 (-0.211860) | 0.034978 / 0.043533 (-0.008554) | 0.247871 / 0.255139 (-0.007267) | 0.265273 / 0.283200 (-0.017927) | 0.017886 / 0.141683 (-0.123796) | 1.090451 / 1.452155 (-0.361704) | 1.152034 / 1.492716 (-0.340682) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094383 / 0.018006 (0.076377) | 0.301151 / 0.000490 (0.300661) | 0.000211 / 0.000200 (0.000011) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018927 / 0.037411 (-0.018484) | 0.062152 / 0.014526 (0.047626) | 0.072177 / 0.176557 (-0.104380) | 0.119792 / 0.737135 (-0.617343) | 0.073333 / 0.296338 (-0.223005) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282671 / 0.215209 (0.067462) | 2.721148 / 2.077655 (0.643494) | 1.472689 / 1.504120 (-0.031431) | 1.355226 / 1.541195 (-0.185969) | 1.375935 / 1.468490 (-0.092556) | 0.562600 / 4.584777 (-4.022177) | 2.364046 / 3.745712 (-1.381666) | 2.714984 / 5.269862 (-2.554878) | 1.738413 / 4.565676 (-2.827263) | 0.062564 / 0.424275 (-0.361711) | 0.004964 / 0.007607 (-0.002643) | 0.341300 / 0.226044 (0.115255) | 3.345187 / 2.268929 (1.076259) | 1.857822 / 55.444624 (-53.586803) | 1.581002 / 6.876477 (-5.295475) | 1.585919 / 2.142072 (-0.556153) | 0.640105 / 4.805227 (-4.165122) | 0.117880 / 6.500664 (-6.382784) | 0.042032 / 0.075469 (-0.033437) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962701 / 1.841788 (-0.879086) | 11.309251 / 8.074308 (3.234943) | 10.462520 / 10.191392 (0.271128) | 0.127399 / 0.680424 (-0.553025) | 0.014549 / 0.534201 (-0.519652) | 0.297017 / 0.579283 (-0.282266) | 0.266152 / 0.434364 (-0.168212) | 0.349252 / 0.540337 (-0.191085) | 0.457015 / 1.386936 (-0.929921) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005341 / 0.011353 (-0.006012) | 0.003108 / 0.011008 (-0.007900) | 0.048862 / 0.038508 (0.010353) | 0.053354 / 0.023109 (0.030245) | 0.274499 / 0.275898 (-0.001399) | 0.296698 / 0.323480 (-0.026782) | 0.003974 / 0.007986 (-0.004012) | 0.002631 / 0.004328 (-0.001697) | 0.048013 / 0.004250 (0.043762) | 0.040416 / 0.037052 (0.003363) | 0.276581 / 0.258489 (0.018092) | 0.301296 / 0.293841 (0.007455) | 0.029049 / 0.128546 (-0.099497) | 0.010253 / 0.075646 (-0.065393) | 0.057157 / 0.419271 (-0.362114) | 0.031830 / 0.043533 (-0.011703) | 0.274341 / 0.255139 (0.019202) | 0.292583 / 0.283200 (0.009383) | 0.018449 / 0.141683 (-0.123234) | 1.145099 / 1.452155 (-0.307055) | 1.192958 / 1.492716 (-0.299758) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091596 / 0.018006 (0.073590) | 0.300917 / 0.000490 (0.300427) | 0.000225 / 0.000200 (0.000025) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021657 / 0.037411 (-0.015754) | 0.068464 / 0.014526 (0.053938) | 0.079869 / 0.176557 (-0.096687) | 0.117523 / 0.737135 (-0.619613) | 0.081257 / 0.296338 (-0.215082) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294876 / 0.215209 (0.079667) | 2.879372 / 2.077655 (0.801718) | 1.619887 / 1.504120 (0.115767) | 1.482154 / 1.541195 (-0.059041) | 1.494656 / 1.468490 (0.026166) | 0.558914 / 4.584777 (-4.025862) | 2.420948 / 3.745712 (-1.324765) | 2.728992 / 5.269862 (-2.540869) | 1.722135 / 4.565676 (-2.843542) | 0.062182 / 0.424275 (-0.362093) | 0.004933 / 0.007607 (-0.002674) | 0.342759 / 0.226044 (0.116715) | 3.424083 / 2.268929 (1.155154) | 1.950673 / 55.444624 (-53.493951) | 1.683126 / 6.876477 (-5.193351) | 1.673135 / 2.142072 (-0.468937) | 0.633711 / 4.805227 (-4.171516) | 0.114898 / 6.500664 (-6.385766) | 0.040332 / 0.075469 (-0.035137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975102 / 1.841788 (-0.866685) | 11.975731 / 8.074308 (3.901423) | 10.961103 / 10.191392 (0.769711) | 0.131152 / 0.680424 (-0.549272) | 0.016268 / 0.534201 (-0.517933) | 0.285031 / 0.579283 (-0.294252) | 0.279556 / 0.434364 (-0.154808) | 0.324183 / 0.540337 (-0.216154) | 0.571404 / 1.386936 (-0.815532) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4f67312956fc15572b6a0ca0dfcc0ceb90fbb794 \"CML watermark\")\n" ]
1,702,651,257,000
1,702,651,866,000
1,702,651,487,000
MEMBER
null
This code was failing ```python In [1]: from datasets import load_dataset In [2]: ...: ds = load_dataset("xnli", "all_languages", split="test", streaming=True) ...: ...: sample_data = next(iter(ds))["premise"] # pick up one data ...: input_text = list(sample_data.values()) ``` ``` File ~/hf/datasets/src/datasets/features/translation.py:104, in TranslationVariableLanguages.encode_example(self, translation_dict) 102 return translation_dict 103 elif self.languages and set(translation_dict) - lang_set: --> 104 raise ValueError( 105 f'Some languages in example ({", ".join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({", ".join(lang_set)}).' 106 ) 108 # Convert dictionary into tuples, splitting out cases where there are 109 # multiple translations for a single language. 110 translation_tuples = [] ValueError: Some languages in example (language, translation) are not in valid set (ur, fr, hi, sw, vi, el, de, th, en, tr, zh, ar, bg, ru, es). ``` because in streaming mode we expect features encode methods to be no-ops if the example is already encoded. I fixed `TranslationVariableLanguages` to account for that
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6503/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6503/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6503.diff", "html_url": "https://github.com/huggingface/datasets/pull/6503", "merged_at": "2023-12-15T14:44:46", "patch_url": "https://github.com/huggingface/datasets/pull/6503.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6503" }
true
https://api.github.com/repos/huggingface/datasets/issues/6502
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6502/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6502/comments
https://api.github.com/repos/huggingface/datasets/issues/6502/events
https://github.com/huggingface/datasets/pull/6502
2,043,771,731
PR_kwDODunzps5iHPt-
6,502
Pickle support for `torch.Generator` objects
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6502). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005472 / 0.011353 (-0.005881) | 0.003715 / 0.011008 (-0.007293) | 0.063257 / 0.038508 (0.024749) | 0.060683 / 0.023109 (0.037574) | 0.250885 / 0.275898 (-0.025013) | 0.271685 / 0.323480 (-0.051795) | 0.003051 / 0.007986 (-0.004934) | 0.002799 / 0.004328 (-0.001530) | 0.049113 / 0.004250 (0.044863) | 0.038965 / 0.037052 (0.001912) | 0.252688 / 0.258489 (-0.005801) | 0.282536 / 0.293841 (-0.011305) | 0.028722 / 0.128546 (-0.099824) | 0.010586 / 0.075646 (-0.065060) | 0.205145 / 0.419271 (-0.214127) | 0.036996 / 0.043533 (-0.006537) | 0.248874 / 0.255139 (-0.006265) | 0.266148 / 0.283200 (-0.017051) | 0.018540 / 0.141683 (-0.123143) | 1.120216 / 1.452155 (-0.331938) | 1.191072 / 1.492716 (-0.301644) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095721 / 0.018006 (0.077714) | 0.313401 / 0.000490 (0.312911) | 0.000234 / 0.000200 (0.000034) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018604 / 0.037411 (-0.018807) | 0.061571 / 0.014526 (0.047045) | 0.075343 / 0.176557 (-0.101213) | 0.121272 / 0.737135 (-0.615864) | 0.076448 / 0.296338 (-0.219890) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286885 / 0.215209 (0.071676) | 2.809100 / 2.077655 (0.731445) | 1.485365 / 1.504120 (-0.018755) | 1.367672 / 1.541195 (-0.173523) | 1.423570 / 1.468490 (-0.044920) | 0.571063 / 4.584777 (-4.013714) | 2.385248 / 3.745712 (-1.360464) | 2.855251 / 5.269862 (-2.414610) | 1.799371 / 4.565676 (-2.766306) | 0.063491 / 0.424275 (-0.360784) | 0.004942 / 0.007607 (-0.002665) | 0.346181 / 0.226044 (0.120137) | 3.388123 / 2.268929 (1.119195) | 1.819093 / 55.444624 (-53.625532) | 1.552998 / 6.876477 (-5.323479) | 1.627930 / 2.142072 (-0.514143) | 0.653438 / 4.805227 (-4.151789) | 0.123831 / 6.500664 (-6.376833) | 0.043340 / 0.075469 (-0.032129) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.952167 / 1.841788 (-0.889621) | 12.149515 / 8.074308 (4.075207) | 10.665085 / 10.191392 (0.473693) | 0.127768 / 0.680424 (-0.552656) | 0.014022 / 0.534201 (-0.520179) | 0.285959 / 0.579283 (-0.293324) | 0.269727 / 0.434364 (-0.164637) | 0.336646 / 0.540337 (-0.203692) | 0.442932 / 1.386936 (-0.944005) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005351 / 0.011353 (-0.006002) | 0.003561 / 0.011008 (-0.007448) | 0.048890 / 0.038508 (0.010382) | 0.054093 / 0.023109 (0.030984) | 0.274397 / 0.275898 (-0.001501) | 0.296980 / 0.323480 (-0.026500) | 0.004126 / 0.007986 (-0.003860) | 0.002751 / 0.004328 (-0.001578) | 0.049131 / 0.004250 (0.044880) | 0.040769 / 0.037052 (0.003716) | 0.279147 / 0.258489 (0.020658) | 0.302014 / 0.293841 (0.008173) | 0.029847 / 0.128546 (-0.098699) | 0.010710 / 0.075646 (-0.064936) | 0.057626 / 0.419271 (-0.361645) | 0.032801 / 0.043533 (-0.010732) | 0.272698 / 0.255139 (0.017559) | 0.289238 / 0.283200 (0.006039) | 0.017876 / 0.141683 (-0.123807) | 1.152059 / 1.452155 (-0.300096) | 1.212289 / 1.492716 (-0.280427) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092914 / 0.018006 (0.074908) | 0.303092 / 0.000490 (0.302603) | 0.000214 / 0.000200 (0.000014) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022074 / 0.037411 (-0.015337) | 0.070109 / 0.014526 (0.055583) | 0.083360 / 0.176557 (-0.093196) | 0.122445 / 0.737135 (-0.614690) | 0.083625 / 0.296338 (-0.212714) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282788 / 0.215209 (0.067579) | 2.789229 / 2.077655 (0.711574) | 1.571077 / 1.504120 (0.066957) | 1.452627 / 1.541195 (-0.088567) | 1.493176 / 1.468490 (0.024686) | 0.556892 / 4.584777 (-4.027885) | 2.442771 / 3.745712 (-1.302941) | 2.826316 / 5.269862 (-2.443545) | 1.758276 / 4.565676 (-2.807401) | 0.063039 / 0.424275 (-0.361236) | 0.004928 / 0.007607 (-0.002679) | 0.338247 / 0.226044 (0.112202) | 3.346344 / 2.268929 (1.077416) | 1.952520 / 55.444624 (-53.492104) | 1.664520 / 6.876477 (-5.211956) | 1.701528 / 2.142072 (-0.440544) | 0.634746 / 4.805227 (-4.170481) | 0.116879 / 6.500664 (-6.383786) | 0.040990 / 0.075469 (-0.034479) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969521 / 1.841788 (-0.872267) | 12.431395 / 8.074308 (4.357087) | 10.907503 / 10.191392 (0.716111) | 0.131028 / 0.680424 (-0.549396) | 0.015239 / 0.534201 (-0.518962) | 0.290793 / 0.579283 (-0.288490) | 0.275072 / 0.434364 (-0.159292) | 0.331036 / 0.540337 (-0.209301) | 0.567858 / 1.386936 (-0.819078) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#092118fc00f7dd718ab3643739d7b23ff16c9eff \"CML watermark\")\n" ]
1,702,648,512,000
1,702,652,673,000
1,702,652,302,000
CONTRIBUTOR
null
Fix for https://discuss.huggingface.co/t/caching-a-dataset-processed-with-randomness/65616
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6502/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6502/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6502.diff", "html_url": "https://github.com/huggingface/datasets/pull/6502", "merged_at": "2023-12-15T14:58:22", "patch_url": "https://github.com/huggingface/datasets/pull/6502.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6502" }
true
https://api.github.com/repos/huggingface/datasets/issues/6501
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6501/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6501/comments
https://api.github.com/repos/huggingface/datasets/issues/6501/events
https://github.com/huggingface/datasets/issues/6501
2,043,377,240
I_kwDODunzps55y3ZY
6,501
OverflowError: value too large to convert to int32_t
{ "avatar_url": "https://avatars.githubusercontent.com/u/47747764?v=4", "events_url": "https://api.github.com/users/zhangfan-algo/events{/privacy}", "followers_url": "https://api.github.com/users/zhangfan-algo/followers", "following_url": "https://api.github.com/users/zhangfan-algo/following{/other_user}", "gists_url": "https://api.github.com/users/zhangfan-algo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zhangfan-algo", "id": 47747764, "login": "zhangfan-algo", "node_id": "MDQ6VXNlcjQ3NzQ3NzY0", "organizations_url": "https://api.github.com/users/zhangfan-algo/orgs", "received_events_url": "https://api.github.com/users/zhangfan-algo/received_events", "repos_url": "https://api.github.com/users/zhangfan-algo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zhangfan-algo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zhangfan-algo/subscriptions", "type": "User", "url": "https://api.github.com/users/zhangfan-algo" }
