Datasets:
Upload 4 files
Browse files- .gitattributes +2 -0
- README.md +61 -0
- Test_Dataset.csv +3 -0
- Train_Dataset.csv +3 -0
- nbfi.py +235 -0
.gitattributes
CHANGED
@@ -52,3 +52,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
55 |
+
Test_Dataset.csv filter=lfs diff=lfs merge=lfs -text
|
56 |
+
Train_Dataset.csv filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- nbfi
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
pretty_name: Adult
|
9 |
+
size_categories:
|
10 |
+
- 10K<n<100K
|
11 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
12 |
+
- tabular-classification
|
13 |
+
configs:
|
14 |
+
- default
|
15 |
+
---
|
16 |
+
# NBFI
|
17 |
+
The [NBFI dataset](https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset) from the [Kaggle](https://www.kaggle.com/datasets).
|
18 |
+
Client default prediction
|
19 |
+
|
20 |
+
# Configurations and tasks
|
21 |
+
- `default`, for binary classification of the individual's future default status.
|
22 |
+
|
23 |
+
# Features
|
24 |
+
|**Feature** |**Type** |
|
25 |
+
|-----------------------------------------------|---------------|
|
26 |
+
|`income` | `float32` |
|
27 |
+
|`owns_a_car` | `bool` |
|
28 |
+
|`owns_a_bike` | `bool` |
|
29 |
+
|`has_an_active_loan` | `bool` |
|
30 |
+
|`owns_a_house` | `bool` |
|
31 |
+
|`nr_children` | `int8` |
|
32 |
+
|`credit` | `float32` |
|
33 |
+
|`loan_annuity` | `float32` |
|
34 |
+
|`accompanied_by` | `string` |
|
35 |
+
|`income_type` | `string` |
|
36 |
+
|`education_level` | `float32` |
|
37 |
+
|`marital_status` | `float32` |
|
38 |
+
|`is_male` | `bool` |
|
39 |
+
|`type_of_contract` | `string` |
|
40 |
+
|`type_of_housing` | `string` |
|
41 |
+
|`residence_density` | `float32` |
|
42 |
+
|`age_in_days` | `int32` |
|
43 |
+
|`consecutive_days_of_employment` | `int16` |
|
44 |
+
|`nr_days_since_last_registration_change` | `int32` |
|
45 |
+
|`nr_days_since_last_document_change` | `int32` |
|
46 |
+
|`owned_a_house_for_nr_days` | `int32` |
|
47 |
+
|`has_provided_a_mobile_number` | `bool` |
|
48 |
+
|`has_provided_a_home_number` | `bool` |
|
49 |
+
|`was_reachable_at_work` | `bool` |
|
50 |
+
|`job` | `string` |
|
51 |
+
|`nr_family_members` | `int8` |
|
52 |
+
|`city_rating` | `int8` |
|
53 |
+
|`weekday_of_application` | `int8` |
|
54 |
+
|`hour_of_application` | `float32` |
|
55 |
+
|`same_residence_and_home` | `bool` |
|
56 |
+
|`same_work_and_home` | `bool` |
|
57 |
+
|`score_1` | `float32` |
|
58 |
+
|`score_2` | `float32` |
|
59 |
+
|`score_3` | `float32` |
|
60 |
+
|`nr_defaults_in_social_circle` | `int8` |
|
61 |
+
|`inquiries_in_last_year` | `float32` |
|
Test_Dataset.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce61c89339cc849186d4e9964c8d154c933359ea51e5c8d401c4312040aa137
|
3 |
+
size 15229326
|
Train_Dataset.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfaa92b0e2bf3cb523c2c287d00502328bdc19366cdb2a49486c58ce7cae5e33
|
3 |
+
size 23193688
|
