Ensure external does not have a revision (#107)
Browse files* removed gritLM7B external
generally we should not have external scores where the revision is specified (we have no garuantee that the scores are as specified)
* set external revision to "no_revision_available"
* added test to ensure formatting and no duplicate revisions
* use "external" as revision for external models
* removed null revisions
* strictly test for revision
* deleted load external
This view is limited to 50 files because it contains too many changes.
See raw diff
- load_external.py +0 -262
- results/AbderrahmanSkiredj1__Arabic_text_embedding_for_sts/external/model_meta.json +1 -1
- results/AbderrahmanSkiredj1__arabic_text_embedding_sts_arabertv02_arabicnlitriplet/external/model_meta.json +1 -1
- results/AdrienB134__llm2vec-croissant-mntp/external/model_meta.json +1 -1
- results/AdrienB134__llm2vec-occiglot-mntp/external/model_meta.json +1 -1
- results/Alibaba-NLP__gme-Qwen2-VL-2B-Instruct/external/model_meta.json +1 -1
- results/Alibaba-NLP__gme-Qwen2-VL-7B-Instruct/external/model_meta.json +1 -1
- results/Alibaba-NLP__gte-Qwen1.5-7B-instruct/external/model_meta.json +1 -1
- results/Alibaba-NLP__gte-Qwen2-1.5B-instruct/external/model_meta.json +1 -1
- results/Alibaba-NLP__gte-Qwen2-7B-instruct/external/model_meta.json +1 -1
- results/Alibaba-NLP__gte-base-en-v1.5/external/model_meta.json +1 -1
- results/Alibaba-NLP__gte-large-en-v1.5/external/model_meta.json +1 -1
- results/Alibaba-NLP__gte-multilingual-base/external/model_meta.json +1 -1
- results/Alignment-Lab-AI__e5-mistral-7b-instruct/external/model_meta.json +1 -1
- results/Amu__tao-8k/external/model_meta.json +1 -1
- results/Amu__tao/external/model_meta.json +1 -1
- results/BAAI__bge-base-en-v1.5/external/model_meta.json +1 -1
- results/BAAI__bge-base-en/external/model_meta.json +1 -1
- results/BAAI__bge-en-icl/external/model_meta.json +1 -1
- results/BAAI__bge-large-en-v1.5/external/model_meta.json +1 -1
- results/BAAI__bge-large-en/external/model_meta.json +1 -1
- results/BAAI__bge-multilingual-gemma2/external/model_meta.json +1 -1
- results/BAAI__bge-reranker-base/external/model_meta.json +1 -1
- results/BAAI__bge-reranker-large/external/model_meta.json +1 -1
- results/BAAI__bge-small-en-v1.5/external/model_meta.json +1 -1
- results/BAAI__bge-small-en/external/model_meta.json +1 -1
- results/BASF-AI__nomic-embed-text-v1.5/external/model_meta.json +1 -1
- results/BASF-AI__nomic-embed-text-v1/external/model_meta.json +1 -1
- results/BeastyZ__e5-R-mistral-7b/external/model_meta.json +1 -1
- results/BillSYZhang__gte-Qwen2-7B-instruct-Q4-mlx/external/model_meta.json +1 -1
- results/BookingCare__multilingual-e5-base-similarity-v1-onnx-quantized/external/model_meta.json +1 -1
- results/ByteDance__ListConRanker/external/model_meta.json +1 -1
- results/CAiRE__UniVaR-lambda-1/external/model_meta.json +1 -1
- results/CAiRE__UniVaR-lambda-20/external/model_meta.json +1 -1
- results/CAiRE__UniVaR-lambda-5/external/model_meta.json +1 -1
- results/CAiRE__UniVaR-lambda-80/external/model_meta.json +1 -1
- results/Classical__Yinka/external/model_meta.json +1 -1
- results/ClayAtlas__winberta-base/external/model_meta.json +1 -1
- results/ClayAtlas__winberta-large/external/model_meta.json +1 -1
- results/ClayAtlas__windberta-large/external/model_meta.json +1 -1
- results/Cohere__Cohere-embed-english-light-v3.0/external/model_meta.json +1 -1
- results/Cohere__Cohere-embed-english-v3.0/external/model_meta.json +1 -1
- results/Cohere__Cohere-embed-multilingual-light-v3.0/external/model_meta.json +1 -1
- results/Cohere__Cohere-embed-multilingual-v3.0/external/model_meta.json +1 -1
- results/Consensus__instructor-base/external/model_meta.json +1 -1
- results/DMetaSoul__Dmeta-embedding-zh-small/external/model_meta.json +1 -1
- results/DMetaSoul__Dmeta-embedding-zh/external/model_meta.json +1 -1
- results/DMetaSoul__sbert-chinese-general-v1/external/model_meta.json +1 -1
- results/DecisionOptimizationSystemProduction__DeepFeatTextEmbeddingLarge/external/model_meta.json +1 -1
- results/DecisionOptimizationSystem__DeepFeatEmbeddingLargeContext/external/model_meta.json +1 -1
