mstz commited on
Commit
3b6adfd
·
1 Parent(s): 03dd500

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +37 -1
  2. iris.data +151 -0
  3. iris.py +123 -0
README.md CHANGED
@@ -1,3 +1,39 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - iris
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: Iris
10
+ size_categories:
11
+ - n<1k
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - iris
16
+ - setosa
17
+ - versicolor
18
+ - virginica
19
+
20
  ---
21
+ # Iris
22
+ The [Iris-Roth dataset](https://archive-beta.ics.uci.edu/dataset/44/iris+roth) from the [UCI repository](https://archive-beta.ics.uci.edu).
23
+
24
+ # Configurations and tasks
25
+ | **Configuration** | **Task** | **Description** |
26
+ |-------------------|---------------------------|-------------------------------|
27
+ | iris | Multiclass classification | Classify iris type. |
28
+ | setosa | Binary classification | Is this a iris-setosa? |
29
+ | versicolor | Binary classification | Is this a iris-versicolor? |
30
+ | virginica | Binary classification | Is this a iris-virginica? |
31
+
32
+
33
+
34
+ # Usage
35
+ ```python
36
+ from datasets import load_dataset
37
+
38
+ dataset = load_dataset("mstz/iris", "iris")["train"]
39
+ ```
iris.data ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 5.1,3.5,1.4,0.2,Iris-setosa
2
+ 4.9,3.0,1.4,0.2,Iris-setosa
3
+ 4.7,3.2,1.3,0.2,Iris-setosa
4
+ 4.6,3.1,1.5,0.2,Iris-setosa
5
+ 5.0,3.6,1.4,0.2,Iris-setosa
6
+ 5.4,3.9,1.7,0.4,Iris-setosa
7
+ 4.6,3.4,1.4,0.3,Iris-setosa
8
+ 5.0,3.4,1.5,0.2,Iris-setosa
9
+ 4.4,2.9,1.4,0.2,Iris-setosa
10
+ 4.9,3.1,1.5,0.1,Iris-setosa
11
+ 5.4,3.7,1.5,0.2,Iris-setosa
12
+ 4.8,3.4,1.6,0.2,Iris-setosa
13
+ 4.8,3.0,1.4,0.1,Iris-setosa
14
+ 4.3,3.0,1.1,0.1,Iris-setosa
15
+ 5.8,4.0,1.2,0.2,Iris-setosa
16
+ 5.7,4.4,1.5,0.4,Iris-setosa
17
+ 5.4,3.9,1.3,0.4,Iris-setosa
18
+ 5.1,3.5,1.4,0.3,Iris-setosa
19
+ 5.7,3.8,1.7,0.3,Iris-setosa
20
+ 5.1,3.8,1.5,0.3,Iris-setosa
21
+ 5.4,3.4,1.7,0.2,Iris-setosa
22
+ 5.1,3.7,1.5,0.4,Iris-setosa
23
+ 4.6,3.6,1.0,0.2,Iris-setosa
24
+ 5.1,3.3,1.7,0.5,Iris-setosa
25
+ 4.8,3.4,1.9,0.2,Iris-setosa
26
+ 5.0,3.0,1.6,0.2,Iris-setosa
27
+ 5.0,3.4,1.6,0.4,Iris-setosa
28
+ 5.2,3.5,1.5,0.2,Iris-setosa
29
+ 5.2,3.4,1.4,0.2,Iris-setosa
30
+ 4.7,3.2,1.6,0.2,Iris-setosa
31
+ 4.8,3.1,1.6,0.2,Iris-setosa
32
+ 5.4,3.4,1.5,0.4,Iris-setosa
33
+ 5.2,4.1,1.5,0.1,Iris-setosa
34
+ 5.5,4.2,1.4,0.2,Iris-setosa
35
+ 4.9,3.1,1.5,0.1,Iris-setosa
36
+ 5.0,3.2,1.2,0.2,Iris-setosa
37
+ 5.5,3.5,1.3,0.2,Iris-setosa
38
+ 4.9,3.1,1.5,0.1,Iris-setosa
39
+ 4.4,3.0,1.3,0.2,Iris-setosa
40
+ 5.1,3.4,1.5,0.2,Iris-setosa
41
+ 5.0,3.5,1.3,0.3,Iris-setosa
42
+ 4.5,2.3,1.3,0.3,Iris-setosa
43
+ 4.4,3.2,1.3,0.2,Iris-setosa
44
+ 5.0,3.5,1.6,0.6,Iris-setosa
45
+ 5.1,3.8,1.9,0.4,Iris-setosa
46
+ 4.8,3.0,1.4,0.3,Iris-setosa
47
+ 5.1,3.8,1.6,0.2,Iris-setosa
48
+ 4.6,3.2,1.4,0.2,Iris-setosa
49
+ 5.3,3.7,1.5,0.2,Iris-setosa