nbfi.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""NBFI: A Census Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
_ORIGINAL_FEATURE_NAMES = [
|
13 |
+
"ID",
|
14 |
+
"Client_Income",
|
15 |
+
"Car_Owned",
|
16 |
+
"Bike_Owned",
|
17 |
+
"Active_Loan",
|
18 |
+
"House_Own",
|
19 |
+
"Child_Count",
|
20 |
+
"Credit_Amount",
|
21 |
+
"Loan_Annuity",
|
22 |
+
"Accompany_Client",
|
23 |
+
"Client_Income_Type",
|
24 |
+
"Client_Education",
|
25 |
+
"Client_Marital_Status",
|
26 |
+
"Client_Gender",
|
27 |
+
"Loan_Contract_Type",
|
28 |
+
"Client_Housing_Type",
|
29 |
+
"Population_Region_Relative",
|
30 |
+
"Age_Days",
|
31 |
+
"Employed_Days",
|
32 |
+
"Registration_Days",
|
33 |
+
"ID_Days",
|
34 |
+
"Own_House_Age",
|
35 |
+
"Mobile_Tag",
|
36 |
+
"Homephone_Tag",
|
37 |
+
"Workphone_Working",
|
38 |
+
"Client_Occupation",
|
39 |
+
"Client_Family_Members",
|
40 |
+
"Cleint_City_Rating",
|
41 |
+
"Application_Process_Day",
|
42 |
+
"Application_Process_Hour",
|
43 |
+
"Client_Permanent_Match_Tag",
|
44 |
+
"Client_Contact_Work_Tag",
|
45 |
+
"Type_Organization",
|
46 |
+
"Score_Source_1",
|
47 |
+
"Score_Source_2",
|
48 |
+
"Score_Source_3",
|
49 |
+
"Social_Circle_Default",
|
50 |
+
"Phone_Change",
|
51 |
+
"Credit_Bureau",
|
52 |
+
"Default"
|
53 |
+
]
|
54 |
+
_BASE_FEATURE_NAMES = [
|
55 |
+
"income",
|
56 |
+
"owns_a_car",
|
57 |
+
"owns_a_bike",
|
58 |
+
"has_an_active_loan",
|
59 |
+
"owns_a_house",
|
60 |
+
"nr_children",
|
61 |
+
"credit",
|
62 |
+
"loan_annuity",
|
63 |
+
"accompanied_by",
|
64 |
+
"income_type",
|
65 |
+
"education_level",
|
66 |
+
"marital_status",
|
67 |
+
"is_male",
|
68 |
+
"type_of_contract",
|
69 |
+
"type_of_housing",
|
70 |
+
"residence_density",
|
71 |
+
"age_in_days",
|
72 |
+
"consecutive_days_of_employment",
|
73 |
+
"nr_days_since_last_registration_change",
|
74 |
+
"nr_days_since_last_document_change",
|
75 |
+
"owned_a_house_for_nr_days",
|
76 |
+
"has_provided_a_mobile_number",
|
77 |
+
"has_provided_a_home_number",
|
78 |
+
"was_reachable_at_work",
|
79 |
+
"job",
|
80 |
+
"nr_family_members",
|
81 |
+
"city_rating",
|
82 |
+
"weekday_of_application",
|
83 |
+
"hour_of_application",
|
84 |
+
"same_residence_and_home",
|
85 |
+
"same_work_and_home",
|
86 |
+
"score_1",
|
87 |
+
"score_2",
|
88 |
+
"score_3",
|
89 |
+
"nr_defaults_in_social_circle",
|
90 |
+
"inquiries_in_last_year",
|
91 |
+
"has_defaulted"
|
92 |
+
]
|
93 |
+
features_types_per_config = {
|
94 |
+
"income": datasets.Value("float32"),
|
95 |
+
"owns_a_car": datasets.Value("bool"),
|
96 |
+
"owns_a_bike": datasets.Value("bool"),
|
97 |
+
"has_an_active_loan": datasets.Value("bool"),
|
98 |
+
"owns_a_house": datasets.Value("bool"),
|
99 |
+
"nr_children": datasets.Value("int8"),
|
100 |
+
"credit": datasets.Value("float32"),
|
101 |
+
"loan_annuity": datasets.Value("float32"),
|
102 |
+
"accompanied_by": datasets.Value("string"),
|
103 |
+
"income_type": datasets.Value("string"),
