Datasets:
Delete student performance.py
Browse files- student performance.py +0 -175
student performance.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
"""StudentPerformance Dataset"""
|
2 |
-
|
3 |
-
from typing import List
|
4 |
-
from functools import partial
|
5 |
-
|
6 |
-
import datasets
|
7 |
-
|
8 |
-
import pandas
|
9 |
-
|
10 |
-
|
11 |
-
VERSION = datasets.Version("1.0.0")
|
12 |
-
_BASE_FEATURE_NAMES = [
|
13 |
-
"sex",
|
14 |
-
"ethnicity",
|
15 |
-
"parental_level_of_education",
|
16 |
-
"has_standard_lunch",
|
17 |
-
"has_completed_preparation_test",
|
18 |
-
"math_score",
|
19 |
-
"reading_score",
|
20 |
-
"writing_score"
|
21 |
-
]
|
22 |
-
|
23 |
-
_ENCODING_DICS = {
|
24 |
-
"gender": {
|
25 |
-
"\"female\"": 0,
|
26 |
-
"\"male\"": 1
|
27 |
-
},
|
28 |
-
"parental_level_of_education": {
|
29 |
-
"some high school": 0,
|
30 |
-
"high school": 1,
|
31 |
-
"some college": 2,
|
32 |
-
"bachelor's degree": 3,
|
33 |
-
"master's degree": 4,
|
34 |
-
"associate's degree": 5,
|
35 |
-
},
|
36 |
-
"has_standard_lunch" : {
|
37 |
-
"free/reduced": 0,
|
38 |
-
"standard": 1
|
39 |
-
},
|
40 |
-
"has_completed_preparation_test": {
|
41 |
-
"none": 0,
|
42 |
-
"completed": 1
|
43 |
-
}
|
44 |
-
}
|
45 |
-
|
46 |
-
DESCRIPTION = "StudentPerformance dataset."
|
47 |
-
_HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances"
|
48 |
-
_URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/student_performances")
|
49 |
-
_CITATION = """"""
|
50 |
-
|
51 |
-
# Dataset info
|
52 |
-
urls_per_split = {
|
53 |
-
"train": "https://huggingface.co/datasets/mstz/student_performances/raw/main/student_performances.csv",
|
54 |
-
}
|
55 |
-
features_types_per_config = {
|
56 |
-
"encoding": {
|
57 |
-
"feature": datasets.Value("string"),
|
58 |
-
"original_value": datasets.Value("string"),
|
59 |
-
"encoded_value": datasets.Value("int64")
|
60 |
-
},
|
61 |
-
"math": {
|
62 |
-
"sex": datasets.Value("int8"),
|
63 |
-
"ethnicity": datasets.Value("string"),
|
64 |
-
"parental_level_of_education": datasets.Value("int8"),
|
65 |
-
"has_standard_lunch": datasets.Value("int8"),
|
66 |
-
"test_preparation_course": datasets.Value("string"),
|
67 |
-
"reading_score": datasets.Value("int64"),
|
68 |
-
"writing_score": datasets.Value("int64"),
|
69 |
-
"has_passed_math_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
70 |
-
},
|
71 |
-
"writing": {
|
72 |
-
"sex": datasets.Value("int8"),
|
73 |
-
"ethnicity": datasets.Value("string"),
|
74 |
-
"parental_level_of_education": datasets.Value("int8"),
|
75 |
-
"has_standard_lunch": datasets.Value("int8"),
|
76 |
-
"test_preparation_course": datasets.Value("string"),
|
77 |
-
"reading_score": datasets.Value("int64"),
|
78 |
-
"math_score": datasets.Value("int64"),
|
79 |
-
"has_passed_writing_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
80 |
-
},
|
81 |
-
"reading": {
|
82 |
-
"sex": datasets.Value("int8"),
|
83 |
-
"ethnicity": datasets.Value("string"),
|
84 |
-
"parental_level_of_education": datasets.Value("int8"),
|
85 |
-
"has_standard_lunch": datasets.Value("int8"),
|
86 |
-
"test_preparation_course": datasets.Value("string"),
|
87 |
-
"writing_score": datasets.Value("int64"),
|
88 |
-
"math_score": datasets.Value("int64"),
|
89 |
-
"has_passed_reading_exam": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
|
90 |
-
}
|
91 |
-
}
|
92 |
-
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
93 |
-
|
94 |
-
|
95 |
-
class StudentPerformanceConfig(datasets.BuilderConfig):
