File size: 6,551 Bytes
af7a3fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
annotations_creators:
- expert-generated
language:
- en
- de
- fr
language_creators:
- found
license: []
multilinguality:
- multilingual
pretty_name: XNLI Code-Mixed Corpus
size_categories:
- 1K<n<10K
source_datasets:
- extended|xnli
tags:
- mode classification
- code-mixed
- aligned
task_categories:
- text-classification
task_ids: []
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: int64
        class_label:
          names:
            '0': spoken
            '1': written

    config_name: de_ec
        splits:
            - name: train
            num_bytes: 576
            num_examples: 2490
            - name: test
            num_bytes: 361472
            num_examples: 1610548

    config_name: de_ml
        splits:
            - name: train
            num_bytes: 576
            num_examples: 2490
            - name: test
            num_bytes: 87040
            num_examples: 332326

    config_name: fr_ec
        splits:
            - name: train
            num_bytes: 576
            num_examples: 2490
            - name: test
            num_bytes: 564416
            num_examples: 2562631

    config_name: fr_ml
        splits:
            - name: train
            num_bytes: 576
            num_examples: 2490
            - name: test
            num_bytes: 361472
            num_examples: 

  download_size: 1376728
  dataset_size: 1376704
---

# Dataset Card for XNLI Code-Mixed Corpus

## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** 

### Dataset Summary


### Supported Tasks and Leaderboards

Binary mode classification (spoken vs written)

### Languages
- English
- German
- French
- German-English code-mixed by Equivalence Constraint Theory
- German-English code-mixed by Matrix Language Theory
- French-English code-mixed by Equivalence Constraint Theory
- German-English code-mixed by Matrix Language Theory

## Dataset Structure

### Data Instances

{
  'text': "And he said , Mama , I 'm home", 
  'label': 0
}

### Data Fields
- text: sentence
- label: binary label of text (0: spoken 1: written)

### Data Splits
  - de-ec
    - train (English, German, French monolingual): 
    - test (German-English code-mixed by Equivalence Constraint Theory):
  - de-ml: 
    - train (English, German, French monolingual):
    - test (German-English code-mixed by Matrix Language Theory):
  - fr-ec
    - train (English, German, French monolingual):
    - test (French-English code-mixed by Equivalence Constraint Theory):
  - fr-ml: 
    - train (English, German, French monolingual):
    - test (French-English code-mixed by Matrix Language Theory):

### Other Statistics


#### Average Sentence Length
 
- German
  - train: 
  - test: 
    
- French
  - train: 
  - test: 

#### Label Split
  - train:
    - 0: 
    - 1: 
  - test:
    - 0: 
    - 1: 

## Dataset Creation

### Curation Rationale

Using the XNLI Parallel Corpus, we generated a code-mixed corpus using CodeMixed Text Generator.

The XNLI Parallel Corpus is available here:
https://huggingface.co./datasets/nanakonoda/xnli_parallel
It was created from the XNLI corpus.
More information is available in the datacard for the XNLI Parallel Corpus.

Here is the link and citation for the original CodeMixed Text Generator paper.
https://github.com/microsoft/CodeMixed-Text-Generator

```
@inproceedings{rizvi-etal-2021-gcm,
    title = "{GCM}: A Toolkit for Generating Synthetic Code-mixed Text",
    author = "Rizvi, Mohd Sanad Zaki  and
      Srinivasan, Anirudh  and
      Ganu, Tanuja  and
      Choudhury, Monojit  and
      Sitaram, Sunayana",
    booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
    month = apr,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.eacl-demos.24",
    pages = "205--211",
    abstract = "Code-mixing is common in multilingual communities around the world, and processing it is challenging due to the lack of labeled and unlabeled data. We describe a tool that can automatically generate code-mixed data given parallel data in two languages. We implement two linguistic theories of code-mixing, the Equivalence Constraint theory and the Matrix Language theory to generate all possible code-mixed sentences in the language-pair, followed by sampling of the generated data to generate natural code-mixed sentences. The toolkit provides three modes: a batch mode, an interactive library mode and a web-interface to address the needs of researchers, linguists and language experts. The toolkit can be used to generate unlabeled text data for pre-trained models, as well as visualize linguistic theories of code-mixing. We plan to release the toolkit as open source and extend it by adding more implementations of linguistic theories, visualization techniques and better sampling techniques. We expect that the release of this toolkit will help facilitate more research in code-mixing in diverse language pairs.",
}
```

### Source Data

XNLI Parallel Corpus
https://huggingface.co./datasets/nanakonoda/xnli_parallel

#### Original Source Data
XNLI Parallel Corpus was created using the XNLI Corpus.
https://github.com/facebookresearch/XNLI

Here is the citation for the original XNLI paper.

```
@InProceedings{conneau2018xnli,
  author = "Conneau, Alexis
        and Rinott, Ruty
        and Lample, Guillaume
        and Williams, Adina
        and Bowman, Samuel R.
        and Schwenk, Holger
        and Stoyanov, Veselin",
  title = "XNLI: Evaluating Cross-lingual Sentence Representations",
  booktitle = "Proceedings of the 2018 Conference on Empirical Methods
               in Natural Language Processing",
  year = "2018",
  publisher = "Association for Computational Linguistics",
  location = "Brussels, Belgium",
}
```

#### Initial Data Collection and Normalization

We removed all punctuation from the XNLI Parallel Corpus except apostrophes.

#### Who are the source language producers?

N/A

### Annotations

#### Annotation process

N/A

#### Who are the annotators?

N/A

### Personal and Sensitive Information

N/A

## Considerations for Using the Data

### Social Impact of Dataset

N/A

### Discussion of Biases

N/A

### Other Known Limitations

N/A

## Additional Information

### Dataset Curators

N/A

### Licensing Information

N/A

### Citation Information


### Contributions

N/A