[]
open
false
null
[]
null
[]
1,702,635,021,000
1,702,635,021,000
null
NONE
null
### Describe the bug ![image](https://github.com/huggingface/datasets/assets/47747764/f58044fb-ddda-48b6-ba68-7bbfef781630) ### Steps to reproduce the bug just loading datasets ### Expected behavior how can I fix it ### Environment info pip install /mnt/cluster/zhangfan/study_info/LLaMA-Factory/peft-0.6.0-py3-none-any.whl pip install huggingface_hub-0.19.4-py3-none-any.whl tokenizers-0.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl transformers-4.36.1-py3-none-any.whl pyarrow_hotfix-0.6-py3-none-any.whl datasets-2.15.0-py3-none-any.whl tyro-0.5.18-py3-none-any.whl trl-0.7.4-py3-none-any.whl done
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6501/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6501/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6500
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6500/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6500/comments
https://api.github.com/repos/huggingface/datasets/issues/6500/events
https://github.com/huggingface/datasets/pull/6500
2,043,258,633
PR_kwDODunzps5iFc6e
6,500
Enable setting config as default when push_to_hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6500). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "This is ready for review @huggingface/datasets. ", "Also what if the config is being overwritten and it was the default config and the user doesn't pass `set_default` ?\r\nI'd expect the config to keep being the default one but lmk what you think", "How can you unset a config as the default one? In the case you mentioned, I would expect the config not being the default one.", "Maybe by passing `set_default=False` ? (set_default can be None by default)" ]
1,702,631,861,000
1,702,653,747,000
null
MEMBER
null
Fix #6497.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6500/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6500/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6500.diff", "html_url": "https://github.com/huggingface/datasets/pull/6500", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6500.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6500" }
true
https://api.github.com/repos/huggingface/datasets/issues/6499
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6499/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6499/comments
https://api.github.com/repos/huggingface/datasets/issues/6499/events
https://github.com/huggingface/datasets/pull/6499
2,043,166,976
PR_kwDODunzps5iFIUF
6,499
docs: add reference Git over SSH
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6499). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005701 / 0.011353 (-0.005652) | 0.003546 / 0.011008 (-0.007463) | 0.063335 / 0.038508 (0.024827) | 0.051987 / 0.023109 (0.028878) | 0.240429 / 0.275898 (-0.035469) | 0.260659 / 0.323480 (-0.062820) | 0.003866 / 0.007986 (-0.004120) | 0.002617 / 0.004328 (-0.001712) | 0.048653 / 0.004250 (0.044403) | 0.038176 / 0.037052 (0.001124) | 0.245496 / 0.258489 (-0.012993) | 0.277141 / 0.293841 (-0.016700) | 0.027886 / 0.128546 (-0.100660) | 0.010738 / 0.075646 (-0.064908) | 0.211255 / 0.419271 (-0.208016) | 0.045205 / 0.043533 (0.001672) | 0.243062 / 0.255139 (-0.012077) | 0.262877 / 0.283200 (-0.020323) | 0.023426 / 0.141683 (-0.118257) | 1.092247 / 1.452155 (-0.359908) | 1.161074 / 1.492716 (-0.331642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090488 / 0.018006 (0.072482) | 0.300993 / 0.000490 (0.300504) | 0.000212 / 0.000200 (0.000012) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018543 / 0.037411 (-0.018868) | 0.061418 / 0.014526 (0.046892) | 0.073242 / 0.176557 (-0.103314) | 0.120757 / 0.737135 (-0.616378) | 0.073967 / 0.296338 (-0.222372) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282341 / 0.215209 (0.067132) | 2.741106 / 2.077655 (0.663451) | 1.416573 / 1.504120 (-0.087547) | 1.287904 / 1.541195 (-0.253291) | 1.309425 / 1.468490 (-0.159065) | 0.582592 / 4.584777 (-4.002184) | 2.404866 / 3.745712 (-1.340846) | 2.895397 / 5.269862 (-2.374464) | 1.799864 / 4.565676 (-2.765812) | 0.064386 / 0.424275 (-0.359889) | 0.004920 / 0.007607 (-0.002687) | 0.330879 / 0.226044 (0.104835) | 3.287064 / 2.268929 (1.018135) | 1.765169 / 55.444624 (-53.679456) | 1.490442 / 6.876477 (-5.386034) | 1.530960 / 2.142072 (-0.611113) | 0.655939 / 4.805227 (-4.149288) | 0.118529 / 6.500664 (-6.382135) | 0.042350 / 0.075469 (-0.033119) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959027 / 1.841788 (-0.882761) | 11.911284 / 8.074308 (3.836976) | 10.576898 / 10.191392 (0.385506) | 0.141038 / 0.680424 (-0.539386) | 0.014184 / 0.534201 (-0.520017) | 0.305335 / 0.579283 (-0.273948) | 0.267531 / 0.434364 (-0.166832) | 0.353362 / 0.540337 (-0.186975) | 0.466258 / 1.386936 (-0.920678) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005194 / 0.011353 (-0.006159) | 0.003561 / 0.011008 (-0.007448) | 0.049181 / 0.038508 (0.010673) | 0.056664 / 0.023109 (0.033555) | 0.267142 / 0.275898 (-0.008756) | 0.291871 / 0.323480 (-0.031609) | 0.003996 / 0.007986 (-0.003990) | 0.003147 / 0.004328 (-0.001181) | 0.048527 / 0.004250 (0.044276) | 0.040239 / 0.037052 (0.003187) | 0.269728 / 0.258489 (0.011239) | 0.295531 / 0.293841 (0.001690) | 0.030316 / 0.128546 (-0.098231) | 0.010666 / 0.075646 (-0.064981) | 0.058176 / 0.419271 (-0.361095) | 0.033218 / 0.043533 (-0.010315) | 0.265383 / 0.255139 (0.010244) | 0.285102 / 0.283200 (0.001902) | 0.018295 / 0.141683 (-0.123388) | 1.117830 / 1.452155 (-0.334325) | 1.196919 / 1.492716 (-0.295798) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088547 / 0.018006 (0.070541) | 0.293220 / 0.000490 (0.292730) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022060 / 0.037411 (-0.015351) | 0.071973 / 0.014526 (0.057448) | 0.081721 / 0.176557 (-0.094836) | 0.119990 / 0.737135 (-0.617145) | 0.081639 / 0.296338 (-0.214700) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293712 / 0.215209 (0.078503) | 2.872986 / 2.077655 (0.795331) | 1.568944 / 1.504120 (0.064824) | 1.434555 / 1.541195 (-0.106639) | 1.457747 / 1.468490 (-0.010743) | 0.559296 / 4.584777 (-4.025481) | 2.471845 / 3.745712 (-1.273867) | 2.840916 / 5.269862 (-2.428946) | 1.754909 / 4.565676 (-2.810768) | 0.064585 / 0.424275 (-0.359690) | 0.004992 / 0.007607 (-0.002615) | 0.349149 / 0.226044 (0.123104) | 3.385906 / 2.268929 (1.116977) | 1.940644 / 55.444624 (-53.503980) | 1.638300 / 6.876477 (-5.238177) | 1.649939 / 2.142072 (-0.492133) | 0.645680 / 4.805227 (-4.159547) | 0.118080 / 6.500664 (-6.382584) | 0.040643 / 0.075469 (-0.034826) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969965 / 1.841788 (-0.871822) | 12.099766 / 8.074308 (4.025457) | 10.550650 / 10.191392 (0.359258) | 0.131736 / 0.680424 (-0.548688) | 0.015483 / 0.534201 (-0.518718) | 0.289231 / 0.579283 (-0.290052) | 0.287505 / 0.434364 (-0.146858) | 0.327326 / 0.540337 (-0.213011) | 0.570364 / 1.386936 (-0.816572) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#533c38cef16111e9e8154eeb76c207f1f4936ddf \"CML watermark\")\n" ]
1,702,629,511,000
1,702,640,927,000
1,702,640,558,000
CONTRIBUTOR
null
see https://discuss.huggingface.co/t/update-datasets-getting-started-to-new-git-security/65893
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6499/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6499/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6499.diff", "html_url": "https://github.com/huggingface/datasets/pull/6499", "merged_at": "2023-12-15T11:42:38", "patch_url": "https://github.com/huggingface/datasets/pull/6499.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6499" }
true
https://api.github.com/repos/huggingface/datasets/issues/6498
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6498/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6498/comments
https://api.github.com/repos/huggingface/datasets/issues/6498/events
https://github.com/huggingface/datasets/pull/6498
2,042,075,969
PR_kwDODunzps5iBcFj
6,498
Fallback on dataset script if user wants to load default config
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6498). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "> I was just thinking: what if the user does not pass a config name and the dataset has only a config with a name different from \"default\"?\r\n\r\nYou mean if there is a DEFAULT_CONFIG_NAME defined in the script but the dataset only has one configuration ? We can't easily get the number of configs without running the python code so I don't think we can support detect this case\r\n", "Most datasets with a script don't define DEFAULT_CONFIG_NAME if there is only one configuration anyway.\r\n\r\nSo there is no issue e.g. for `squad`", "> I was trying to mean the case where DEFAULT_CONFIG_NAME is None but there is only a single config in BUILDER_CONFIGS, with a name different from \"default\".\r\n\r\nIn this case we can detect if \"DEFAULT_CONFIG_NAME\" is not mentioned and use the Parquet export. If it is mentioned (and maybe it is set to None or to the single config) I consider that it may have multiple configs and fall back on using the script", "... but the user does not pass the config name.", "In this case we load the single configuration (this is how a DatasetBuilder works)", "see \r\n\r\nhttps://github.com/huggingface/datasets/blob/2feaa589de86dd85941301fc8c3fa091731a67c0/src/datasets/builder.py#L532-L532", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005122 / 0.011353 (-0.006231) | 0.003565 / 0.011008 (-0.007443) | 0.062706 / 0.038508 (0.024198) | 0.049314 / 0.023109 (0.026205) | 0.247325 / 0.275898 (-0.028573) | 0.269788 / 0.323480 (-0.053692) | 0.003895 / 0.007986 (-0.004090) | 0.002788 / 0.004328 (-0.001540) | 0.048615 / 0.004250 (0.044365) | 0.037591 / 0.037052 (0.000539) | 0.253495 / 0.258489 (-0.004994) | 0.281200 / 0.293841 (-0.012641) | 0.027712 / 0.128546 (-0.100834) | 0.010901 / 0.075646 (-0.064745) | 0.205577 / 0.419271 (-0.213694) | 0.035989 / 0.043533 (-0.007544) | 0.252978 / 0.255139 (-0.002161) | 0.268042 / 0.283200 (-0.015157) | 0.017857 / 0.141683 (-0.123826) | 1.096633 / 1.452155 (-0.355521) | 1.147026 / 1.492716 (-0.345691) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095609 / 0.018006 (0.077603) | 0.311941 / 0.000490 (0.311451) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019042 / 0.037411 (-0.018369) | 0.060549 / 0.014526 (0.046023) | 0.074761 / 0.176557 (-0.101796) | 0.121729 / 0.737135 (-0.615406) | 0.075661 / 0.296338 (-0.220677) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284774 / 0.215209 (0.069565) | 2.764576 / 2.077655 (0.686921) | 1.489926 / 1.504120 (-0.014194) | 1.387276 / 1.541195 (-0.153919) | 1.400931 / 1.468490 (-0.067559) | 0.555623 / 4.584777 (-4.029154) | 2.409488 / 3.745712 (-1.336224) | 2.781053 / 5.269862 (-2.488808) | 1.750472 / 4.565676 (-2.815204) | 0.062232 / 0.424275 (-0.362043) | 0.004974 / 0.007607 (-0.002633) | 0.336324 / 0.226044 (0.110280) | 3.286619 / 2.268929 (1.017691) | 1.825070 / 55.444624 (-53.619554) | 1.537993 / 6.876477 (-5.338484) | 1.586520 / 2.142072 (-0.555553) | 0.640090 / 4.805227 (-4.165138) | 0.117637 / 6.500664 (-6.383027) | 0.042318 / 0.075469 (-0.033151) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.964051 / 1.841788 (-0.877736) | 11.706259 / 8.074308 (3.631951) | 10.752311 / 10.191392 (0.560919) | 0.128117 / 0.680424 (-0.552307) | 0.014001 / 0.534201 (-0.520200) | 0.286255 / 0.579283 (-0.293028) | 0.263810 / 0.434364 (-0.170554) | 0.329347 / 0.540337 (-0.210991) | 0.437349 / 1.386936 (-0.949587) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005303 / 0.011353 (-0.006050) | 0.003586 / 0.011008 (-0.007422) | 0.049339 / 0.038508 (0.010831) | 0.051287 / 0.023109 (0.028178) | 0.274397 / 0.275898 (-0.001501) | 0.292977 / 0.323480 (-0.030503) | 