load_external.py
DELETED
@@ -1,262 +0,0 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
-
import json
|
4 |
-
import logging
|
5 |
-
import re
|
6 |
-
from pathlib import Path
|
7 |
-
from typing import Any
|
8 |
-
|
9 |
-
from huggingface_hub import HfApi, get_hf_file_metadata, hf_hub_download, hf_hub_url
|
10 |
-
from huggingface_hub.errors import NotASafetensorsRepoError
|
11 |
-
from huggingface_hub.hf_api import ModelInfo
|
12 |
-
from huggingface_hub.repocard import metadata_load
|
13 |
-
from mteb import ModelMeta, get_task
|
14 |
-
|
15 |
-
API = HfApi()
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
-
|
18 |
-
|
19 |
-
library_mapping = {
|
20 |
-
"sentence-transformers": "Sentence Transformers",
|
21 |
-
}
|
22 |
-
|
23 |
-
|
24 |
-
def get_model_dir(model_id: str) -> Path:
|
25 |
-
external_result_dir = Path("results") / model_id.replace("/", "__") / "external"
|
26 |
-
return external_result_dir
|
27 |
-
|
28 |
-
|
29 |
-
renamed_tasks = {
|
30 |
-
"NorwegianParliament": "NorwegianParliamentClassification",
|
31 |
-
"CMedQAv2": "CMedQAv2-reranking",
|
32 |
-
"CMedQAv1": "CMedQAv1-reranking",
|
33 |
-
"8TagsClustering": "EightTagsClustering",
|
34 |
-
"PPC": "PpcPC",
|
35 |
-
"PawsX": "PawsXParaphraseIdentification",
|
36 |
-
}
|
37 |
-
|
38 |
-
|
39 |
-
def simplify_dataset_name(name: str) -> str:
|
40 |
-
task_name = name.replace("MTEB ", "").split()[0]
|
41 |
-
return renamed_tasks.get(task_name, task_name)
|
42 |
-
|
43 |
-
|
44 |
-
def get_model_parameters_memory(model_info: ModelInfo) -> tuple[int| None, float|None]:
|
45 |
-
try:
|
46 |
-
safetensors = API.get_safetensors_metadata(model_info.id)
|
47 |
-
num_parameters = sum(safetensors.parameter_count.values())
|
48 |
-
return num_parameters, round(num_parameters * 4 / 1024 ** 3, 2)
|
49 |
-
except NotASafetensorsRepoError as e:
|
50 |
-
logger.info(f"Could not find SafeTensors metadata for {model_info.id}")
|
51 |
-
|
52 |
-
filenames = [sib.rfilename for sib in model_info.siblings]
|
53 |
-
if "pytorch_model.bin" in filenames:
|
54 |
-
url = hf_hub_url(model_info.id, filename="pytorch_model.bin")
|
55 |
-
meta = get_hf_file_metadata(url)
|
56 |
-
bytes_per_param = 4
|
57 |
-
num_params = round(meta.size / bytes_per_param)
|
58 |
-
size_gb = round(meta.size * (4 / bytes_per_param) / 1024 ** 3, 2)
|
59 |
-
return num_params, size_gb
|
60 |
-
if "pytorch_model.bin.index.json" in filenames:
|
61 |
-
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json")
|
62 |
-
size = json.load(open(index_path))
|
63 |
-
bytes_per_param = 4
|
64 |
-
if "metadata" in size and "total_size" in size["metadata"]:
|
65 |
-
return round(size["metadata"]["total_size"] / bytes_per_param), round(size["metadata"]["total_size"] / 1024 ** 3, 2)
|
66 |
-
logger.info(f"Could not find the model parameters for {model_info.id}")
|
67 |
-
return None, None
|
68 |
-
|
69 |
-
|
70 |
-
def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, float, str | None]:
|
71 |
-
siblings = model.siblings or []
|
72 |
-
filenames = [sib.rfilename for sib in siblings]
|
73 |
-
dim, seq = None, None
|
74 |
-
similarity_fn_name = None
|
75 |
-
for filename in filenames:
|
76 |
-
if re.match(r"\d+_Pooling/config.json", filename):
|
77 |
-
st_config_path = hf_hub_download(model.id, filename=filename)
|
78 |
-
with open(st_config_path) as f:
|
79 |
-
pooling_config = json.load(f)
|
80 |
-
dim = pooling_config.get("word_embedding_dimension", None)
|
81 |
-
break
|
82 |
-
for filename in filenames:
|
83 |
-
if re.match(r"\d+_Dense/config.json", filename):
|
84 |
-
st_config_path = hf_hub_download(model.id, filename=filename)
|
85 |
-
dim = json.load(open(st_config_path)).get("out_features", dim)
|
86 |
-
if "config.json" in filenames:
|
87 |
-
config_path = hf_hub_download(model.id, filename="config.json")
|
88 |
-
config = json.load(open(config_path))
|
89 |
-
if not dim:
|
90 |
-
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", None)))
|
91 |
-
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", None))))
|
92 |
-
if "config_sentence_transformers.json" in filenames:
|
93 |
-
