Datasets:
Tasks:
Text Classification
Size:
1M<n<10M
File size: 6,992 Bytes
af7a3fc ed4b599 af7a3fc ed4b599 af7a3fc ed4b599 af7a3fc ed4b599 af7a3fc ed4b599 36145d4 af7a3fc ed4b599 36145d4 ed4b599 36145d4 af7a3fc ed4b599 af7a3fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
---
annotations_creators:
- expert-generated
language:
- en
- de
- fr
language_creators:
- found
license: []
multilinguality:
- multilingual
pretty_name: XNLI Code-Mixed Corpus
size_categories:
- 1M<n<10M
source_datasets:
- extended|xnli
tags:
- mode classification
- aligned
- code-mixed
task_categories:
- text-classification
task_ids: []
dataset_info:
- config_name: de_ec
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': spoken
'1': written
splits:
- name: train
num_bytes: 576
num_examples: 2490
- name: test
num_bytes: 361472
num_examples: 1610548
- config_name: de_ml
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': spoken
'1': written
splits:
- name: train
num_bytes: 576
num_examples: 2490
- name: test
num_bytes: 87040
num_examples: 332326
- config_name: fr_ec
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': spoken
'1': written
splits:
- name: train
num_bytes: 576
num_examples: 2490
- name: test
num_bytes: 564416
num_examples: 2562631
- config_name: fr_ml
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': spoken
'1': written
splits:
- name: train
num_bytes: 576
num_examples: 2490
- name: test
num_bytes: 361472
num_examples: 1259159
download_size: 1376728
dataset_size: 1376704
---
# Dataset Card for XNLI Code-Mixed Corpus
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
### Supported Tasks and Leaderboards
Binary mode classification (spoken vs written)
### Languages
- English
- German
- French
- German-English code-mixed by Equivalence Constraint Theory
- German-English code-mixed by Matrix Language Theory
- French-English code-mixed by Equivalence Constraint Theory
- German-English code-mixed by Matrix Language Theory
## Dataset Structure
### Data Instances
{
'text': "And he said , Mama , I 'm home",
'label': 0
}
### Data Fields
- text: sentence
- label: binary label of text (0: spoken 1: written)
### Data Splits
- de-ec
- train (English, German, French monolingual):
- test (German-English code-mixed by Equivalence Constraint Theory):
- de-ml:
- train (English, German, French monolingual):
- test (German-English code-mixed by Matrix Language Theory):
- fr-ec
- train (English, German, French monolingual):
- test (French-English code-mixed by Equivalence Constraint Theory):
- fr-ml:
- train (English, German, French monolingual):
- test (French-English code-mixed by Matrix Language Theory):
### Other Statistics
#### Average Sentence Length
- German
- train:
- test:
- French
- train:
- test:
#### Label Split
- train:
- 0:
- 1:
- test:
- 0:
- 1:
## Dataset Creation
### Curation Rationale
Using the XNLI Parallel Corpus, we generated a code-mixed corpus using CodeMixed Text Generator.
The XNLI Parallel Corpus is available here:
https://huggingface.co./datasets/nanakonoda/xnli_parallel
It was created from the XNLI corpus.
More information is available in the datacard for the XNLI Parallel Corpus.
Here is the link and citation for the original CodeMixed Text Generator paper.
https://github.com/microsoft/CodeMixed-Text-Generator
```
@inproceedings{rizvi-etal-2021-gcm,
title = "{GCM}: A Toolkit for Generating Synthetic Code-mixed Text",
author = "Rizvi, Mohd Sanad Zaki and
Srinivasan, Anirudh and
Ganu, Tanuja and
Choudhury, Monojit and
Sitaram, Sunayana",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-demos.24",
pages = "205--211",
abstract = "Code-mixing is common in multilingual communities around the world, and processing it is challenging due to the lack of labeled and unlabeled data. We describe a tool that can automatically generate code-mixed data given parallel data in two languages. We implement two linguistic theories of code-mixing, the Equivalence Constraint theory and the Matrix Language theory to generate all possible code-mixed sentences in the language-pair, followed by sampling of the generated data to generate natural code-mixed sentences. The toolkit provides three modes: a batch mode, an interactive library mode and a web-interface to address the needs of researchers, linguists and language experts. The toolkit can be used to generate unlabeled text data for pre-trained models, as well as visualize linguistic theories of code-mixing. We plan to release the toolkit as open source and extend it by adding more implementations of linguistic theories, visualization techniques and better sampling techniques. We expect that the release of this toolkit will help facilitate more research in code-mixing in diverse language pairs.",
}
```
### Source Data
XNLI Parallel Corpus
https://huggingface.co./datasets/nanakonoda/xnli_parallel
#### Original Source Data
XNLI Parallel Corpus was created using the XNLI Corpus.
https://github.com/facebookresearch/XNLI
Here is the citation for the original XNLI paper.
```
@InProceedings{conneau2018xnli,
author = "Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin",
title = "XNLI: Evaluating Cross-lingual Sentence Representations",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing",
year = "2018",
publisher = "Association for Computational Linguistics",
location = "Brussels, Belgium",
}
```
#### Initial Data Collection and Normalization
We removed all punctuation from the XNLI Parallel Corpus except apostrophes.
#### Who are the source language producers?
N/A
### Annotations
#### Annotation process
N/A
#### Who are the annotators?
N/A
### Personal and Sensitive Information
N/A
## Considerations for Using the Data
### Social Impact of Dataset
N/A
### Discussion of Biases
N/A
### Other Known Limitations
N/A
## Additional Information
### Dataset Curators
N/A
### Licensing Information
N/A
### Citation Information
### Contributions
N/A |