0.004029 / 0.007986 (-0.003957) | 0.002727 / 0.004328 (-0.001602) | 0.048779 / 0.004250 (0.044528) | 0.040075 / 0.037052 (0.003022) | 0.277676 / 0.258489 (0.019187) | 0.301963 / 0.293841 (0.008122) | 0.029340 / 0.128546 (-0.099206) | 0.010714 / 0.075646 (-0.064932) | 0.057253 / 0.419271 (-0.362018) | 0.033426 / 0.043533 (-0.010107) | 0.276673 / 0.255139 (0.021534) | 0.291053 / 0.283200 (0.007854) | 0.017660 / 0.141683 (-0.124023) | 1.122354 / 1.452155 (-0.329800) | 1.180381 / 1.492716 (-0.312335) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091903 / 0.018006 (0.073897) | 0.300720 / 0.000490 (0.300231) | 0.000288 / 0.000200 (0.000088) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021521 / 0.037411 (-0.015890) | 0.068233 / 0.014526 (0.053707) | 0.081245 / 0.176557 (-0.095312) | 0.119996 / 0.737135 (-0.617139) | 0.082483 / 0.296338 (-0.213856) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302776 / 0.215209 (0.087567) | 2.950776 / 2.077655 (0.873122) | 1.631032 / 1.504120 (0.126912) | 1.502021 / 1.541195 (-0.039174) | 1.514213 / 1.468490 (0.045723) | 0.578246 / 4.584777 (-4.006531) | 2.443768 / 3.745712 (-1.301944) | 2.827811 / 5.269862 (-2.442051) | 1.771529 / 4.565676 (-2.794148) | 0.064479 / 0.424275 (-0.359797) | 0.005061 / 0.007607 (-0.002546) | 0.350966 / 0.226044 (0.124922) | 3.458616 / 2.268929 (1.189687) | 1.967917 / 55.444624 (-53.476707) | 1.704661 / 6.876477 (-5.171815) | 1.698895 / 2.142072 (-0.443178) | 0.663259 / 4.805227 (-4.141968) | 0.122140 / 6.500664 (-6.378525) | 0.041099 / 0.075469 (-0.034371) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972080 / 1.841788 (-0.869708) | 12.123286 / 8.074308 (4.048978) | 10.819854 / 10.191392 (0.628462) | 0.131486 / 0.680424 (-0.548938) | 0.015785 / 0.534201 (-0.518416) | 0.290048 / 0.579283 (-0.289235) | 0.277822 / 0.434364 (-0.156542) | 0.325949 / 0.540337 (-0.214388) | 0.577681 / 1.386936 (-0.809255) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#30f6a2d9af183eba4501f0b8d90e9200bdca6bb1 \"CML watermark\")\n" ]
1,702,572,361,000
1,702,646,216,000
1,702,645,848,000
MEMBER
null
Right now this code is failing on `main`: ```python load_dataset("openbookqa") ``` This is because it tries to load the dataset from the Parquet export but the dataset has multiple configurations and the Parquet export doesn't know which one is the default one. I fixed this by simply falling back on using the dataset script (which tells the user to pass `trust_remote_code=True`): ```python load_dataset("openbookqa", trust_remote_code=True) ``` Note that if the user happened to specify a config name I don't fall back on the script since we can use the Parquet export in this case (no need to know which config is the default) ```python load_dataset("openbookqa", "main") ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6498/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6498/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6498.diff", "html_url": "https://github.com/huggingface/datasets/pull/6498", "merged_at": "2023-12-15T13:10:48", "patch_url": "https://github.com/huggingface/datasets/pull/6498.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6498" }
true
https://api.github.com/repos/huggingface/datasets/issues/6497
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6497/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6497/comments
https://api.github.com/repos/huggingface/datasets/issues/6497/events
https://github.com/huggingface/datasets/issues/6497
2,041,994,274
I_kwDODunzps55tlwi
6,497
Support setting a default config name in push_to_hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
1,702,569,543,000
1,702,628,780,000
null
MEMBER
null
In order to convert script-datasets to no-script datasets, we need to support setting a default config name for those scripts that set one.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6497/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6497/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6496
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6496/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6496/comments
https://api.github.com/repos/huggingface/datasets/issues/6496/events
https://github.com/huggingface/datasets/issues/6496
2,041,589,386
I_kwDODunzps55sC6K
6,496
Error when writing a dataset to HF Hub: A commit has happened since. Please refresh and try again.
{ "avatar_url": "https://avatars.githubusercontent.com/u/35808396?v=4", "events_url": "https://api.github.com/users/GeorgesLorre/events{/privacy}", "followers_url": "https://api.github.com/users/GeorgesLorre/followers", "following_url": "https://api.github.com/users/GeorgesLorre/following{/other_user}", "gists_url": "https://api.github.com/users/GeorgesLorre/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/GeorgesLorre", "id": 35808396, "login": "GeorgesLorre", "node_id": "MDQ6VXNlcjM1ODA4Mzk2", "organizations_url": "https://api.github.com/users/GeorgesLorre/orgs", "received_events_url": "https://api.github.com/users/GeorgesLorre/received_events", "repos_url": "https://api.github.com/users/GeorgesLorre/repos", "site_admin": false, "starred_url": "https://api.github.com/users/GeorgesLorre/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/GeorgesLorre/subscriptions", "type": "User", "url": "https://api.github.com/users/GeorgesLorre" }
[]
open
false
null
[]
null
[ "I transferred from datasets-server, since the issue is more about `datasets` and the integration with `huggingface_hub`." ]
1,702,553,094,000
1,702,556,541,000
null
NONE
null
**Describe the bug** Getting a `412 Client Error: Precondition Failed` when trying to write a dataset to the HF hub. ``` huggingface_hub.utils._errors.HfHubHTTPError: 412 Client Error: Precondition Failed for url: https://huggingface.co./api/datasets/GLorr/test-dask/commit/main (Request ID: Root=1-657ae26f-3bd92bf861bb254b2cc0826c;50a09ab7-9347-406a-ba49-69f98abee9cc) A commit has happened since. Please refresh and try again. ``` **Steps to reproduce the bug** This is a minimal reproducer: ``` import dask.dataframe as dd import pandas as pd import random import os import huggingface_hub import datasets huggingface_hub.login(token=os.getenv("HF_TOKEN")) data = {"number": [random.randint(0,10) for _ in range(1000)]} df = pd.DataFrame.from_dict(data) dataframe = dd.from_pandas(df, npartitions=1) dataframe = dataframe.repartition(npartitions=3) schema = datasets.Features({"number": datasets.Value("int64")}).arrow_schema repo_id = "GLorr/test-dask" repo_path = f"hf://datasets/{repo_id}" huggingface_hub.create_repo(repo_id=repo_id, repo_type="dataset", exist_ok=True) dd.to_parquet(dataframe, path=f"{repo_path}/data", schema=schema) ``` **Expected behavior** Would expect to write to the hub without any problem. **Environment info** ``` datasets==2.15.0 huggingface-hub==0.19.4 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6496/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6496/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6494
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6494/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6494/comments
https://api.github.com/repos/huggingface/datasets/issues/6494/events
https://github.com/huggingface/datasets/issues/6494
2,039,684,839
I_kwDODunzps55kx7n
6,494
Image Data loaded Twice
{ "avatar_url": "https://avatars.githubusercontent.com/u/28867010?v=4", "events_url": "https://api.github.com/users/baowuzhida/events{/privacy}", "followers_url": "https://api.github.com/users/baowuzhida/followers", "following_url": "https://api.github.com/users/baowuzhida/following{/other_user}", "gists_url": "https://api.github.com/users/baowuzhida/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/baowuzhida", "id": 28867010, "login": "baowuzhida", "node_id": "MDQ6VXNlcjI4ODY3MDEw", "organizations_url": "https://api.github.com/users/baowuzhida/orgs", "received_events_url": "https://api.github.com/users/baowuzhida/received_events", "repos_url": "https://api.github.com/users/baowuzhida/repos", "site_admin": false, "starred_url": "https://api.github.com/users/baowuzhida/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/baowuzhida/subscriptions", "type": "User", "url": "https://api.github.com/users/baowuzhida" }
[]
open
false
null
[]
null
[]
1,702,473,102,000
1,702,473,102,000
null
NONE
null
### Describe the bug ![1702472610561](https://github.com/huggingface/datasets/assets/28867010/4b7ef5e7-32c3-4b73-84cb-5de059caa0b6) When I learn from https://huggingface.co./docs/datasets/image_load and try to load image data from a folder. I noticed that the image was read twice in the returned data. As you can see in the attached image, there are only four images in the train folder, but reading brings up eight images ### Steps to reproduce the bug from datasets import Dataset, load_dataset dataset = load_dataset("imagefolder", data_dir="data/", drop_labels=False) # print(dataset["train"][0]["image"] == dataset["train"][1]["image"]) print(dataset) print(dataset["train"]["image"]) print(len(dataset["train"]["image"])) ### Expected behavior DatasetDict({ train: Dataset({ features: ['image', 'label'], num_rows: 8 }) }) [<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2877x2129 at 0x1BD1D1CA8B0>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2877x2129 at 0x1BD1D2452E0>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4208x3120 at 0x1BD1D245310>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4208x3120 at 0x1BD1D2453A0>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2877x2129 at 0x1BD1D245460>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=2877x2129 at 0x1BD1D245430>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4208x3120 at 0x1BD1D2454F0>, <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4208x3120 at 0x1BD1D245550>] 8 ### Environment info - `datasets` version: 2.14.5 - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.9.17 - Huggingface_hub version: 0.19.4 - PyArrow version: 13.0.0 - Pandas version: 2.0.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6494/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6494/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6495
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6495/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6495/comments
https://api.github.com/repos/huggingface/datasets/issues/6495/events
https://github.com/huggingface/datasets/issues/6495
2,039,708,529
I_kwDODunzps55k3tx
6,495
Newline characters don't behave as expected when calling dataset.info
{ "avatar_url": "https://avatars.githubusercontent.com/u/32300890?v=4", "events_url": "https://api.github.com/users/gerald-wrona/events{/privacy}", "followers_url": "https://api.github.com/users/gerald-wrona/followers", "following_url": "https://api.github.com/users/gerald-wrona/following{/other_user}", "gists_url": "https://api.github.com/users/gerald-wrona/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gerald-wrona", "id": 32300890, "login": "gerald-wrona", "node_id": "MDQ6VXNlcjMyMzAwODkw", "organizations_url": "https://api.github.com/users/gerald-wrona/orgs", "received_events_url": "https://api.github.com/users/gerald-wrona/received_events", "repos_url": "https://api.github.com/users/gerald-wrona/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gerald-wrona/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gerald-wrona/subscriptions", "type": "User", "url": "https://api.github.com/users/gerald-wrona" }
[]
open
false
null
[]
null
[]
1,702,422,471,000
1,702,473,862,000
null
NONE
null
