mstz commited on
Commit
93d8088
1 Parent(s): 9f40c2a

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +30 -1
  2. eighthr.data +0 -0
  3. onehr.data +0 -0
  4. ozone.py +299 -0
README.md CHANGED
@@ -1,3 +1,32 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - ozone
6
+ - tabular_classification
7
+ - binary_classification
8
+ pretty_name: Ozone
9
+ size_categories:
10
+ - 1K<n<10K
11
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
12
+ - tabular-classification
13
+ configs:
14
+ - 8hr
15
+ - 1hr
16
  ---
17
+ # Ozone
18
+ The [Ozone dataset](https://archive.ics.uci.edu/ml/datasets/Ozone) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
19
+
20
+ # Configurations and tasks
21
+ | **Configuration** | **Task** | **Description** |
22
+ |-------------------|---------------------------|-------------------------|
23
+ | 8hr | Binary classification | Is there an ozone layer?|
24
+ | 1hr | Binary classification | Is there an ozone layer?|
25
+
26
+
27
+ # Usage
28
+ ```python
29
+ from datasets import load_dataset
30
+
31
+ dataset = load_dataset("mstz/ozone", "8hr")["train"]
32
+ ```
eighthr.data ADDED
The diff for this file is too large to render. See raw diff
 
onehr.data ADDED
The diff for this file is too large to render. See raw diff
 
ozone.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Ozone: A Census Dataset"""
2
+
3
+ from typing import List
4
+
5
+ import datasets
6
+
7
+ import pandas
8
+
9
+
10
+ VERSION = datasets.Version("1.0.0")
11
+ _BASE_FEATURE_NAMES = [
12
+ "Date",
13
+ "WSR0",
14
+ "WSR1",
15
+ "WSR2",
16
+ "WSR3",
17
+ "WSR4",
18
+ "WSR5",
19
+ "WSR6",
20
+ "WSR7",
21
+ "WSR8",
22
+ "WSR9",
23
+ "WSR10",
24
+ "WSR11",
25
+ "WSR12",
26
+ "WSR13",
27
+ "WSR14",
28
+ "WSR15",
29
+ "WSR16",
30
+ "WSR17",
31
+ "WSR18",
32
+ "WSR19",
33
+ "WSR20",
34
+ "WSR21",
35
+ "WSR22",
36
+ "WSR23",
37
+ "WSR_PK",
38
+ "WSR_AV",
39
+ "T0",
40
+ "T1",
41
+ "T2",
42
+ "T3",
43
+ "T4",
44
+ "T5",
45
+ "T6",
46
+ "T7",
47
+ "T8",
48
+ "T9",
49
+ "T10",
50
+ "T11",
51
+ "T12",
52
+ "T13",
53
+ "T14",
54
+ "T15",
55
+ "T16",
56
+ "T17",
57
+ "T18",
58
+ "T19",
59
+ "T20",
60
+ "T21",
61
+ "T22",
62
+ "T23",
63
+ "T_PK",
64
+ "T_AV",
65
+ "T85",
66
+ "RH85",
67
+ "U85",
68
+ "V85",
69
+ "HT85",
70
+ "T70",
71
+ "RH70",
72
+ "U70",
73
+ "V70",
74
+ "HT70",
75
+ "T50",
76
+ "RH50",
77
+ "U50",
78
+ "V50",
79
+ "HT50",
80
+ "KI",
81
+ "TT",
82
+ "SLP",
83
+ "SLP_",
84
+ "Precp",
85
+ "Class"
86
+ ]
87
+
88
+ DESCRIPTION = "Ozone dataset from the UCI ML repository."