|
96 |
-
def __init__(self, **kwargs):
|
97 |
-
super(StudentPerformanceConfig, self).__init__(version=VERSION, **kwargs)
|
98 |
-
self.features = features_per_config[kwargs["name"]]
|
99 |
-
|
100 |
-
|
101 |
-
class StudentPerformance(datasets.GeneratorBasedBuilder):
|
102 |
-
# dataset versions
|
103 |
-
DEFAULT_CONFIG = "math"
|
104 |
-
BUILDER_CONFIGS = [
|
105 |
-
StudentPerformanceConfig(name="encoding",
|
106 |
-
description="Encoding dictionaries."),
|
107 |
-
StudentPerformanceConfig(name="math",
|
108 |
-
description="Binary classification, predict if the student has passed the math exam."),
|
109 |
-
StudentPerformanceConfig(name="reading",
|
110 |
-
description="Binary classification, predict if the student has passed the reading exam."),
|
111 |
-
StudentPerformanceConfig(name="writing",
|
112 |
-
description="Binary classification, predict if the student has passed the writing exam."),
|
113 |
-
]
|
114 |
-
|
115 |
-
|
116 |
-
def _info(self):
|
117 |
-
if self.config.name not in features_per_config:
|
118 |
-
raise ValueError(f"Unknown configuration: {self.config.name}")
|
119 |
-
|
120 |
-
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
121 |
-
features=features_per_config[self.config.name])
|
122 |
-
|
123 |
-
return info
|
124 |
-
|
125 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
126 |
-
downloads = dl_manager.download_and_extract(urls_per_split)
|
127 |
-
|
128 |
-
return [
|
129 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
130 |
-
]
|
131 |
-
|
132 |
-
def _generate_examples(self, filepath: str):
|
133 |
-
data = pandas.read_csv(filepath)
|
134 |
-
data = self.preprocess(data, config=self.config.name)
|
135 |
-
|
136 |
-
for row_id, row in data.iterrows():
|
137 |
-
data_row = dict(row)
|
138 |
-
|
139 |
-
yield row_id, data_row
|
140 |
-
|
141 |
-
def preprocess(self, data: pandas.DataFrame, config: str = "cut") -> pandas.DataFrame:
|
142 |
-
if config == "encoding":
|
143 |
-
return self.encoding_dics()
|
144 |
-
|
145 |
-
data.columns = [c.replace("\"", "") for c in data.columns]
|
146 |
-
|
147 |
-
data.loc[:, "race/ethnicity"] = data["race/ethnicity"].apply(lambda x: x.replace("group ", ""))
|
148 |
-
|
149 |
-
for feature in _ENCODING_DICS:
|
150 |
-
encoding_function = partial(self.encode, feature)
|
151 |
-
data.loc[:, feature] = data[feature].apply(encoding_function)
|
152 |
-
|
153 |
-
data.columns = _BASE_FEATURE_NAMES
|
154 |
-
|
155 |
-
if config == "math":
|
156 |
-
data = data.rename(colums={"math_score", "has_passed_math_exam"})
|
157 |
-
return data[list(features_types_per_config["math"].keys())]
|
158 |
-
elif config == "reading":
|
159 |
-
data = data.rename(colums={"reading_score", "has_passed_reading_exam"})
|
160 |
-
return data[list(features_types_per_config["reading"].keys())]
|
161 |
-
elif config == "writing":
|
162 |
-
data = data.rename(colums={"writing_score", "has_passed_writing_exam"})
|
163 |
-
return data[list(features_types_per_config["writing"].keys())]
|
164 |
-
else:
|
165 |
-
raise ValueError(f"Unknown config: {config}")
|
166 |
-
|
167 |
-
def encode(self, feature, value):
|
168 |
-
return _ENCODING_DICS[feature][value]
|
169 |
-
|
170 |
-
def encoding_dics(self):
|
171 |
-
data = [pandas.Dataframe([(feature, original, encoded) for original, encoded in d.items()])
|
172 |
-
for feature, d in _ENCODING_DICS.items()]
|
173 |
-
data = pandas.concat(data, axis="rows")
|
174 |
-
|
175 |
-
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|