### System Info - `transformers` version: 4.32.1 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.11.5 - Huggingface_hub version: 0.15.1 - Safetensors version: 0.3.2 - Accelerate version: not installed - Accelerate config: not found - PyTorch version (GPU?): 2.1.1+cpu (False) - Tensorflow version (GPU?): 2.15.0 (False) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: no - Using distributed or parallel set-up in script?: no ### Who can help? @marios ### Information - [X] The official example scripts - [ ] My own modified scripts ### Tasks - [X] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction [Source](https://huggingface.co./docs/datasets/v2.2.1/en/access) ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset.info ``` DatasetInfo(description='GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n', citation='@inproceedings{dolan2005automatically,\n title={Automatically constructing a corpus of sentential paraphrases},\n author={Dolan, William B and Brockett, Chris},\n booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},\n year={2005}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n', homepage='https://www.microsoft.com/en-us/download/details.aspx?id=52398', license='', features={'sentence1': Value(dtype='string', id=None), 'sentence2': Value(dtype='string', id=None), 'label': ClassLabel(names=['not_equivalent', 'equivalent'], id=None), 'idx': Value(dtype='int32', id=None)}, post_processed=None, supervised_keys=None, task_templates=None, builder_name='glue', dataset_name=None, config_name='mrpc', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=943843, num_examples=3668, shard_lengths=None, dataset_name='glue'), 'validation': SplitInfo(name='validation', num_bytes=105879, num_examples=408, shard_lengths=None, dataset_name='glue'), 'test': SplitInfo(name='test', num_bytes=442410, num_examples=1725, shard_lengths=None, dataset_name='glue')}, download_checksums={'https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv': {'num_bytes': 6222, 'checksum': None}, 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt': {'num_bytes': 1047044, 'checksum': None}, 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt': {'num_bytes': 441275, 'checksum': None}}, download_size=1494541, post_processing_size=None, dataset_size=1492132, size_in_bytes=2986673) ### Expected behavior ``` from datasets import load_dataset dataset = load_dataset('glue', 'mrpc', split='train') dataset.info ``` DatasetInfo( description='GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n', citation='@inproceedings{dolan2005automatically,\n title={Automatically constructing a corpus of sentential paraphrases},\n author={Dolan, William B and Brockett, Chris},\n booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},\n year={2005}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n', homepage='https://www.microsoft.com/en-us/download/details.aspx?id=52398', license='', features={'sentence1': Value(dtype='string', id=None), 'sentence2': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=2, names=['not_equivalent', 'equivalent'], names_file=None, id=None), 'idx': Value(dtype='int32', id=None)}, post_processed=None, supervised_keys=None, builder_name='glue', config_name='mrpc', version=1.0.0, splits={'train': SplitInfo(name='train', num_bytes=943851, num_examples=3668, dataset_name='glue'), 'validation': SplitInfo(name='validation', num_bytes=105887, num_examples=408, dataset_name='glue'), 'test': SplitInfo(name='test', num_bytes=442418, num_examples=1725, dataset_name='glue')}, download_checksums={'https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv': {'num_bytes': 6222, 'checksum': '971d7767d81b997fd9060ade0ec23c4fc31cbb226a55d1bd4a1bac474eb81dc7'}, 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt': {'num_bytes': 1047044, 'checksum': '60a9b09084528f0673eedee2b69cb941920f0b8cd0eeccefc464a98768457f89'}, 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt': {'num_bytes': 441275, 'checksum': 'a04e271090879aaba6423d65b94950c089298587d9c084bf9cd7439bd785f784'}}, download_size=1494541, post_processing_size=None, dataset_size=1492156, size_in_bytes=2986697 )
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6495/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6495/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6493
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6493/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6493/comments
https://api.github.com/repos/huggingface/datasets/issues/6493/events
https://github.com/huggingface/datasets/pull/6493
2,038,221,490
PR_kwDODunzps5h0XJK
6,493
Lazy data files resolution and offline cache reload
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6493). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "> Naive question: is there any breaking change when loading?\r\n\r\nNo breaking changes except that the cache folders are different\r\n\r\ne.g. for glue sst2 (has parquet export)\r\n\r\n```\r\nThis branch (new format is config/version/commit_sha)\r\n~/.cache/huggingface/datasets/glue/sst2/1.0.0/fd8e86499fa5c264fcaad392a8f49ddf58bf4037\r\nOn main\r\n~/.cache/huggingface/datasets/glue/sst2/0.0.0/74a75637ac4acd3f\r\nOn 2.15.0\r\n~/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad\r\n```\r\n\r\ne.g. for wikimedia/wikipedia 20231101.ab (has metadata configs)\r\n\r\n\r\n```\r\nThis branch (new format is config/version/commit_sha)\r\n~/.cache/huggingface/datasets/wikimedia___wikipedia/20231101.ab/0.0.0/4cb9b0d719291f1a10f96f67d609c5d442980dc9\r\nOn main (takes ages to load)\r\n~/.cache/huggingface/datasets/wikimedia___wikipedia/20231101.ab/0.0.0/cfa627e27933df13\r\nOn 2.15.0 (takes ages to load)\r\n~/.cache/huggingface/datasets/wikimedia___wikipedia/20231101.ab/0.0.0/e92ee7a91c466564\r\n```\r\n\r\n\r\ne.g. for lhoestq/demo1 (no metadata configs)\r\n\r\n\r\n```\r\nThis branch (new format is config/version/commit_sha)\r\n~/.cache/huggingface/datasets/lhoestq___demo1/default/0.0.0/87ecf163bedca9d80598b528940a9c4f99e14c11\r\nOn main\r\n~/.cache/huggingface/datasets/lhoestq___demo1/default-8a4a0b7a240d3c5e/0.0.0/eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d\r\nOn 2.15.0\r\n~/.cache/huggingface/datasets/lhoestq___demo1/default-59d4029e0bb36ae0/0.0.0/eea64c71ca8b46dd3f537ed218fc9bf495d5707789152eb2764f5c78fa66d59d\r\n```", "There was a last bug I just fixed: if you modify a dataset and reload it from the hub it won't download the new version - I think I need to use another hash to name the cache directory\r\nedit: fixed", "I switched to using the git commit sha for the cache directory, which is now `config/version/commit_sha` :) much cleaner than before.\r\n\r\nAnd for local file it's a hash that takes into account the resolved files (and their last modified dates)", "I also ran the `transformers` CI on this branch and it's green", "FYI `huggingface_hub` will have a release on tuesday/wednesday (will speed up load_dataset data files resolution which is now needed for datasets loaded from parquet export) so we can aim on merging this around the same time and do a release on thursday" ]
1,702,401,317,000
1,702,664,178,000
null
MEMBER
null
Includes both https://github.com/huggingface/datasets/pull/6458 and https://github.com/huggingface/datasets/pull/6459 This PR should be merged instead of the two individually, since they are conflicting ## Offline cache reload it can reload datasets that were pushed to hub if they exist in the cache. example: ```python >>> Dataset.from_dict({"a": [1, 2]}).push_to_hub("lhoestq/tmp") >>> load_dataset("lhoestq/tmp") DatasetDict({ train: Dataset({ features: ['a'], num_rows: 2 }) }) ``` and later, without connection: ```python >>> load_dataset("lhoestq/tmp") Using the latest cached version of the dataset since lhoestq/tmp couldn't be found on the Hugging Face Hub Found the latest cached dataset configuration 'default' at /Users/quentinlhoest/.cache/huggingface/datasets/lhoestq___tmp/default/0.0.0/da0e902a945afeb9 (last modified on Wed Dec 13 14:55:52 2023). DatasetDict({ train: Dataset({ features: ['a'], num_rows: 2 }) }) ``` - Updated `CachedDatasetModuleFactory` to look for datasets in the cache at `<namespace>___<dataset_name>/<config_id>` - Since the metadata configs parameters are not available in offline mode, we don't know which folder to load (config_id and hash change), so I simply load the latest one - I instantiate a BuilderConfig even if there is no metadata config with the right config_name - Its config_id is equal to the config_name to be able to retrieve it in the cache (no more suffix for configs from metadata configs) - We can reload this config if offline mode by specifying the right config_name (same as online !) - Consequences of this change: - Only when there are user's parameters it creates a custom builder config with config_id = config_name + user parameters hash - the hash used to name the cache folder takes into account the metadata config and the dataset info, so that the right cache can be reloaded when there is internet connection without redownloading the data or resolving the data files. For local directories I hash the builder configs and dataset info, and for datasets on the hub I use the commit sha as hash. - cache directories now look like `config/version/commit_sha` for hub datasets which is clean :) Fix https://github.com/huggingface/datasets/issues/3547 ## Lazy data files resolution this makes this code run in 2sec instead of >10sec ```python from datasets import load_dataset ds = load_dataset("glue", "sst2", streaming=True, trust_remote_code=False) ``` For some datasets with many configs and files it can be up to 100x faster. This is particularly important now that some datasets will be loaded from the Parquet export instead of the scripts. The data files are only resolved in the builder `__init__`. To do so I added DataFilesPatternsList and DataFilesPatternsDict that have `.resolve()` to return resolved DataFilesList and DataFilesDict
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6493/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6493/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6493.diff", "html_url": "https://github.com/huggingface/datasets/pull/6493", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6493.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6493" }
true
https://api.github.com/repos/huggingface/datasets/issues/6492
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6492/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6492/comments
https://api.github.com/repos/huggingface/datasets/issues/6492/events
https://github.com/huggingface/datasets/pull/6492
2,037,987,267
PR_kwDODunzps5hzjhQ
6,492
Make push_to_hub return CommitInfo
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6492). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "This PR is ready to review @huggingface/datasets.