|
104 |
+
"education_level": datasets.Value("float32"),
|
105 |
+
"marital_status": datasets.Value("float32"),
|
106 |
+
"is_male": datasets.Value("bool"),
|
107 |
+
"type_of_contract": datasets.Value("string"),
|
108 |
+
"type_of_housing": datasets.Value("string"),
|
109 |
+
"residence_density": datasets.Value("float32"),
|
110 |
+
"age_in_days": datasets.Value("int32"),
|
111 |
+
"consecutive_days_of_employment": datasets.Value("int16"),
|
112 |
+
"nr_days_since_last_registration_change": datasets.Value("int32"),
|
113 |
+
"nr_days_since_last_document_change": datasets.Value("int32"),
|
114 |
+
"owned_a_house_for_nr_days": datasets.Value("int32"),
|
115 |
+
"has_provided_a_mobile_number": datasets.Value("bool"),
|
116 |
+
"has_provided_a_home_number": datasets.Value("bool"),
|
117 |
+
"was_reachable_at_work": datasets.Value("bool"),
|
118 |
+
"job": datasets.Value("string"),
|
119 |
+
"nr_family_members": datasets.Value("int8"),
|
120 |
+
"city_rating": datasets.Value("int8"),
|
121 |
+
"weekday_of_application": datasets.Value("int8"),
|
122 |
+
"hour_of_application": datasets.Value("float32"),
|
123 |
+
"same_residence_and_home": datasets.Value("bool"),
|
124 |
+
"same_work_and_home": datasets.Value("bool"),
|
125 |
+
"score_1": datasets.Value("float32"),
|
126 |
+
"score_2": datasets.Value("float32"),
|
127 |
+
"score_3": datasets.Value("float32"),
|
128 |
+
"nr_defaults_in_social_circle": datasets.Value("int8"),
|
129 |
+
"inquiries_in_last_year": datasets.Value("float32"),
|
130 |
+
"has_defaulted": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
131 |
+
}
|
132 |
+
_ENCODING_DICS = {}
|
133 |
+
_EDUCATION_ENCODING = {
|
134 |
+
"Junior secondary": 0,
|
135 |
+
"Secondary": 1,
|
136 |
+
"Graduation dropout": 2,
|
137 |
+
"Graduation": 2,
|
138 |
+
"Post": 4
|
139 |
+
}
|
140 |
+
|
141 |
+
DESCRIPTION = "NBFI dataset from default prediction."
|
142 |
+
_HOMEPAGE = "https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset"
|
143 |
+
_URLS = ("https://www.kaggle.com/datasets/meastanmay/nbfi-vehicle-loan-repayment-dataset")
|
144 |
+
_CITATION = """"""
|
145 |
+
|
146 |
+
# Dataset info
|
147 |
+
urls_per_split = {
|
148 |
+
"train": "https://huggingface.co/datasets/mstz/nbfi/raw/main/Train_Dataset.csv",
|
149 |
+
"test": "https://huggingface.co/datasets/mstz/nbfi/raw/main/Test_Dataset.csv"
|
150 |
+
}
|
151 |
+
|
152 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
153 |
+
|
154 |
+
|
155 |
+
class NBFIConfig(datasets.BuilderConfig):
|
156 |
+
def __init__(self, **kwargs):
|
157 |
+
super(NBFIConfig, self).__init__(version=VERSION, **kwargs)
|
158 |
+
self.features = features_per_config[kwargs["name"]]
|
159 |
+
|
160 |
+
|
161 |
+
class NBFI(datasets.GeneratorBasedBuilder):
|
162 |
+
# dataset versions
|
163 |
+
DEFAULT_CONFIG = "default"
|
164 |
+
BUILDER_CONFIGS = [
|
165 |
+
NBFIConfig(name="default",
|
166 |
+
description="NBFI for default binary classification.")