st_config_path = hf_hub_download(model.id, filename="config_sentence_transformers.json")
|
94 |
-
with open(st_config_path) as f:
|
95 |
-
st_config = json.load(f)
|
96 |
-
similarity_fn_name = st_config.get("similarity_fn_name", None)
|
97 |
-
parameters, memory = get_model_parameters_memory(model)
|
98 |
-
return dim, seq, parameters, memory, similarity_fn_name
|
99 |
-
|
100 |
-
|
101 |
-
def create_model_meta(model_info: ModelInfo) -> ModelMeta | None:
|
102 |
-
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30)
|
103 |
-
meta = metadata_load(readme_path)
|
104 |
-
dim, seq, parameters, memory, similarity_fn_name = None, None, None, None, None
|
105 |
-
try:
|
106 |
-
dim, seq, parameters, memory, similarity_fn_name = get_dim_seq_size(model_info)
|
107 |
-
except Exception as e:
|
108 |
-
logger.error(f"Error getting model parameters for {model_info.id}, {e}")
|
109 |
-
|
110 |
-
release_date = str(model_info.created_at.date()) if model_info.created_at else ""
|
111 |
-
library = [library_mapping[model_info.library_name]] if model_info.library_name in library_mapping else []
|
112 |
-
languages = meta.get("language", [])
|
113 |
-
if not isinstance(languages, list) and isinstance(languages, str):
|
114 |
-
languages = [languages]
|
115 |
-
# yaml transforms norwegian `no` to False
|
116 |
-
for i in range(len(languages)):
|
117 |
-
if languages[i] is False:
|
118 |
-
languages[i] = "no"
|
119 |
-
datasets = meta.get("datasets", None)
|
120 |
-
if datasets is not None:
|
121 |
-
datasets = {
|
122 |
-
d: []
|
123 |
-
for d in datasets
|
124 |
-
}
|
125 |
-
model_meta = ModelMeta(
|
126 |
-
name=model_info.id,
|
127 |
-
revision=model_info.sha,
|
128 |
-
release_date=release_date,
|
129 |
-
open_weights=True,
|
130 |
-
framework=library,
|
131 |
-
license=meta.get("license", None),
|
132 |
-
embed_dim=dim,
|
133 |
-
max_tokens=seq,
|
134 |
-
n_parameters=parameters,
|
135 |
-
languages=languages,
|
136 |
-
public_training_code=None,
|
137 |
-
public_training_data=None,
|
138 |
-
similarity_fn_name=similarity_fn_name,
|
139 |
-
use_instructions=None,
|
140 |
-
training_datasets=datasets,
|
141 |
-
)
|
142 |
-
return model_meta
|
143 |
-
|
144 |
-
|
145 |
-
def parse_readme(model_info: ModelInfo) -> dict[str, dict[str, Any]] | None:
|
146 |
-
model_id = model_info.id
|
147 |
-
try:
|
148 |
-
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30)
|
149 |
-
except Exception:
|
150 |
-
logger.warning(f"ERROR: Could not fetch metadata for {model_id}, trying again")
|
151 |
-
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=30)
|
152 |
-
meta = metadata_load(readme_path)
|
153 |
-
if "model-index" not in meta:
|
154 |
-
logger.info(f"Could not find model-index in {model_id}")
|
155 |
-
return
|
156 |
-
model_index = meta["model-index"][0]
|
157 |
-
model_name_from_readme = model_index.get("name", None)
|
158 |
-
|
159 |
-
results = model_index.get("results", [])
|
160 |
-
model_results = {}
|
161 |
-
for result in results:
|
162 |
-
dataset = result["dataset"]
|
163 |
-
dataset_type = simplify_dataset_name(dataset["name"])
|
164 |
-
|
165 |
-
if dataset_type not in model_results:
|
166 |
-
output_dict = {
|
167 |
-
"dataset_revision": dataset.get("revision", ""),
|
168 |
-
"task_name": simplify_dataset_name(dataset["name"]),
|
169 |
-
"evaluation_time": None,
|
170 |
-
"mteb_version": None,
|
171 |
-
"scores": {},
|
172 |
-
}
|
173 |
-
else:
|
174 |
-
output_dict = model_results[dataset_type]
|
175 |
-
|
176 |
-
try:
|
177 |
-
mteb_task = get_task(output_dict["task_name"])
|
178 |
-
except Exception:
|
179 |
-
logger.warning(f"Error getting task for {model_id} {output_dict['task_name']}")
|
180 |
-
continue
|
181 |
-
|
182 |
-
mteb_task_metadata = mteb_task.metadata
|
183 |
-
mteb_task_eval_languages = mteb_task_metadata.eval_langs
|
184 |
-
|
185 |
-
scores_dict = output_dict["scores"]
|
186 |
-
current_split = dataset["split"]
|
187 |
-
current_config = dataset.get("config", "")
|
188 |
-
cur_split_metrics = {
|
189 |
-
"hf_subset": current_config,
|
190 |
-
"languages": mteb_task_eval_languages if isinstance(mteb_task_eval_languages, list) else mteb_task_eval_languages.get(current_config, ["None"]),