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005093 / 0.011353 (-0.006259) | 0.003695 / 0.011008 (-0.007313) | 0.064648 / 0.038508 (0.026140) | 0.054677 / 0.023109 (0.031568) | 0.242007 / 0.275898 (-0.033891) | 0.265216 / 0.323480 (-0.058264) | 0.003847 / 0.007986 (-0.004138) | 0.003773 / 0.004328 (-0.000556) | 0.048595 / 0.004250 (0.044345) | 0.038122 / 0.037052 (0.001070) | 0.245698 / 0.258489 (-0.012791) | 0.278095 / 0.293841 (-0.015746) | 0.027488 / 0.128546 (-0.101058) | 0.011002 / 0.075646 (-0.064644) | 0.211443 / 0.419271 (-0.207829) | 0.035664 / 0.043533 (-0.007869) | 0.244754 / 0.255139 (-0.010385) | 0.261078 / 0.283200 (-0.022121) | 0.017768 / 0.141683 (-0.123915) | 1.130765 / 1.452155 (-0.321390) | 1.189825 / 1.492716 (-0.302891) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093027 / 0.018006 (0.075021) | 0.302193 / 0.000490 (0.301703) | 0.000207 / 0.000200 (0.000007) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018413 / 0.037411 (-0.018999) | 0.062715 / 0.014526 (0.048190) | 0.073287 / 0.176557 (-0.103269) | 0.120394 / 0.737135 (-0.616741) | 0.077573 / 0.296338 (-0.218765) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284445 / 0.215209 (0.069236) | 2.780718 / 2.077655 (0.703063) | 1.460988 / 1.504120 (-0.043132) | 1.345799 / 1.541195 (-0.195395) | 1.399892 / 1.468490 (-0.068598) | 0.576051 / 4.584777 (-4.008726) | 2.418792 / 3.745712 (-1.326921) | 2.901330 / 5.269862 (-2.368532) | 1.765083 / 4.565676 (-2.800593) | 0.063555 / 0.424275 (-0.360720) | 0.004991 / 0.007607 (-0.002616) | 0.339657 / 0.226044 (0.113613) | 3.372963 / 2.268929 (1.104034) | 1.853667 / 55.444624 (-53.590958) | 1.552022 / 6.876477 (-5.324454) | 1.616452 / 2.142072 (-0.525620) | 0.652309 / 4.805227 (-4.152919) | 0.121125 / 6.500664 (-6.379539) | 0.042420 / 0.075469 (-0.033049) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.954514 / 1.841788 (-0.887274) | 11.853736 / 8.074308 (3.779428) | 10.624571 / 10.191392 (0.433179) | 0.134118 / 0.680424 (-0.546306) | 0.014200 / 0.534201 (-0.520001) | 0.290106 / 0.579283 (-0.289177) | 0.270637 / 0.434364 (-0.163727) | 0.336155 / 0.540337 (-0.204182) | 0.443962 / 1.386936 (-0.942974) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005282 / 0.011353 (-0.006071) | 0.003526 / 0.011008 (-0.007482) | 0.048994 / 0.038508 (0.010486) | 0.055345 / 0.023109 (0.032236) | 0.271587 / 0.275898 (-0.004311) | 0.294676 / 0.323480 (-0.028804) | 0.003989 / 0.007986 (-0.003996) | 0.002594 / 0.004328 (-0.001735) | 0.048310 / 0.004250 (0.044059) | 0.039945 / 0.037052 (0.002893) | 0.277304 / 0.258489 (0.018815) | 0.312017 / 0.293841 (0.018176) | 0.028364 / 0.128546 (-0.100182) | 0.010683 / 0.075646 (-0.064963) | 0.057990 / 0.419271 (-0.361281) | 0.032418 / 0.043533 (-0.011115) | 0.273835 / 0.255139 (0.018697) | 0.288585 / 0.283200 (0.005385) | 0.018964 / 0.141683 (-0.122719) | 1.148863 / 1.452155 (-0.303292) | 1.195684 / 1.492716 (-0.297032) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091967 / 0.018006 (0.073960) | 0.303236 / 0.000490 (0.302747) | 0.000214 / 0.000200 (0.000015) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021960 / 0.037411 (-0.015452) | 0.068744 / 0.014526 (0.054218) | 0.081167 / 0.176557 (-0.095390) | 0.119623 / 0.737135 (-0.617513) | 0.084965 / 0.296338 (-0.211373) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297740 / 0.215209 (0.082531) | 2.924856 / 2.077655 (0.847201) | 1.602080 / 1.504120 (0.097960) | 1.494083 / 1.541195 (-0.047112) | 1.544662 / 1.468490 (0.076172) | 0.581212 / 4.584777 (-4.003565) | 2.451064 / 3.745712 (-1.294648) | 2.875213 / 5.269862 (-2.394649) | 1.780777 / 4.565676 (-2.784900) | 0.063751 / 0.424275 (-0.360524) | 0.004967 / 0.007607 (-0.002641) | 0.350321 / 0.226044 (0.124276) | 3.449585 / 2.268929 (1.180657) | 1.977666 / 55.444624 (-53.466958) | 1.685125 / 6.876477 (-5.191351) | 1.734466 / 2.142072 (-0.407606) | 0.657477 / 4.805227 (-4.147750) | 0.116767 / 6.500664 (-6.383898) | 0.041400 / 0.075469 (-0.034069) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985751 / 1.841788 (-0.856037) | 12.300065 / 8.074308 (4.225756) | 10.608238 / 10.191392 (0.416846) | 0.139907 / 0.680424 (-0.540517) | 0.015379 / 0.534201 (-0.518822) | 0.283528 / 0.579283 (-0.295755) | 0.278751 / 0.434364 (-0.155613) | 0.328811 / 0.540337 (-0.211527) | 0.584041 / 1.386936 (-0.802895) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef0f986518bd252c5314a7e3a419dedcbb166630 \"CML watermark\")\n" ]
1,702,394,296,000
1,702,477,741,000
1,702,477,361,000
MEMBER
null
Make `push_to_hub` return `CommitInfo`. This is useful, for example, if we pass `create_pr=True` and we want to know the created PR ID. CC: @severo for the use case in https://huggingface.co./datasets/jmhessel/newyorker_caption_contest/discussions/4
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6492/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6492/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6492.diff", "html_url": "https://github.com/huggingface/datasets/pull/6492", "merged_at": "2023-12-13T14:22:41", "patch_url": "https://github.com/huggingface/datasets/pull/6492.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6492" }
true
https://api.github.com/repos/huggingface/datasets/issues/6491
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6491/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6491/comments
https://api.github.com/repos/huggingface/datasets/issues/6491/events
https://github.com/huggingface/datasets/pull/6491
2,037,690,643
PR_kwDODunzps5hyiTY
6,491
Fix metrics dead link
{ "avatar_url": "https://avatars.githubusercontent.com/u/45557362?v=4", "events_url": "https://api.github.com/users/qgallouedec/events{/privacy}", "followers_url": "https://api.github.com/users/qgallouedec/followers", "following_url": "https://api.github.com/users/qgallouedec/following{/other_user}", "gists_url": "https://api.github.com/users/qgallouedec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/qgallouedec", "id": 45557362, "login": "qgallouedec", "node_id": "MDQ6VXNlcjQ1NTU3MzYy", "organizations_url": "https://api.github.com/users/qgallouedec/orgs", "received_events_url": "https://api.github.com/users/qgallouedec/received_events", "repos_url": "https://api.github.com/users/qgallouedec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/qgallouedec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/qgallouedec/subscriptions", "type": "User", "url": "https://api.github.com/users/qgallouedec" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6491). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,702,385,509,000
1,702,385,905,000
null
CONTRIBUTOR
null
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6491/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6491/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6491.diff", "html_url": "https://github.com/huggingface/datasets/pull/6491", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6491.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6491" }
true
https://api.github.com/repos/huggingface/datasets/issues/6490
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6490/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6490/comments
https://api.github.com/repos/huggingface/datasets/issues/6490/events
https://github.com/huggingface/datasets/issues/6490
2,037,204,892
I_kwDODunzps55bUec
6,490
`load_dataset(...,save_infos=True)` not working without loading script
{ "avatar_url": "https://avatars.githubusercontent.com/u/114978051?v=4", "events_url": "https://api.github.com/users/morganveyret/events{/privacy}", "followers_url": "https://api.github.com/users/morganveyret/followers", "following_url": "https://api.github.com/users/morganveyret/following{/other_user}", "gists_url": "https://api.github.com/users/morganveyret/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/morganveyret", "id": 114978051, "login": "morganveyret", "node_id": "U_kgDOBtptAw", "organizations_url": "https://api.github.com/users/morganveyret/orgs", "received_events_url": "https://api.github.com/users/morganveyret/received_events", "repos_url": "https://api.github.com/users/morganveyret/repos", "site_admin": false, "starred_url": "https://api.github.com/users/morganveyret/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/morganveyret/subscriptions", "type": "User", "url": "https://api.github.com/users/morganveyret" }
[]
open
false
null
[]
null
[ "Also, once the README.md exists in the python environment it is used when loading another dataset in the same format (e.g. json) since it always resolves the path to the same directory.\r\nThe consequence here is any other dataset won't load because of infos mismatch.\r\nTo reproduce this aspect:\r\n1. Do a `load_datasets(...,save_infos=True)` with one dataset without a loading script\r\n2. Try to load another dataset without a loading script in the same format (e.g. json) but with a different schema " ]
1,702,368,558,000
1,702,370,182,000
null
NONE
null
### Describe the bug It seems that saving a dataset infos back into the card file is not working for datasets without a loading script. After tracking the problem a bit it looks like saving the infos uses `Builder.get_imported_module_dir()` as its destination directory. Internally this is a call to `inspect.getfile()` but since the actual builder class used is dynamically created (cf. `datasets.load.configure_builder_class`) this method actually return te path to the parent builder class (e.g. `datasets.packaged_modules.json.JSON`). ### Steps to reproduce the bug 1. Have a local dataset without any loading script 2. Make sure there are no dataset infos in the README.md 3. Load with `save_infos=True` 4. No change in the dataset README.md 5. A new README.md file is created in the directory of the parent builder class (e.g. for json in `.../site-packages/datasets/packaged_modules/json/README.md`) ### Expected behavior The dataset README.md should be updated and no file should be created in the python environment. ### Environment info - `datasets` version: 2.15.0 - Platform: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.1.3 - `fsspec` version: 2023.6.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6490/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6490/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6489
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6489/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6489/comments
https://api.github.com/repos/huggingface/datasets/issues/6489/events
https://github.com/huggingface/datasets/issues/6489
2,036,743,777
I_kwDODunzps55Zj5h
6,489
load_dataset imageflder for aws s3 path
{ "avatar_url": "https://avatars.githubusercontent.com/u/9353106?v=4", "events_url": "https://api.github.com/users/segalinc/events{/privacy}", "followers_url": "https://api.github.com/users/segalinc/followers", "following_url": "https://api.github.com/users/segalinc/following{/other_user}", "gists_url": "https://api.github.com/users/segalinc/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/segalinc", "id": 9353106, "login": "segalinc", "node_id": "MDQ6VXNlcjkzNTMxMDY=", "organizations_url": "https://api.github.com/users/segalinc/orgs", "received_events_url": "https://api.github.com/users/segalinc/received_events", "repos_url": "https://api.github.com/users/segalinc/repos", "site_admin": false, "starred_url": "https://api.github.com/users/segalinc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/segalinc/subscriptions", "type": "User", "url": "https://api.github.com/users/segalinc" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
1,702,339,723,000
1,702,339,767,000
null
NONE
null
### Feature request I would like to load a dataset from S3 using the imagefolder option something like `dataset = datasets.load_dataset('imagefolder', data_dir='s3://.../lsun/train/bedroom', fs=S3FileSystem(), streaming=True) ` ### Motivation no need of data_files ### Your contribution no experience with this
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6489/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6489/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6488
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6488/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6488/comments
https://api.github.com/repos/huggingface/datasets/issues/6488/events
https://github.com/huggingface/datasets/issues/6488
2,035,899,898
I_kwDODunzps55WV36
6,488
429 Client Error
{ "avatar_url": "https://avatars.githubusercontent.com/u/7882383?v=4", "events_url": "https://api.github.com/users/sasaadi/events{/privacy}", "followers_url": "https://api.github.com/users/sasaadi/followers", "following_url": "https://api.github.com/users/sasaadi/following{/other_user}", "gists_url": "https://api.github.com/users/sasaadi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sasaadi", "id": 7882383, "login": "sasaadi", "node_id": "MDQ6VXNlcjc4ODIzODM=", "organizations_url": "https://api.github.com/users/sasaadi/orgs", "received_events_url": "https://api.github.com/users/sasaadi/received_events", "repos_url": "https://api.github.com/users/sasaadi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sasaadi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sasaadi/subscriptions", "type": "User", "url": "https://api.github.com/users/sasaadi" }
[]
open
false
null
[]
null
[ "Transferring repos as this is a datasets issue " ]
1,702,307,161,000
1,702,308,863,000
null
NONE
null
Hello, I was downloading the following dataset and after 20% of data was downloaded, I started getting error 429. It is not resolved since a few days. How should I resolve it? Thanks Dataset: https://huggingface.co./datasets/cerebras/SlimPajama-627B Error: `requests.exceptions.HTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co./datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_3300.jsonl.zst`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6488/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6488/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6487