89
+ _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Ozone"
90
+ _URLS = ("https://archive.ics.uci.edu/ml/datasets/Ozone")
91
+ _CITATION = """
92
+ @misc{misc_ozone_level_detection_172,
93
+ author = {Zhang,Kun, Fan,Wei & Yuan,XiaoJing},
94
+ title = {{Ozone Level Detection}},
95
+ year = {2008},
96
+ howpublished = {UCI Machine Learning Repository},
97
+ note = {{DOI}: \\url{10.24432/C5NG6W}}
98
+ }"""
99
+
100
+ # Dataset info
101
+ urls_per_split = {
102
+ "8hr": {"train": "https://huggingface.co/datasets/mstz/ozoneV2/raw/main/eighthr.data"},
103
+ "1hr": {"train": "https://huggingface.co/datasets/mstz/ozoneV2/raw/main/onehr.data"},
104
+ }
105
+ features_types_per_config = {
106
+ "8hr": {
107
+ "WSR0": datasets.Value("float8"),
108
+ "WSR1": datasets.Value("float8"),
109
+ "WSR2": datasets.Value("float8"),
110
+ "WSR3": datasets.Value("float8"),
111
+ "WSR4": datasets.Value("float8"),
112
+ "WSR5": datasets.Value("float8"),
113
+ "WSR6": datasets.Value("float8"),
114
+ "WSR7": datasets.Value("float8"),
115
+ "WSR8": datasets.Value("float8"),
116
+ "WSR9": datasets.Value("float8"),
117
+ "WSR10": datasets.Value("float8"),
118
+ "WSR11": datasets.Value("float8"),
119
+ "WSR12": datasets.Value("float8"),
120
+ "WSR13": datasets.Value("float8"),
121
+ "WSR14": datasets.Value("float8"),
122
+ "WSR15": datasets.Value("float8"),
123
+ "WSR16": datasets.Value("float8"),
124
+ "WSR17": datasets.Value("float8"),
125
+ "WSR18": datasets.Value("float8"),
126
+ "WSR19": datasets.Value("float8"),
127
+ "WSR20": datasets.Value("float8"),
128
+ "WSR21": datasets.Value("float8"),
129
+ "WSR22": datasets.Value("float8"),
130
+ "WSR23": datasets.Value("float8"),
131
+ "WSR_PK": datasets.Value("float8"),
132
+ "WSR_AV": datasets.Value("float8"),
133
+ "T0": datasets.Value("float8"),
134
+ "T1": datasets.Value("float8"),
135
+ "T2": datasets.Value("float8"),
136
+ "T3": datasets.Value("float8"),
137
+ "T4": datasets.Value("float8"),
138
+ "T5": datasets.Value("float8"),
139
+ "T6": datasets.Value("float8"),
140
+ "T7": datasets.Value("float8"),
141
+ "T8": datasets.Value("float8"),
142
+ "T9": datasets.Value("float8"),
143
+ "T10": datasets.Value("float8"),
144
+ "T11": datasets.Value("float8"),
145
+ "T12": datasets.Value("float8"),
146
+ "T13": datasets.Value("float8"),
147
+ "T14": datasets.Value("float8"),
148
+ "T15": datasets.Value("float8"),
149
+ "T16": datasets.Value("float8"),
150
+ "T17": datasets.Value("float8"),
151
+ "T18": datasets.Value("float8"),
152
+ "T19": datasets.Value("float8"),
153
+ "T20": datasets.Value("float8"),
154
+ "T21": datasets.Value("float8"),
155
+ "T22": datasets.Value("float8"),
156
+ "T23": datasets.Value("float8"),
157
+ "T_PK": datasets.Value("float8"),
158
+ "T_AV": datasets.Value("float8"),
159
+ "T85": datasets.Value("float8"),
160
+ "RH85": datasets.Value("float8"),
161
+ "U85": datasets.Value("float8"),
162
+ "V85": datasets.Value("float8"),
163
+ "HT85": datasets.Value("float8"),
164
+ "T70": datasets.Value("float8"),
165
+ "RH70": datasets.Value("float8"),
166
+ "U70": datasets.Value("float8"),
167
+ "V70": datasets.Value("float8"),
168
+ "HT70": datasets.Value("float8"),
169
+ "T50": datasets.Value("float8"),
170
+ "RH50": datasets.Value("float8"),
171
+ "U50": datasets.Value("float8"),
172
+ "V50": datasets.Value("float8"),
173
+ "HT50": datasets.Value("float8"),
174
+ "KI": datasets.Value("float8"),
175
+ "TT": datasets.Value("float8"),
176
+ "SLP": datasets.Value("float8"),
177
+ "SLP_": datasets.Value("float8"),
178
+ "Precp": datasets.Value("float8"),
179
+ "Class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
180
+ },
181
+ "1hr": {
182
+ "WSR0": datasets.Value("float8"),
183
+ "WSR1": datasets.Value("float8"),
184
+ "WSR2": datasets.Value("float8"),
185
+ "WSR3": datasets.Value("float8"),
186
+ "WSR4": datasets.Value("float8"),
187
+ "WSR5": datasets.Value("float8"),
188
+ "WSR6": datasets.Value("float8"),
189
