Datasets:
File size: 2,410 Bytes
71e3ee2 594e6b0 71e3ee2 7752fd4 71e3ee2 7752fd4 71e3ee2 7752fd4 71e3ee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
from typing import List
import datasets
import pandas
import gzip
VERSION = datasets.Version("1.0.0")
DESCRIPTION = "Sonar dataset from the UCI ML repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/31/sonar"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/31/sonar")
_CITATION = """"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co./datasets/mstz/sonar/raw/main/sonar.all-data"
}
features_types_per_config = {
"sonar": {str(i): datasets.Value("float32") for i in range(60)}
}
features_types_per_config["sonar"]["is_rock"] = datasets.ClassLabel(num_classes=2)
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class SonarConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(SonarConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Sonar(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "sonar"
BUILDER_CONFIGS = [
SonarConfig(name="sonar",
description="Sonar for binary classification.")
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data.columns = [str(i) for i in range(60)] + ["is_rock"]
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
data.loc[:, "is_rock"] = data["is_rock"].apply(lambda x: 1 if x == "R" else 0)
return data
|