|
191 |
-
}
|
192 |
-
for metric in result["metrics"]:
|
193 |
-
if isinstance(metric["value"], (float, int)):
|
194 |
-
cur_split_metrics[metric["type"]] = metric["value"] / 100
|
195 |
-
else:
|
196 |
-
cur_split_metrics[metric["type"]] = metric["value"]
|
197 |
-
|
198 |
-
main_score_str = "main_score"
|
199 |
-
if main_score_str not in cur_split_metrics:
|
200 |
-
# old sts and sum_eval have cos_sim_pearson, but in model_meta cosine_spearman is main_score
|
201 |
-
for old_metric, new_metric in zip(["cos_sim_pearson", "cos_sim_spearman"], ["cosine_pearson", "cosine_spearman"]):
|
202 |
-
if old_metric in cur_split_metrics:
|
203 |
-
cur_split_metrics[new_metric] = cur_split_metrics[old_metric]
|
204 |
-
|
205 |
-
if mteb_task.metadata.main_score not in cur_split_metrics:
|
206 |
-
logger.warning(f"Could not find main score for {model_id} {output_dict['task_name']}, mteb task {mteb_task.metadata.name}. Main score: {mteb_task.metadata.main_score}. Metrics: {cur_split_metrics}, result {result['metrics']}")
|
207 |
-
continue
|
208 |
-
|
209 |
-
cur_split_metrics[main_score_str] = cur_split_metrics.get(mteb_task.metadata.main_score, None)
|
210 |
-
split_metrics = scores_dict.get(current_split, [])
|
211 |
-
split_metrics.append(cur_split_metrics)
|
212 |
-
scores_dict[current_split] = split_metrics
|
213 |
-
model_results[dataset_type] = output_dict
|
214 |
-
return model_results
|
215 |
-
|
216 |
-
|
217 |
-
def get_mteb_data() -> None:
|
218 |
-
models = sorted(list(API.list_models(filter="mteb", full=True)), key=lambda x: x.id)
|
219 |
-
# models = [model for model in models if model.id == "ai-forever/ru-en-RoSBERTa"]
|
220 |
-
for i, model_info in enumerate(models, start=1):
|
221 |
-
logger.info(f"[{i}/{len(models)}] Processing {model_info.id}")
|
222 |
-
model_path = get_model_dir(model_info.id)
|
223 |
-
if (model_path / "model_meta.json").exists() and len(list(model_path.glob("*.json"))) > 1:
|
224 |
-
logger.info(f"Model meta already exists for {model_info.id}")
|
225 |
-
# continue
|
226 |
-
if model_info.id.lower().endswith("gguf"):
|
227 |
-
logger.info(f"Skipping {model_info.id} GGUF model")
|
228 |
-
continue
|
229 |
-
|
230 |
-
spam_users = ["ILKT", "fine-tuned", "mlx-community"]
|
231 |
-
is_spam = False
|
232 |
-
for spam_user in spam_users:
|
233 |
-
if model_info.id.startswith(spam_user):
|
234 |
-
logger.info(f"Skipping {model_info.id}")
|
235 |
-
is_spam = True
|
236 |
-
continue
|
237 |
-
if is_spam:
|
238 |
-
continue
|
239 |
-
model_meta = create_model_meta(model_info)
|
240 |
-
model_results = parse_readme(model_info)
|
241 |
-
|
242 |
-
if not model_meta or not model_results:
|
243 |
-
logger.warning(f"Could not get model meta or results for {model_info.id}")
|
244 |
-
continue
|
245 |
-
|
246 |
-
if not model_path.exists():
|
247 |
-
model_path.mkdir(parents=True, exist_ok=True)
|
248 |
-
|
249 |
-
model_meta_path = model_path / "model_meta.json"
|
250 |
-
with model_meta_path.open("w") as f:
|
251 |
-
json.dump(model_meta.model_dump(), f, indent=4)
|
252 |
-
|
253 |
-
for model_result in model_results:
|
254 |
-
task_name = model_results[model_result]["task_name"]
|
255 |
-
result_file = model_path / f"{task_name}.json"
|
256 |
-
with result_file.open("w") as f:
|
257 |
-
json.dump(model_results[model_result], f, indent=4)
|
258 |
-
|
259 |
-
|
260 |
-
if __name__ == "__main__":
|
261 |
-
logging.basicConfig(level=logging.INFO)
|
262 |
-
get_mteb_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
results/AbderrahmanSkiredj1__Arabic_text_embedding_for_sts/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "AbderrahmanSkiredj1/Arabic_text_embedding_for_sts",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-07-07",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "AbderrahmanSkiredj1/Arabic_text_embedding_for_sts",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-07-07",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/AbderrahmanSkiredj1__arabic_text_embedding_sts_arabertv02_arabicnlitriplet/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "AbderrahmanSkiredj1/arabic_text_embedding_sts_arabertv02_arabicnlitriplet",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-07-06",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "AbderrahmanSkiredj1/arabic_text_embedding_sts_arabertv02_arabicnlitriplet",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-07-06",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/AdrienB134__llm2vec-croissant-mntp/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "AdrienB134/llm2vec-croissant-mntp",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-05-14",