|
167 |
+
]
|
168 |
+
|
169 |
+
|
170 |
+
def _info(self):
|
171 |
+
if self.config.name not in features_per_config:
|
172 |
+
raise ValueError(f"Unknown configuration: {self.config.name}")
|
173 |
+
|
174 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
175 |
+
features=features_per_config[self.config.name])
|
176 |
+
|
177 |
+
return info
|
178 |
+
|
179 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
180 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
181 |
+
|
182 |
+
return [
|
183 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
184 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"]}),
|
185 |
+
]
|
186 |
+
|
187 |
+
def _generate_examples(self, filepath: str):
|
188 |
+
if self.config.name == "default":
|
189 |
+
data = pandas.read_csv(filepath)
|
190 |
+
data = self.preprocess(data, config=self.config.name)
|
191 |
+
|
192 |
+
for row_id, row in data.iterrows():
|
193 |
+
data_row = dict(row)
|
194 |
+
|
195 |
+
yield row_id, data_row
|
196 |
+
else:
|
197 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
202 |
+
data.drop("ID", axis="columns", inplace=True)
|
203 |
+
data.drop("Own_House_Age", axis="columns", inplace=True)
|
204 |
+
data.drop("Type_Organization", axis="columns", inplace=True)
|
205 |
+
data.drop("Phone_Change", axis="columns", inplace=True)
|
206 |
+
|
207 |
+
data = data[~data.Client_Education.isna()]
|
208 |
+
data = data[~data.Client_Marital_Status.isna()]
|
209 |
+
data = data[~data.Client_Gender.isna()]
|
210 |
+
data = data[~data.Loan_Contract_Type.isna()]
|
211 |
+
data = data[~data.Client_Housing_Type.isna()]
|
212 |
+
data = data[~data.Age_Days.isna()]
|
213 |
+
data = data[~data.Employed_Days.isna()]
|
214 |
+
data = data[~data.Registration_Days.isna()]
|
215 |
+
data = data[~data.ID_Days.isna()]
|
216 |
+
data = data[~data.Cleint_City_Rating.isna()]
|
217 |
+
data = data[~data.Application_Process_Day.isna()]
|
218 |
+
data = data[~data.Application_Process_Hour.isna()]
|
219 |
+
data = data[~data.Client_Permanent_Match_Tag.isna()]
|
220 |
+
data = data[~data.Client_Contact_Work_Tag.isna()]
|
221 |
+
data.columns = _BASE_FEATURE_NAMES
|
222 |
+
|
223 |
+
data.iloc[:, "owns_a_car"] = data["owns_a_car"].apply(bool)
|
224 |
+
data.iloc[:, "owns_a_bike"] = data["owns_a_bike"].apply(bool)
|
225 |
+
data.iloc[:, "has_an_active_loan"] = data["has_an_active_loan"].apply(bool)
|
226 |
+
data.iloc[:, "owns_a_house"] = data["owns_a_house"].apply(bool)
|
227 |
+
data.iloc[:, "is_male"] = data["is_male"].apply(bool)
|
228 |
+
data.iloc[:, "has_provided_a_mobile_number"] = data["has_provided_a_mobile_number"].apply(bool)
|
229 |
+
data.iloc[:, "has_provided_a_home_number"] = data["has_provided_a_home_number"].apply(bool)
|
230 |
+
data.iloc[:, "was_reachable_at_work"] = data["was_reachable_at_work"].apply(bool)
|
231 |
+
data.iloc[:, "same_residence_and_home"] = data["same_residence_and_home"].apply(bool)
|
232 |
+
data.iloc[:, "same_work_and_home"] = data["same_work_and_home"].apply(bool)
|
233 |
+
|
234 |
+
return data[list(features_types_per_config[config].keys())]
|
235 |
+
|