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6487/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6487/comments
https://api.github.com/repos/huggingface/datasets/issues/6487/events
https://github.com/huggingface/datasets/pull/6487
2,035,424,254
PR_kwDODunzps5hqyfV
6,487
Update builder hash with info
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6487). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Closing this one in favor of https://github.com/huggingface/datasets/pull/6458/commits/565c294fc12bc547730a023a610ed4f92313d8fb in https://github.com/huggingface/datasets/pull/6458" ]
1,702,292,956,000
1,702,294,894,000
1,702,294,894,000
MEMBER
null
Currently if you change the `dataset_info` of a dataset (e.g. in the YAML part of the README.md), the cache ignores this change. This is problematic because you want to regenerate a dataset if you change the features or the split sizes for example (e.g. after push_to_hub) Ideally we should take the resolved files into account as well but this will be for another PR
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6487/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6487/timeline
null
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/6487.diff", "html_url": "https://github.com/huggingface/datasets/pull/6487", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6487.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6487" }
true
https://api.github.com/repos/huggingface/datasets/issues/6486
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6486/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6486/comments
https://api.github.com/repos/huggingface/datasets/issues/6486/events
https://github.com/huggingface/datasets/pull/6486
2,035,206,206
PR_kwDODunzps5hqCSc
6,486
Fix docs phrasing about supported formats when sharing a dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6486). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005042 / 0.011353 (-0.006311) | 0.003452 / 0.011008 (-0.007557) | 0.061845 / 0.038508 (0.023337) | 0.052042 / 0.023109 (0.028933) | 0.241791 / 0.275898 (-0.034107) | 0.264639 / 0.323480 (-0.058841) | 0.003940 / 0.007986 (-0.004045) | 0.002768 / 0.004328 (-0.001560) | 0.047851 / 0.004250 (0.043600) | 0.037599 / 0.037052 (0.000547) | 0.251462 / 0.258489 (-0.007028) | 0.274737 / 0.293841 (-0.019104) | 0.027723 / 0.128546 (-0.100823) | 0.010510 / 0.075646 (-0.065137) | 0.205581 / 0.419271 (-0.213691) | 0.035504 / 0.043533 (-0.008029) | 0.242380 / 0.255139 (-0.012759) | 0.259791 / 0.283200 (-0.023409) | 0.017752 / 0.141683 (-0.123931) | 1.089289 / 1.452155 (-0.362865) | 1.161958 / 1.492716 (-0.330759) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094288 / 0.018006 (0.076282) | 0.303253 / 0.000490 (0.302763) | 0.000216 / 0.000200 (0.000016) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018496 / 0.037411 (-0.018915) | 0.060411 / 0.014526 (0.045885) | 0.074294 / 0.176557 (-0.102262) | 0.122934 / 0.737135 (-0.614201) | 0.074710 / 0.296338 (-0.221629) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286394 / 0.215209 (0.071185) | 2.806145 / 2.077655 (0.728490) | 1.497071 / 1.504120 (-0.007049) | 1.362254 / 1.541195 (-0.178940) | 1.389642 / 1.468490 (-0.078848) | 0.554503 / 4.584777 (-4.030274) | 2.348029 / 3.745712 (-1.397684) | 2.780862 / 5.269862 (-2.489000) | 1.728058 / 4.565676 (-2.837619) | 0.062617 / 0.424275 (-0.361658) | 0.004901 / 0.007607 (-0.002707) | 0.346267 / 0.226044 (0.120223) | 3.363744 / 2.268929 (1.094815) | 1.826994 / 55.444624 (-53.617630) | 1.560656 / 6.876477 (-5.315820) | 1.561083 / 2.142072 (-0.580990) | 0.643395 / 4.805227 (-4.161832) | 0.116206 / 6.500664 (-6.384458) | 0.042008 / 0.075469 (-0.033461) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.953416 / 1.841788 (-0.888371) | 11.461665 / 8.074308 (3.387357) | 10.623865 / 10.191392 (0.432473) | 0.128071 / 0.680424 (-0.552353) | 0.014277 / 0.534201 (-0.519924) | 0.288810 / 0.579283 (-0.290474) | 0.267575 / 0.434364 (-0.166788) | 0.327422 / 0.540337 (-0.212916) | 0.435151 / 1.386936 (-0.951785) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005242 / 0.011353 (-0.006111) | 0.003515 / 0.011008 (-0.007493) | 0.048483 / 0.038508 (0.009975) | 0.051684 / 0.023109 (0.028575) | 0.276564 / 0.275898 (0.000666) | 0.297582 / 0.323480 (-0.025898) | 0.004117 / 0.007986 (-0.003869) | 0.002610 / 0.004328 (-0.001719) | 0.047811 / 0.004250 (0.043561) | 0.040622 / 0.037052 (0.003569) | 0.280265 / 0.258489 (0.021776) | 0.311719 / 0.293841 (0.017878) | 0.028811 / 0.128546 (-0.099735) | 0.010600 / 0.075646 (-0.065047) | 0.056660 / 0.419271 (-0.362611) | 0.032638 / 0.043533 (-0.010894) | 0.276434 / 0.255139 (0.021295) | 0.299095 / 0.283200 (0.015896) | 0.018483 / 0.141683 (-0.123200) | 1.156382 / 1.452155 (-0.295773) | 1.252205 / 1.492716 (-0.240511) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097868 / 0.018006 (0.079862) | 0.309438 / 0.000490 (0.308948) | 0.000229 / 0.000200 (0.000029) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021838 / 0.037411 (-0.015573) | 0.068358 / 0.014526 (0.053832) | 0.080432 / 0.176557 (-0.096125) | 0.119788 / 0.737135 (-0.617348) | 0.081742 / 0.296338 (-0.214597) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301239 / 0.215209 (0.086030) | 2.962242 / 2.077655 (0.884587) | 1.693918 / 1.504120 (0.189798) | 1.573663 / 1.541195 (0.032468) | 1.583125 / 1.468490 (0.114635) | 0.557267 / 4.584777 (-4.027510) | 2.440048 / 3.745712 (-1.305664) | 2.727572 / 5.269862 (-2.542290) | 1.713557 / 4.565676 (-2.852120) | 0.062526 / 0.424275 (-0.361749) | 0.004982 / 0.007607 (-0.002625) | 0.353850 / 0.226044 (0.127806) | 3.530887 / 2.268929 (1.261958) | 2.047864 / 55.444624 (-53.396761) | 1.770776 / 6.876477 (-5.105701) | 1.757621 / 2.142072 (-0.384451) | 0.633847 / 4.805227 (-4.171381) | 0.114055 / 6.500664 (-6.386609) | 0.040078 / 0.075469 (-0.035391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983721 / 1.841788 (-0.858066) | 11.896537 / 8.074308 (3.822229) | 10.529883 / 10.191392 (0.338491) | 0.129593 / 0.680424 (-0.550831) | 0.016213 / 0.534201 (-0.517988) | 0.289623 / 0.579283 (-0.289660) | 0.280073 / 0.434364 (-0.154291) | 0.327446 / 0.540337 (-0.212892) | 0.574847 / 1.386936 (-0.812089) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2684a98fe38e0c87bb11e050586004108e32b79d \"CML watermark\")\n" ]
1,702,286,482,000
1,702,477,289,000
1,702,476,921,000
MEMBER
null
Fix docs phrasing.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6486/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6486/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6486.diff", "html_url": "https://github.com/huggingface/datasets/pull/6486", "merged_at": "2023-12-13T14:15:21", "patch_url": "https://github.com/huggingface/datasets/pull/6486.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6486" }
true
https://api.github.com/repos/huggingface/datasets/issues/6485
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6485/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6485/comments
https://api.github.com/repos/huggingface/datasets/issues/6485/events
https://github.com/huggingface/datasets/issues/6485
2,035,141,884
I_kwDODunzps55Tcz8
6,485
FileNotFoundError: [Errno 2] No such file or directory: 'nul'
{ "avatar_url": "https://avatars.githubusercontent.com/u/73683903?v=4", "events_url": "https://api.github.com/users/amanyara/events{/privacy}", "followers_url": "https://api.github.com/users/amanyara/followers", "following_url": "https://api.github.com/users/amanyara/following{/other_user}", "gists_url": "https://api.github.com/users/amanyara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/amanyara", "id": 73683903, "login": "amanyara", "node_id": "MDQ6VXNlcjczNjgzOTAz", "organizations_url": "https://api.github.com/users/amanyara/orgs", "received_events_url": "https://api.github.com/users/amanyara/received_events", "repos_url": "https://api.github.com/users/amanyara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/amanyara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amanyara/subscriptions", "type": "User", "url": "https://api.github.com/users/amanyara" }
[]
closed
false
null
[]
null
[ "Hi! It seems like the problem is your environment. Maybe this issue can help: https://github.com/pytest-dev/pytest/issues/9519. " ]
1,702,284,733,000
1,702,541,348,000
1,702,541,348,000
NONE
null
### Describe the bug it seems that sth wrong with my terrible "bug body" life, When i run this code, "import datasets" i meet this error FileNotFoundError: [Errno 2] No such file or directory: 'nul' ![image](https://github.com/huggingface/datasets/assets/73683903/3973c120-ebb1-42b7-bede-b9de053e861d) ![image](https://github.com/huggingface/datasets/assets/73683903/0496adff-a7a7-4dcb-929e-ec11ede71f04) ### Steps to reproduce the bug 1.import datasets ### Expected behavior i just run a single line code and stuct in this bug ### Environment info OS: Windows10 Datasets==2.15.0 python=3.10
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6485/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6485/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6483
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6483/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6483/comments
https://api.github.com/repos/huggingface/datasets/issues/6483/events
https://github.com/huggingface/datasets/issues/6483
2,032,946,981
I_kwDODunzps55LE8l
6,483
Iterable Dataset: rename column clashes with remove column
{ "avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4", "events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}", "followers_url": "https://api.github.com/users/sanchit-gandhi/followers", "following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}", "gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sanchit-gandhi", "id": 93869735, "login": "sanchit-gandhi", "node_id": "U_kgDOBZhWpw", "organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs", "received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events", "repos_url": "https://api.github.com/users/sanchit-gandhi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions", "type": "User", "url": "https://api.github.com/users/sanchit-gandhi" }
[ { "color": "fef2c0", "default": false, "description": "", "id": 3287858981, "name": "streaming", "node_id": "MDU6TGFiZWwzMjg3ODU4OTgx", "url": "https://api.github.com/repos/huggingface/datasets/labels/streaming" } ]
closed
false
null
[]
null
[ "Column \"text\" doesn't exist anymore so you can't remove it", "You can get the expected result by fixing typos in the snippet :)\r\n```python\r\nfrom datasets import load_dataset\r\n\r\n# load LS in streaming mode\r\ndataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\n\r\n# check original features\r\ndataset_features = dataset.features.keys()\r\nprint(\"Original features: \", dataset_features)\r\n\r\n# rename \"text\" -> \"sentence\"\r\ndataset = dataset.rename_column(\"text\", \"sentence\")\r\n\r\n# remove unwanted columns\r\nCOLUMNS_TO_KEEP = {\"audio\", \"sentence\"}\r\ndataset = dataset.remove_columns(set(dataset.features) - COLUMNS_TO_KEEP)\r\n\r\n# stream first sample, should return \"audio\" and \"sentence\" columns\r\nprint(next(iter(dataset)))\r\n```", "Fixed code:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\n# load LS in streaming mode\r\ndataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\n\r\n# check original features\r\ndataset_features = dataset.features.keys()\r\nprint(\"Original features: \", dataset_features)\r\n\r\n# rename \"text\" -> \"sentence\"\r\ndataset = dataset.rename_column(\"text\", \"sentence\")\r\ndataset_features = dataset.features.keys()\r\n\r\n# remove unwanted columns\r\nCOLUMNS_TO_KEEP = {\"audio\", \"sentence\"}\r\ndataset = dataset.remove_columns(set(dataset_features - COLUMNS_TO_KEEP))\r\n\r\n# stream first sample, should return \"audio\" and \"sentence\" columns\r\nprint(next(iter(dataset)))\r\n```", "Whoops 😅 Thanks for the swift reply both! Works like a charm!" ]