+ "WSR7": datasets.Value("float8"),
190
+ "WSR8": datasets.Value("float8"),
191
+ "WSR9": datasets.Value("float8"),
192
+ "WSR10": datasets.Value("float8"),
193
+ "WSR11": datasets.Value("float8"),
194
+ "WSR12": datasets.Value("float8"),
195
+ "WSR13": datasets.Value("float8"),
196
+ "WSR14": datasets.Value("float8"),
197
+ "WSR15": datasets.Value("float8"),
198
+ "WSR16": datasets.Value("float8"),
199
+ "WSR17": datasets.Value("float8"),
200
+ "WSR18": datasets.Value("float8"),
201
+ "WSR19": datasets.Value("float8"),
202
+ "WSR20": datasets.Value("float8"),
203
+ "WSR21": datasets.Value("float8"),
204
+ "WSR22": datasets.Value("float8"),
205
+ "WSR23": datasets.Value("float8"),
206
+ "WSR_PK": datasets.Value("float8"),
207
+ "WSR_AV": datasets.Value("float8"),
208
+ "T0": datasets.Value("float8"),
209
+ "T1": datasets.Value("float8"),
210
+ "T2": datasets.Value("float8"),
211
+ "T3": datasets.Value("float8"),
212
+ "T4": datasets.Value("float8"),
213
+ "T5": datasets.Value("float8"),
214
+ "T6": datasets.Value("float8"),
215
+ "T7": datasets.Value("float8"),
216
+ "T8": datasets.Value("float8"),
217
+ "T9": datasets.Value("float8"),
218
+ "T10": datasets.Value("float8"),
219
+ "T11": datasets.Value("float8"),
220
+ "T12": datasets.Value("float8"),
221
+ "T13": datasets.Value("float8"),
222
+ "T14": datasets.Value("float8"),
223
+ "T15": datasets.Value("float8"),
224
+ "T16": datasets.Value("float8"),
225
+ "T17": datasets.Value("float8"),
226
+ "T18": datasets.Value("float8"),
227
+ "T19": datasets.Value("float8"),
228
+ "T20": datasets.Value("float8"),
229
+ "T21": datasets.Value("float8"),
230
+ "T22": datasets.Value("float8"),
231
+ "T23": datasets.Value("float8"),
232
+ "T_PK": datasets.Value("float8"),
233
+ "T_AV": datasets.Value("float8"),
234
+ "T85": datasets.Value("float8"),
235
+ "RH85": datasets.Value("float8"),
236
+ "U85": datasets.Value("float8"),
237
+ "V85": datasets.Value("float8"),
238
+ "HT85": datasets.Value("float8"),
239
+ "T70": datasets.Value("float8"),
240
+ "RH70": datasets.Value("float8"),
241
+ "U70": datasets.Value("float8"),
242
+ "V70": datasets.Value("float8"),
243
+ "HT70": datasets.Value("float8"),
244
+ "T50": datasets.Value("float8"),
245
+ "RH50": datasets.Value("float8"),
246
+ "U50": datasets.Value("float8"),
247
+ "V50": datasets.Value("float8"),
248
+ "HT50": datasets.Value("float8"),
249
+ "KI": datasets.Value("float8"),
250
+ "TT": datasets.Value("float8"),
251
+ "SLP": datasets.Value("float8"),
252
+ "SLP_": datasets.Value("float8"),
253
+ "Precp": datasets.Value("float8"),
254
+ "Class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
255
+ },
256
+
257
+ }
258
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
259
+
260
+
261
+ class OzoneConfig(datasets.BuilderConfig):
262
+ def __init__(self, **kwargs):
263
+ super(OzoneConfig, self).__init__(version=VERSION, **kwargs)
264
+ self.features = features_per_config[kwargs["name"]]
265
+
266
+
267
+ class Ozone(datasets.GeneratorBasedBuilder):
268
+ # dataset versions
269
+ DEFAULT_CONFIG = "ozone"
270
+ BUILDER_CONFIGS = [
271
+ OzoneConfig(name="8hr",
272
+ description="Ozone for binary classification.")
273
+ OzoneConfig(name="1hr",
274
+ description="Ozone for binary classification.")
275
+ ]
276
+
277
+
278
+ def _info(self):
279
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
280
+ features=features_per_config[self.config.name])
281
+
282
+ return info
283
+
284
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
285
+ downloads = dl_manager.download_and_extract(urls_per_split)
286
+
287
+ return [
288
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
289
+ ]
290
+
291
+ def _generate_examples(self, filepath: str):
292
+ data = pandas.read_csv(filepath, header=None)
293
+ data.columns = _BASE_FEATURE_NAMES
294
+ data.drop("Date", axis="columns", inplace=True)
295
+
296
+ for row_id, row in data.iterrows():
297
+ data_row = dict(row)
298
+
299
+ yield row_id, data_row