|
5 |
"languages": [
|
6 |
"fr"
|
|
|
1 |
{
|
2 |
"name": "AdrienB134/llm2vec-croissant-mntp",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-05-14",
|
5 |
"languages": [
|
6 |
"fr"
|
results/AdrienB134__llm2vec-occiglot-mntp/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "AdrienB134/llm2vec-occiglot-mntp",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-05-14",
|
5 |
"languages": [
|
6 |
"fr"
|
|
|
1 |
{
|
2 |
"name": "AdrienB134/llm2vec-occiglot-mntp",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-05-14",
|
5 |
"languages": [
|
6 |
"fr"
|
results/Alibaba-NLP__gme-Qwen2-VL-2B-Instruct/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-12-21",
|
5 |
"languages": [
|
6 |
"en",
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-12-21",
|
5 |
"languages": [
|
6 |
"en",
|
results/Alibaba-NLP__gme-Qwen2-VL-7B-Instruct/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gme-Qwen2-VL-7B-Instruct",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-12-21",
|
5 |
"languages": [
|
6 |
"en",
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gme-Qwen2-VL-7B-Instruct",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-12-21",
|
5 |
"languages": [
|
6 |
"en",
|
results/Alibaba-NLP__gte-Qwen1.5-7B-instruct/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-Qwen1.5-7B-instruct",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-04-20",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-Qwen1.5-7B-instruct",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-04-20",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Alibaba-NLP__gte-Qwen2-1.5B-instruct/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-06-29",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-06-29",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Alibaba-NLP__gte-Qwen2-7B-instruct/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-Qwen2-7B-instruct",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-06-15",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-Qwen2-7B-instruct",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-06-15",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Alibaba-NLP__gte-base-en-v1.5/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-base-en-v1.5",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-04-20",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-base-en-v1.5",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-04-20",
|
5 |
"languages": [
|
6 |
"en"
|
results/Alibaba-NLP__gte-large-en-v1.5/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-large-en-v1.5",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-04-20",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-large-en-v1.5",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-04-20",
|
5 |
"languages": [
|
6 |
"en"
|
results/Alibaba-NLP__gte-multilingual-base/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-multilingual-base",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-07-20",
|
5 |
"languages": [
|
6 |
"af",
|
|
|
1 |
{
|
2 |
"name": "Alibaba-NLP/gte-multilingual-base",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-07-20",
|
5 |
"languages": [
|
6 |
"af",
|
results/Alignment-Lab-AI__e5-mistral-7b-instruct/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Alignment-Lab-AI/e5-mistral-7b-instruct",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-12-17",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "Alignment-Lab-AI/e5-mistral-7b-instruct",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-12-17",
|
5 |
"languages": [
|
6 |
"en"
|
results/Amu__tao-8k/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Amu/tao-8k",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-11-04",