1,702,051,890,000
1,702,052,836,000
1,702,052,824,000
CONTRIBUTOR
null
### Describe the bug Suppose I have a two iterable datasets, one with the features: * `{"audio", "text", "column_a"}` And the other with the features: * `{"audio", "sentence", "column_b"}` I want to combine both datasets using `interleave_datasets`, which requires me to unify the column names. I would typically do this by: 1. Renaming the common columns to the same name (e.g. `"text"` -> `"sentence"`) 2. Removing the unwanted columns (e.g. `"column_a"`, `"column_b"`) However, the process of renaming and removing columns in an iterable dataset doesn't work, since we need to preserve the original text column, meaning we can't combine the datasets. ### Steps to reproduce the bug ```python from datasets import load_dataset # load LS in streaming mode dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True) # check original features dataset_features = dataset.features.keys() print("Original features: ", dataset_features) # rename "text" -> "sentence" dataset = dataset.rename_column("text", "sentence") # remove unwanted columns COLUMNS_TO_KEEP = {"audio", "sentence"} dataset = dataset.remove_columns(set(dataset_features - COLUMNS_TO_KEEP)) # stream first sample, should return "audio" and "sentence" columns print(next(iter(dataset))) ``` Traceback: ```python --------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In[5], line 17 14 COLUMNS_TO_KEEP = {"audio", "sentence"} 15 dataset = dataset.remove_columns(set(dataset_features - COLUMNS_TO_KEEP)) ---> 17 print(next(iter(dataset))) File ~/datasets/src/datasets/iterable_dataset.py:1353, in IterableDataset.__iter__(self) 1350 yield formatter.format_row(pa_table) 1351 return -> 1353 for key, example in ex_iterable: 1354 if self.features: 1355 # `IterableDataset` automatically fills missing columns with None. 1356 # This is done with `_apply_feature_types_on_example`. 1357 example = _apply_feature_types_on_example( 1358 example, self.features, token_per_repo_id=self._token_per_repo_id 1359 ) File ~/datasets/src/datasets/iterable_dataset.py:652, in MappedExamplesIterable.__iter__(self) 650 yield from ArrowExamplesIterable(self._iter_arrow, {}) 651 else: --> 652 yield from self._iter() File ~/datasets/src/datasets/iterable_dataset.py:729, in MappedExamplesIterable._iter(self) 727 if self.remove_columns: 728 for c in self.remove_columns: --> 729 del transformed_example[c] 730 yield key, transformed_example 731 current_idx += 1 KeyError: 'text' ``` => we see that `datasets` is looking for the column "text", even though we've renamed this to "sentence" and then removed the un-wanted "text" column from our dataset. ### Expected behavior Should be able to rename and remove columns from iterable dataset. ### Environment info - `datasets` version: 2.15.1.dev0 - Platform: macOS-13.5.1-arm64-arm-64bit - Python version: 3.11.6 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.1.2 - `fsspec` version: 2023.9.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6483/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6483/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6484
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6484/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6484/comments
https://api.github.com/repos/huggingface/datasets/issues/6484/events
https://github.com/huggingface/datasets/issues/6484
2,033,333,294
I_kwDODunzps55MjQu
6,484
[Feature Request] Dataset versioning
{ "avatar_url": "https://avatars.githubusercontent.com/u/47979198?v=4", "events_url": "https://api.github.com/users/kenfus/events{/privacy}", "followers_url": "https://api.github.com/users/kenfus/followers", "following_url": "https://api.github.com/users/kenfus/following{/other_user}", "gists_url": "https://api.github.com/users/kenfus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kenfus", "id": 47979198, "login": "kenfus", "node_id": "MDQ6VXNlcjQ3OTc5MTk4", "organizations_url": "https://api.github.com/users/kenfus/orgs", "received_events_url": "https://api.github.com/users/kenfus/received_events", "repos_url": "https://api.github.com/users/kenfus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kenfus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kenfus/subscriptions", "type": "User", "url": "https://api.github.com/users/kenfus" }
[]
open
false
null
[]
null
[ "Hello @kenfus, this is meant to be possible to do yes. Let me ping @lhoestq or @mariosasko from the `datasets` team (`huggingface_hub` is only the underlying library to download files from the Hub but here it looks more like a `datasets` problem). ", "Hi! https://github.com/huggingface/datasets/pull/6459 will fix this." ]
1,702,051,295,000
1,702,322,026,000
null
NONE
null
**Is your feature request related to a problem? Please describe.** I am working on a project, where I would like to test different preprocessing methods for my ML-data. Thus, I would like to work a lot with revisions and compare them. Currently, I was not able to make it work with the revision keyword because it was not redownloading the data, it was reading in some cached data, until I put `download_mode="force_redownload"`, even though the reversion was different. Of course, I may have done something wrong or missed a setting somewhere! **Describe the solution you'd like** The solution would allow me to easily work with revisions: - create a new dataset (by combining things, different preprocessing, ..) and give it a new revision (v.1.2.3), maybe like this: `dataset_audio.push_to_hub('kenfus/xy', revision='v1.0.2')` - then, get the current revision as follows: ``` dataset = load_dataset( 'kenfus/xy', revision='v1.0.2', ) ``` this downloads the new version and does not load in a different revision and all future map, filter, .. operations are done on this dataset and not loaded from cache produced from a different revision. - if I rerun the run, the caching should be smart enough in every step to not reuse a mapping operation on a different revision. **Describe alternatives you've considered** I created my own caching, putting `download_mode="force_redownload"` and `load_from_cache_file=False,` everywhere. **Additional context** Thanks a lot for your great work! Creating NLP datasets and training a model with them is really easy and straightforward with huggingface. This is the data loading in my script: ``` ## CREATE PATHS prepared_dataset_path = os.path.join( DATA_FOLDER, str(DATA_VERSION), "prepared_dataset" ) os.makedirs(os.path.join(DATA_FOLDER, str(DATA_VERSION)), exist_ok=True) ## LOAD DATASET if os.path.exists(prepared_dataset_path): print("Loading prepared dataset from disk...") dataset_prepared = load_from_disk(prepared_dataset_path) else: print("Loading dataset from HuggingFace Datasets...") dataset = load_dataset( PATH_TO_DATASET, revision=DATA_VERSION, download_mode="force_redownload" ) print("Preparing dataset...") dataset_prepared = dataset.map( prepare_dataset, remove_columns=["audio", "transcription"], num_proc=os.cpu_count(), load_from_cache_file=False, ) dataset_prepared.save_to_disk(prepared_dataset_path) del dataset if CHECK_DATASET: ## CHECK DATASET dataset_prepared = dataset_prepared.map( check_dimensions, num_proc=os.cpu_count(), load_from_cache_file=False ) dataset_filtered = dataset_prepared.filter( lambda example: not example["incorrect_dimension"], load_from_cache_file=False, ) for example in dataset_prepared.filter( lambda example: example["incorrect_dimension"], load_from_cache_file=False ): print(example["path"]) print( f"Number of examples with incorrect dimension: {len(dataset_prepared) - len(dataset_filtered)}" ) print("Number of examples train: ", len(dataset_filtered["train"])) print("Number of examples test: ", len(dataset_filtered["test"])) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6484/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6484/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6482
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6482/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6482/comments
https://api.github.com/repos/huggingface/datasets/issues/6482/events
https://github.com/huggingface/datasets/pull/6482
2,032,675,918
PR_kwDODunzps5hhl23
6,482
Fix max lock length on unix
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6482). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "I'm getting `AttributeError: module 'os' has no attribute 'statvfs'` on windows - reverting", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005294 / 0.011353 (-0.006059) | 0.003562 / 0.011008 (-0.007446) | 0.062030 / 0.038508 (0.023522) | 0.053335 / 0.023109 (0.030226) | 0.233303 / 0.275898 (-0.042595) | 0.252029 / 0.323480 (-0.071451) | 0.002835 / 0.007986 (-0.005151) | 0.002732 / 0.004328 (-0.001597) | 0.047973 / 0.004250 (0.043723) | 0.038380 / 0.037052 (0.001328) | 0.235028 / 0.258489 (-0.023461) | 0.265555 / 0.293841 (-0.028286) | 0.027136 / 0.128546 (-0.101410) | 0.010806 / 0.075646 (-0.064840) | 0.205040 / 0.419271 (-0.214231) | 0.035063 / 0.043533 (-0.008470) | 0.236351 / 0.255139 (-0.018788) | 0.254556 / 0.283200 (-0.028643) | 0.019528 / 0.141683 (-0.122155) | 1.099012 / 1.452155 (-0.353142) | 1.156250 / 1.492716 (-0.336466) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093952 / 0.018006 (0.075946) | 0.304181 / 0.000490 (0.303692) | 0.000227 / 0.000200 (0.000027) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018568 / 0.037411 (-0.018844) | 0.060323 / 0.014526 (0.045798) | 0.073010 / 0.176557 (-0.103546) | 0.121723 / 0.737135 (-0.615412) | 0.075668 / 0.296338 (-0.220670) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288429 / 0.215209 (0.073220) | 2.797834 / 2.077655 (0.720180) | 1.480957 / 1.504120 (-0.023163) | 1.360872 / 1.541195 (-0.180323) | 1.406828 / 1.468490 (-0.061663) | 0.587596 / 4.584777 (-3.997181) | 2.533997 / 3.745712 (-1.211715) | 2.906697 / 5.269862 (-2.363164) | 1.801753 / 4.565676 (-2.763923) | 0.064360 / 0.424275 (-0.359915) | 0.005016 / 0.007607 (-0.002591) | 0.347334 / 0.226044 (0.121290) | 3.426344 / 2.268929 (1.157416) | 1.856014 / 55.444624 (-53.588610) | 1.581774 / 6.876477 (-5.294703) | 1.640036 / 2.142072 (-0.502037) | 0.656096 / 4.805227 (-4.149131) | 0.120212 / 6.500664 (-6.380452) | 0.044003 / 0.075469 (-0.031466) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.943933 / 1.841788 (-0.897855) | 11.846572 / 8.074308 (3.772263) | 10.330705 / 10.191392 (0.139313) | 0.129767 / 0.680424 (-0.550657) | 0.013508 / 0.534201 (-0.520693) | 0.289672 / 0.579283 (-0.289611) | 0.266427 / 0.434364 (-0.167937) | 0.342766 / 0.540337 (-0.197571) | 0.452068 / 1.386936 (-0.934868) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005308 / 0.011353 (-0.006045) | 0.003712 / 0.011008 (-0.007296) | 0.048848 / 0.038508 (0.010340) | 0.055156 / 0.023109 (0.032047) | 0.271942 / 0.275898 (-0.003956) | 0.293166 / 0.323480 (-0.030314) | 0.004056 / 0.007986 (-0.003930) | 0.002722 / 0.004328 (-0.001606) | 0.048418 / 0.004250 (0.044167) | 0.039320 / 0.037052 (0.002268) | 0.277184 / 0.258489 (0.018695) | 0.312398 / 0.293841 (0.018557) | 0.029392 / 0.128546 (-0.099155) | 0.011314 / 0.075646 (-0.064332) | 0.057883 / 0.419271 (-0.361389) | 0.032603 / 0.043533 (-0.010930) | 0.273025 / 0.255139 (0.017886) | 0.289265 / 0.283200 (0.006065) | 0.017553 / 0.141683 (-0.124129) | 1.127725 / 1.452155 (-0.324430) | 1.202293 / 1.492716 (-0.290423) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097179 / 0.018006 (0.079173) | 0.309712 / 0.000490 (0.309222) | 0.000269 / 0.000200 (0.000069) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024742 / 0.037411 (-0.012670) | 0.070097 / 0.014526 (0.055571) | 0.082273 / 0.176557 (-0.094283) | 0.121696 / 0.737135 (-0.615439) | 0.082983 / 0.296338 (-0.213355) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292688 / 0.215209 (0.077479) | 2.853436 / 2.077655 (0.775781) | 1.588999 / 1.504120 (0.084879) | 1.454547 / 1.541195 (-0.086648) | 1.476342 / 1.468490 (0.007852) | 0.559464 / 4.584777 (-4.025313) | 2.564597 / 3.745712 (-1.181115) | 2.900460 / 5.269862 (-2.369402) | 1.782156 / 4.565676 (-2.783520) | 0.061768 / 0.424275 (-0.362507) | 0.005042 / 0.007607 (-0.002565) | 0.345168 / 0.226044 (0.119124) | 3.412273 / 2.268929 (1.143344) | 1.953154 / 55.444624 (-53.491470) | 1.667347 / 6.876477 (-5.209130) | 1.685138 / 2.142072 (-0.456934) | 0.643270 / 4.805227 (-4.161958) | 0.115955 / 6.500664 (-6.384709) | 0.041090 / 0.075469 (-0.034379) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976324 / 1.841788 (-0.865464) | 12.252294 / 8.074308 (4.177986) | 10.598062 / 10.191392 (0.406670) | 0.129779 / 0.680424 (-0.550644) | 0.015697 / 0.534201 (-0.518504) | 0.287241 / 0.579283 (-0.292042) | 0.287331 / 0.434364 (-0.147033) | 0.331710 / 0.540337 (-0.208628) | 0.574571 / 1.386936 (-0.812365) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#702344140461b7a111139860c944d3dd0a2689e3 \"CML watermark\")\n" ]
