mstz commited on
Commit
832c207
1 Parent(s): 1e1faf0

Delete student performance.py

Browse files
Files changed (1) hide show
  1. student performance.py +0 -175
student performance.py DELETED
@@ -1,175 +0,0 @@
1
- """StudentPerformance Dataset"""
2
-
3
- from typing import List
4
- from functools import partial
5
-
6
- import datasets
7
-
8
- import pandas
9
-
10
-
11
- VERSION = datasets.Version("1.0.0")
12
- _BASE_FEATURE_NAMES = [
13
- "sex",
14
- "ethnicity",
15
- "parental_level_of_education",
16
- "has_standard_lunch",
17
- "has_completed_preparation_test",
18
- "math_score",
19
- "reading_score",
20
- "writing_score"
21
- ]
22
-
23
- _ENCODING_DICS = {
24
- "gender": {
25
- "\"female\"": 0,
26
- "\"male\"": 1
27
- },
28
- "parental_level_of_education": {
29
- "some high school": 0,
30
- "high school": 1,
31
- "some college": 2,
32
- "bachelor's degree": 3,
33
- "master's degree": 4,
34
- "associate's degree": 5,
35
- },
36
- "has_standard_lunch" : {
37
- "free/reduced": 0,
38
- "standard": 1
39
- },
40
- "has_completed_preparation_test": {
41
- "none": 0,
42
- "completed": 1
43
- }
44
- }
45
-
46
- DESCRIPTION = "StudentPerformance dataset."
47
- _HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances"
48
- _URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances")
49
- _CITATION = """"""
50
-
51
- # Dataset info
52
- urls_per_split = {
53
- "train": "https://huggingface.co/datasets/mstz/student_performances/raw/main/student_performances.csv",
54
- }
55
- features_types_per_config = {
56
- "encoding": {
57
- "feature": datasets.Value("string"),
58
- "original_value": datasets.Value("string"),
59
- "encoded_value": datasets.Value("int64")
60
- },
61
- "math": {
62
- "sex": datasets.Value("int8"),
63
- "ethnicity": datasets.Value("string"),
64
- "parental_level_of_education": datasets.Value("int8"),
65
- "has_standard_lunch": datasets.Value("int8"),
66
- "test_preparation_course": datasets.Value("string"),
67
- "reading_score": datasets.Value("int64"),
68
- "writing_score": datasets.Value("int64"),
69
- "has_passed_math_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
70
- },
71
- "writing": {
72
- "sex": datasets.Value("int8"),
73
- "ethnicity": datasets.Value("string"),
74
- "parental_level_of_education": datasets.Value("int8"),
75
- "has_standard_lunch": datasets.Value("int8"),
76
- "test_preparation_course": datasets.Value("string"),
77
- "reading_score": datasets.Value("int64"),
78
- "math_score": datasets.Value("int64"),
79
- "has_passed_writing_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
80
- },
81
- "reading": {
82
- "sex": datasets.Value("int8"),
83
- "ethnicity": datasets.Value("string"),
84
- "parental_level_of_education": datasets.Value("int8"),
85
- "has_standard_lunch": datasets.Value("int8"),
86
- "test_preparation_course": datasets.Value("string"),
87
- "writing_score": datasets.Value("int64"),
88
- "math_score": datasets.Value("int64"),
89
- "has_passed_reading_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
90
- }
91
- }
92
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
93
-
94
-
95
- class StudentPerformanceConfig(datasets.BuilderConfig):
96
- def __init__(self, **kwargs):
97
- super(StudentPerformanceConfig, self).__init__(version=VERSION, **kwargs)
98
- self.features = features_per_config[kwargs["name"]]
99
-
100
-
101
- class StudentPerformance(datasets.GeneratorBasedBuilder):
102
- # dataset versions
103
- DEFAULT_CONFIG = "math"
104
- BUILDER_CONFIGS = [
105
- StudentPerformanceConfig(name="encoding",
106
- description="Encoding dictionaries."),
107
- StudentPerformanceConfig(name="math",
108
- description="Binary classification, predict if the student has passed the math exam."),
109
- StudentPerformanceConfig(name="reading",
110
- description="Binary classification, predict if the student has passed the reading exam."),
111
- StudentPerformanceConfig(name="writing",
112
- description="Binary classification, predict if the student has passed the writing exam."),
113
- ]
114
-
115
-
116
- def _info(self):
117
- if self.config.name not in features_per_config:
118
- raise ValueError(f"Unknown configuration: {self.config.name}")
119
-
120
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
121
- features=features_per_config[self.config.name])
122
-
123
- return info
124
-
125
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
126
- downloads = dl_manager.download_and_extract(urls_per_split)
127
-
128
- return [
129
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
130
- ]
131
-
132
- def _generate_examples(self, filepath: str):
133
- data = pandas.read_csv(filepath)
134
- data = self.preprocess(data, config=self.config.name)
135
-
136
- for row_id, row in data.iterrows():
137
- data_row = dict(row)
138
-
139
- yield row_id, data_row
140
-
141
- def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
142
- if config == "encoding":
143
- return self.encoding_dics()
144
-
145
- data.columns = [c.replace("\"", "") for c in data.columns]
146
-
147
- data.loc[:, "race/ethnicity"] = data["race/ethnicity"].apply(lambda x: x.replace("group ", ""))
148
-
149
- for feature in _ENCODING_DICS:
150
- encoding_function = partial(self.encode, feature)
151
- data.loc[:, feature] = data[feature].apply(encoding_function)
152
-
153
- data.columns = _BASE_FEATURE_NAMES
154
-
155
- if config == "math":
156
- data = data.rename(colums={"math_score", "has_passed_math_exam"})
157
- return data[list(features_types_per_config["math"].keys())]
158
- elif config == "reading":
159
- data = data.rename(colums={"reading_score", "has_passed_reading_exam"})
160
- return data[list(features_types_per_config["reading"].keys())]
161
- elif config == "writing":
162
- data = data.rename(colums={"writing_score", "has_passed_writing_exam"})
163
- return data[list(features_types_per_config["writing"].keys())]
164
- else:
165
- raise ValueError(f"Unknown config: {config}")
166
-
167
- def encode(self, feature, value):
168
- return _ENCODING_DICS[feature][value]
169
-
170
- def encoding_dics(self):
171
- data = [pandas.Dataframe([(feature, original, encoded) for original, encoded in d.items()])
172
- for feature, d in _ENCODING_DICS.items()]
173
- data = pandas.concat(data, axis="rows")
174
-
175
- return data