|
5 |
"languages": [
|
6 |
"zh"
|
|
|
1 |
{
|
2 |
"name": "Amu/tao-8k",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-11-04",
|
5 |
"languages": [
|
6 |
"zh"
|
results/Amu__tao/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Amu/tao",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-10-18",
|
5 |
"languages": [
|
6 |
"zh"
|
|
|
1 |
{
|
2 |
"name": "Amu/tao",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-10-18",
|
5 |
"languages": [
|
6 |
"zh"
|
results/BAAI__bge-base-en-v1.5/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-base-en-v1.5",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-09-11",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-base-en-v1.5",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-09-11",
|
5 |
"languages": [
|
6 |
"en"
|
results/BAAI__bge-base-en/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-base-en",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-08-05",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-base-en",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-08-05",
|
5 |
"languages": [
|
6 |
"en"
|
results/BAAI__bge-en-icl/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-en-icl",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-07-25",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-en-icl",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-07-25",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/BAAI__bge-large-en-v1.5/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-large-en-v1.5",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-09-12",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-large-en-v1.5",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-09-12",
|
5 |
"languages": [
|
6 |
"en"
|
results/BAAI__bge-large-en/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-large-en",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-08-02",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-large-en",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-08-02",
|
5 |
"languages": [
|
6 |
"en"
|
results/BAAI__bge-multilingual-gemma2/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-multilingual-gemma2",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-07-25",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-multilingual-gemma2",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-07-25",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/BAAI__bge-reranker-base/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-reranker-base",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-09-11",
|
5 |
"languages": [
|
6 |
"en",
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-reranker-base",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-09-11",
|
5 |
"languages": [
|
6 |
"en",
|
results/BAAI__bge-reranker-large/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-reranker-large",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-09-12",
|
5 |
"languages": [
|
6 |
"en",
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-reranker-large",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-09-12",
|
5 |
"languages": [
|
6 |
"en",
|
results/BAAI__bge-small-en-v1.5/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-small-en-v1.5",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-09-12",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-small-en-v1.5",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-09-12",
|
5 |
"languages": [
|
6 |
"en"
|
results/BAAI__bge-small-en/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BAAI/bge-small-en",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-08-05",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BAAI/bge-small-en",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-08-05",
|
5 |
"languages": [
|
6 |
"en"
|
results/BASF-AI__nomic-embed-text-v1.5/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BASF-AI/nomic-embed-text-v1.5",
|
3 |
-
"revision": "
|
4 |
"release_date": "2025-01-10",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BASF-AI/nomic-embed-text-v1.5",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2025-01-10",