1,702,042,770,000
1,702,382,012,000
1,702,381,647,000
MEMBER
null
reported in https://github.com/huggingface/datasets/pull/6482
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6482/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6482/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6482.diff", "html_url": "https://github.com/huggingface/datasets/pull/6482", "merged_at": "2023-12-12T11:47:27", "patch_url": "https://github.com/huggingface/datasets/pull/6482.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6482" }
true
https://api.github.com/repos/huggingface/datasets/issues/6481
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6481/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6481/comments
https://api.github.com/repos/huggingface/datasets/issues/6481/events
https://github.com/huggingface/datasets/issues/6481
2,032,650,003
I_kwDODunzps55J8cT
6,481
using torchrun, save_to_disk suddenly shows SIGTERM
{ "avatar_url": "https://avatars.githubusercontent.com/u/85916625?v=4", "events_url": "https://api.github.com/users/Ariya12138/events{/privacy}", "followers_url": "https://api.github.com/users/Ariya12138/followers", "following_url": "https://api.github.com/users/Ariya12138/following{/other_user}", "gists_url": "https://api.github.com/users/Ariya12138/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Ariya12138", "id": 85916625, "login": "Ariya12138", "node_id": "MDQ6VXNlcjg1OTE2NjI1", "organizations_url": "https://api.github.com/users/Ariya12138/orgs", "received_events_url": "https://api.github.com/users/Ariya12138/received_events", "repos_url": "https://api.github.com/users/Ariya12138/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Ariya12138/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Ariya12138/subscriptions", "type": "User", "url": "https://api.github.com/users/Ariya12138" }
[]
open
false
null
[]
null
[]
1,702,041,723,000
1,702,041,723,000
null
NONE
null
### Describe the bug When I run my code using the "torchrun" command, when the code reaches the "save_to_disk" part, suddenly I get the following warning and error messages: Because the dataset is too large, the "save_to_disk" function splits it into 70 parts for saving. However, an error occurs suddenly when it reaches the 14th shard. WARNING: torch.distributed.elastic.multiprocessing.api: Sending process 2224968 closing signal SIGTERM ERROR: torch.distributed.elastic.multiprocessing.api: failed (exitcode: -7). traceback: Signal 7 (SIGBUS) received by PID 2224967. ### Steps to reproduce the bug ds_shard = ds_shard.map(map_fn, *args, **kwargs) ds_shard.save_to_disk(ds_shard_filepaths[rank]) Saving the dataset (14/70 shards): 20%|██ | 875350/4376702 [00:19<01:53, 30863.15 examples/s] WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 2224968 closing signal SIGTERM ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: -7) local_rank: 0 (pid: 2224967) of binary: /home/bingxing2/home/scx6964/.conda/envs/ariya235/bin/python Traceback (most recent call last): File "/home/bingxing2/home/scx6964/.conda/envs/ariya235/bin/torchrun", line 8, in <module> sys.exit(main()) File "/home/bingxing2/home/scx6964/.conda/envs/ariya235/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/home/bingxing2/home/scx6964/.conda/envs/ariya235/lib/python3.10/site-packages/torch/distributed/run.py", line 794, in main run(args) File "/home/bingxing2/home/scx6964/.conda/envs/ariya235/lib/python3.10/site-packages/torch/distributed/run.py", line 785, in run elastic_launch( File "/home/bingxing2/home/scx6964/.conda/envs/ariya235/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 134, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/bingxing2/home/scx6964/.conda/envs/ariya235/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 250, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ========================================================== run.py FAILED ---------------------------------------------------------- Failures: <NO_OTHER_FAILURES> ---------------------------------------------------------- Root Cause (first observed failure): [0]: time : 2023-12-08_20:09:04 rank : 0 (local_rank: 0) exitcode : -7 (pid: 2224967) error_file: <N/A> traceback : Signal 7 (SIGBUS) received by PID 2224967 ### Expected behavior I hope it can save successfully without any issues, but it seems there is a problem. ### Environment info `datasets` version: 2.14.6 - Platform: Linux-4.19.90-24.4.v2101.ky10.aarch64-aarch64-with-glibc2.28 - Python version: 3.10.11 - Huggingface_hub version: 0.17.3 - PyArrow version: 14.0.0 - Pandas version: 2.1.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6481/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6481/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6480
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6480/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6480/comments
https://api.github.com/repos/huggingface/datasets/issues/6480/events
https://github.com/huggingface/datasets/pull/6480
2,031,116,653
PR_kwDODunzps5hcS7P
6,480
Add IterableDataset `__repr__`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6480). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005392 / 0.011353 (-0.005960) | 0.003120 / 0.011008 (-0.007888) | 0.062017 / 0.038508 (0.023509) | 0.048824 / 0.023109 (0.025715) | 0.232300 / 0.275898 (-0.043598) | 0.262045 / 0.323480 (-0.061435) | 0.002909 / 0.007986 (-0.005077) | 0.003916 / 0.004328 (-0.000413) | 0.049469 / 0.004250 (0.045218) | 0.038965 / 0.037052 (0.001913) | 0.247841 / 0.258489 (-0.010648) | 0.268259 / 0.293841 (-0.025582) | 0.027588 / 0.128546 (-0.100958) | 0.010334 / 0.075646 (-0.065312) | 0.205811 / 0.419271 (-0.213460) | 0.035456 / 0.043533 (-0.008077) | 0.242774 / 0.255139 (-0.012365) | 0.260377 / 0.283200 (-0.022823) | 0.017469 / 0.141683 (-0.124214) | 1.199665 / 1.452155 (-0.252489) | 1.259316 / 1.492716 (-0.233400) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092357 / 0.018006 (0.074350) | 0.303745 / 0.000490 (0.303255) | 0.000212 / 0.000200 (0.000012) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018820 / 0.037411 (-0.018592) | 0.061548 / 0.014526 (0.047022) | 0.072527 / 0.176557 (-0.104030) | 0.119696 / 0.737135 (-0.617440) | 0.074153 / 0.296338 (-0.222185) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283952 / 0.215209 (0.068743) | 2.769844 / 2.077655 (0.692189) | 1.526100 / 1.504120 (0.021980) | 1.417584 / 1.541195 (-0.123611) | 1.440523 / 1.468490 (-0.027967) | 0.556994 / 4.584777 (-4.027783) | 2.400392 / 3.745712 (-1.345320) | 2.727794 / 5.269862 (-2.542068) | 1.724671 / 4.565676 (-2.841006) | 0.062111 / 0.424275 (-0.362164) | 0.004925 / 0.007607 (-0.002682) | 0.342748 / 0.226044 (0.116704) | 3.376790 / 2.268929 (1.107862) | 1.856498 / 55.444624 (-53.588127) | 1.574143 / 6.876477 (-5.302334) | 1.591828 / 2.142072 (-0.550245) | 0.644416 / 4.805227 (-4.160811) | 0.116862 / 6.500664 (-6.383802) | 0.041484 / 0.075469 (-0.033985) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975704 / 1.841788 (-0.866084) | 11.196447 / 8.074308 (3.122139) | 10.567518 / 10.191392 (0.376126) | 0.126786 / 0.680424 (-0.553638) | 0.013768 / 0.534201 (-0.520433) | 0.284531 / 0.579283 (-0.294752) | 0.260855 / 0.434364 (-0.173509) | 0.328888 / 0.540337 (-0.211450) | 0.439911 / 1.386936 (-0.947025) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005108 / 0.011353 (-0.006245) | 0.003006 / 0.011008 (-0.008003) | 0.048673 / 0.038508 (0.010165) | 0.051066 / 0.023109 (0.027957) | 0.279578 / 0.275898 (0.003680) | 0.298356 / 0.323480 (-0.025123) | 0.003965 / 0.007986 (-0.004020) | 0.002662 / 0.004328 (-0.001667) | 0.049037 / 0.004250 (0.044786) | 0.039385 / 0.037052 (0.002333) | 0.284545 / 0.258489 (0.026055) | 0.314240 / 0.293841 (0.020399) | 0.028493 / 0.128546 (-0.100053) | 0.010400 / 0.075646 (-0.065247) | 0.057375 / 0.419271 (-0.361896) | 0.032382 / 0.043533 (-0.011151) | 0.283163 / 0.255139 (0.028024) | 0.298967 / 0.283200 (0.015768) | 0.017564 / 0.141683 (-0.124119) | 1.172425 / 1.452155 (-0.279730) | 1.219975 / 1.492716 (-0.272742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.090664 / 0.018006 (0.072658) | 0.298419 / 0.000490 (0.297929) | 0.000211 / 0.000200 (0.000011) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021739 / 0.037411 (-0.015672) | 0.068274 / 0.014526 (0.053748) | 0.080820 / 0.176557 (-0.095736) | 0.119809 / 0.737135 (-0.617326) | 0.081612 / 0.296338 (-0.214727) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.303346 / 0.215209 (0.088137) | 2.971648 / 2.077655 (0.893993) | 1.634828 / 1.504120 (0.130708) | 1.510851 / 1.541195 (-0.030344) | 1.515236 / 1.468490 (0.046745) | 0.558487 / 4.584777 (-4.026289) | 2.436263 / 3.745712 (-1.309449) | 2.718525 / 5.269862 (-2.551336) | 1.727421 / 4.565676 (-2.838255) | 0.061396 / 0.424275 (-0.362879) | 0.004951 / 0.007607 (-0.002656) | 0.352950 / 0.226044 (0.126906) | 3.473766 / 2.268929 (1.204838) | 1.971299 / 55.444624 (-53.473325) | 1.712173 / 6.876477 (-5.164304) | 1.711334 / 2.142072 (-0.430738) | 0.627291 / 4.805227 (-4.177936) | 0.113779 / 6.500664 (-6.386885) | 0.046561 / 0.075469 (-0.028908) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989507 / 1.841788 (-0.852280) | 11.777883 / 8.074308 (3.703575) | 10.525453 / 10.191392 (0.334061) | 0.129118 / 0.680424 (-0.551306) | 0.014989 / 0.534201 (-0.519212) | 0.282324 / 0.579283 (-0.296959) | 0.280688 / 0.434364 (-0.153676) | 0.322579 / 0.540337 (-0.217758) | 0.554327 / 1.386936 (-0.832609) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#79e94fcdf3d4378ddcdf7e130bb1ae23d99c6fce \"CML watermark\")\n" ]
1,701,966,710,000
1,702,042,386,000
1,702,042,014,000
MEMBER
null
Example for glue sst2: Dataset ``` DatasetDict({ test: Dataset({ features: ['sentence', 'label', 'idx'], num_rows: 1821 }) train: Dataset({ features: ['sentence', 'label', 'idx'], num_rows: 67349 }) validation: Dataset({ features: ['sentence', 'label', 'idx'], num_rows: 872 }) }) ``` IterableDataset (new) ``` IterableDatasetDict({ test: IterableDataset({ features: ['sentence', 'label', 'idx'], n_shards: 1 }) train: IterableDataset({ features: ['sentence', 'label', 'idx'], n_shards: 1 }) validation: IterableDataset({ features: ['sentence', 'label', 'idx'], n_shards: 1 }) }) ``` IterableDataset (before) ``` {'test': <datasets.iterable_dataset.IterableDataset object at 0x130d421f0>, 'train': <datasets.iterable_dataset.IterableDataset object at 0x136f3aaf0>, 'validation': <datasets.iterable_dataset.IterableDataset object at 0x136f4b100>} {'sentence': 'hide new secretions from the parental units ', 'label': 0, 'idx': 0} ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6480/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6480/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6480.diff", "html_url": "https://github.com/huggingface/datasets/pull/6480", "merged_at": "2023-12-08T13:26:54", "patch_url": "https://github.com/huggingface/datasets/pull/6480.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6480" }
true
End of preview.