|
5 |
"languages": [
|
6 |
"en"
|
results/BASF-AI__nomic-embed-text-v1/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BASF-AI/nomic-embed-text-v1",
|
3 |
-
"revision": "
|
4 |
"release_date": "2025-01-09",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BASF-AI/nomic-embed-text-v1",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2025-01-09",
|
5 |
"languages": [
|
6 |
"en"
|
results/BeastyZ__e5-R-mistral-7b/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BeastyZ/e5-R-mistral-7b",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-06-28",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "BeastyZ/e5-R-mistral-7b",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-06-28",
|
5 |
"languages": [
|
6 |
"en"
|
results/BillSYZhang__gte-Qwen2-7B-instruct-Q4-mlx/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BillSYZhang/gte-Qwen2-7B-instruct-Q4-mlx",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-12-24",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "BillSYZhang/gte-Qwen2-7B-instruct-Q4-mlx",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-12-24",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/BookingCare__multilingual-e5-base-similarity-v1-onnx-quantized/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "BookingCare/multilingual-e5-base-similarity-v1-onnx-quantized",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-08-06",
|
5 |
"languages": [
|
6 |
"multilingual",
|
|
|
1 |
{
|
2 |
"name": "BookingCare/multilingual-e5-base-similarity-v1-onnx-quantized",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-08-06",
|
5 |
"languages": [
|
6 |
"multilingual",
|
results/ByteDance__ListConRanker/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "ByteDance/ListConRanker",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-12-09",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "ByteDance/ListConRanker",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-12-09",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/CAiRE__UniVaR-lambda-1/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-1",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-1",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
results/CAiRE__UniVaR-lambda-20/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-20",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-20",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
results/CAiRE__UniVaR-lambda-5/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-5",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-5",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
results/CAiRE__UniVaR-lambda-80/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-80",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "CAiRE/UniVaR-lambda-80",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-06-14",
|
5 |
"languages": [
|
6 |
"en"
|
results/Classical__Yinka/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Classical/Yinka",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-05-30",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Classical/Yinka",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-05-30",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/ClayAtlas__winberta-base/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "ClayAtlas/winberta-base",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-12-01",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "ClayAtlas/winberta-base",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-12-01",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/ClayAtlas__winberta-large/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "ClayAtlas/winberta-large",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-12-11",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "ClayAtlas/winberta-large",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-12-11",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/ClayAtlas__windberta-large/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "ClayAtlas/windberta-large",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-02-16",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "ClayAtlas/windberta-large",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-02-16",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Cohere__Cohere-embed-english-light-v3.0/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-english-light-v3.0",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-11-02",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-english-light-v3.0",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-11-02",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Cohere__Cohere-embed-english-v3.0/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-english-v3.0",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-11-02",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-english-v3.0",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-11-02",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Cohere__Cohere-embed-multilingual-light-v3.0/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-multilingual-light-v3.0",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-11-01",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-multilingual-light-v3.0",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-11-01",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Cohere__Cohere-embed-multilingual-v3.0/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-multilingual-v3.0",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-11-02",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "Cohere/Cohere-embed-multilingual-v3.0",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-11-02",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/Consensus__instructor-base/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "Consensus/instructor-base",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-05-10",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "Consensus/instructor-base",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-05-10",
|
5 |
"languages": [
|
6 |
"en"
|
results/DMetaSoul__Dmeta-embedding-zh-small/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "DMetaSoul/Dmeta-embedding-zh-small",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-03-25",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "DMetaSoul/Dmeta-embedding-zh-small",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-03-25",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/DMetaSoul__Dmeta-embedding-zh/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "DMetaSoul/Dmeta-embedding-zh",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-01-25",
|
5 |
"languages": [
|
6 |
"zh",
|
|
|
1 |
{
|
2 |
"name": "DMetaSoul/Dmeta-embedding-zh",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-01-25",
|
5 |
"languages": [
|
6 |
"zh",
|
results/DMetaSoul__sbert-chinese-general-v1/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "DMetaSoul/sbert-chinese-general-v1",
|
3 |
-
"revision": "
|
4 |
"release_date": "2022-03-25",
|
5 |
"languages": [
|
6 |
"zh"
|
|
|
1 |
{
|
2 |
"name": "DMetaSoul/sbert-chinese-general-v1",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2022-03-25",
|
5 |
"languages": [
|
6 |
"zh"
|
results/DecisionOptimizationSystemProduction__DeepFeatTextEmbeddingLarge/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "DecisionOptimizationSystemProduction/DeepFeatTextEmbeddingLarge",
|
3 |
-
"revision": "
|
4 |
"release_date": "2024-09-19",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
|
|
1 |
{
|
2 |
"name": "DecisionOptimizationSystemProduction/DeepFeatTextEmbeddingLarge",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2024-09-19",
|
5 |
"languages": [],
|
6 |
"loader": null,
|
results/DecisionOptimizationSystem__DeepFeatEmbeddingLargeContext/external/model_meta.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"name": "DecisionOptimizationSystem/DeepFeatEmbeddingLargeContext",
|
3 |
-
"revision": "
|
4 |
"release_date": "2023-11-05",
|
5 |
"languages": [
|
6 |
"en"
|
|
|
1 |
{
|
2 |
"name": "DecisionOptimizationSystem/DeepFeatEmbeddingLargeContext",
|
3 |
+
"revision": "external",
|
4 |
"release_date": "2023-11-05",
|
5 |
"languages": [
|
6 |
"en"
|