50
+ 5.0,3.3,1.4,0.2,Iris-setosa
51
+ 7.0,3.2,4.7,1.4,Iris-versicolor
52
+ 6.4,3.2,4.5,1.5,Iris-versicolor
53
+ 6.9,3.1,4.9,1.5,Iris-versicolor
54
+ 5.5,2.3,4.0,1.3,Iris-versicolor
55
+ 6.5,2.8,4.6,1.5,Iris-versicolor
56
+ 5.7,2.8,4.5,1.3,Iris-versicolor
57
+ 6.3,3.3,4.7,1.6,Iris-versicolor
58
+ 4.9,2.4,3.3,1.0,Iris-versicolor
59
+ 6.6,2.9,4.6,1.3,Iris-versicolor
60
+ 5.2,2.7,3.9,1.4,Iris-versicolor
61
+ 5.0,2.0,3.5,1.0,Iris-versicolor
62
+ 5.9,3.0,4.2,1.5,Iris-versicolor
63
+ 6.0,2.2,4.0,1.0,Iris-versicolor
64
+ 6.1,2.9,4.7,1.4,Iris-versicolor
65
+ 5.6,2.9,3.6,1.3,Iris-versicolor
66
+ 6.7,3.1,4.4,1.4,Iris-versicolor
67
+ 5.6,3.0,4.5,1.5,Iris-versicolor
68
+ 5.8,2.7,4.1,1.0,Iris-versicolor
69
+ 6.2,2.2,4.5,1.5,Iris-versicolor
70
+ 5.6,2.5,3.9,1.1,Iris-versicolor
71
+ 5.9,3.2,4.8,1.8,Iris-versicolor
72
+ 6.1,2.8,4.0,1.3,Iris-versicolor
73
+ 6.3,2.5,4.9,1.5,Iris-versicolor
74
+ 6.1,2.8,4.7,1.2,Iris-versicolor
75
+ 6.4,2.9,4.3,1.3,Iris-versicolor
76
+ 6.6,3.0,4.4,1.4,Iris-versicolor
77
+ 6.8,2.8,4.8,1.4,Iris-versicolor
78
+ 6.7,3.0,5.0,1.7,Iris-versicolor
79
+ 6.0,2.9,4.5,1.5,Iris-versicolor
80
+ 5.7,2.6,3.5,1.0,Iris-versicolor
81
+ 5.5,2.4,3.8,1.1,Iris-versicolor
82
+ 5.5,2.4,3.7,1.0,Iris-versicolor
83
+ 5.8,2.7,3.9,1.2,Iris-versicolor
84
+ 6.0,2.7,5.1,1.6,Iris-versicolor
85
+ 5.4,3.0,4.5,1.5,Iris-versicolor
86
+ 6.0,3.4,4.5,1.6,Iris-versicolor
87
+ 6.7,3.1,4.7,1.5,Iris-versicolor
88
+ 6.3,2.3,4.4,1.3,Iris-versicolor
89
+ 5.6,3.0,4.1,1.3,Iris-versicolor
90
+ 5.5,2.5,4.0,1.3,Iris-versicolor
91
+ 5.5,2.6,4.4,1.2,Iris-versicolor
92
+ 6.1,3.0,4.6,1.4,Iris-versicolor
93
+ 5.8,2.6,4.0,1.2,Iris-versicolor
94
+ 5.0,2.3,3.3,1.0,Iris-versicolor
95
+ 5.6,2.7,4.2,1.3,Iris-versicolor
96
+ 5.7,3.0,4.2,1.2,Iris-versicolor
97
+ 5.7,2.9,4.2,1.3,Iris-versicolor
98
+ 6.2,2.9,4.3,1.3,Iris-versicolor
99
+ 5.1,2.5,3.0,1.1,Iris-versicolor
100
+ 5.7,2.8,4.1,1.3,Iris-versicolor
101
+ 6.3,3.3,6.0,2.5,Iris-virginica
102
+ 5.8,2.7,5.1,1.9,Iris-virginica
103
+ 7.1,3.0,5.9,2.1,Iris-virginica
104
+ 6.3,2.9,5.6,1.8,Iris-virginica
105
+ 6.5,3.0,5.8,2.2,Iris-virginica
106
+ 7.6,3.0,6.6,2.1,Iris-virginica
107
+ 4.9,2.5,4.5,1.7,Iris-virginica
108
+ 7.3,2.9,6.3,1.8,Iris-virginica
109
+ 6.7,2.5,5.8,1.8,Iris-virginica
110
+ 7.2,3.6,6.1,2.5,Iris-virginica
111
+ 6.5,3.2,5.1,2.0,Iris-virginica
112
+ 6.4,2.7,5.3,1.9,Iris-virginica
113
+ 6.8,3.0,5.5,2.1,Iris-virginica
114
+ 5.7,2.5,5.0,2.0,Iris-virginica
115
+ 5.8,2.8,5.1,2.4,Iris-virginica
116
+ 6.4,3.2,5.3,2.3,Iris-virginica
117
+ 6.5,3.0,5.5,1.8,Iris-virginica
118
+ 7.7,3.8,6.7,2.2,Iris-virginica
119
+ 7.7,2.6,6.9,2.3,Iris-virginica
120
+ 6.0,2.2,5.0,1.5,Iris-virginica
121
+ 6.9,3.2,5.7,2.3,Iris-virginica
122
+ 5.6,2.8,4.9,2.0,Iris-virginica
123
+ 7.7,2.8,6.7,2.0,Iris-virginica
124
+ 6.3,2.7,4.9,1.8,Iris-virginica
125
+ 6.7,3.3,5.7,2.1,Iris-virginica
126
+ 7.2,3.2,6.0,1.8,Iris-virginica
127
+ 6.2,2.8,4.8,1.8,Iris-virginica
128
+ 6.1,3.0,4.9,1.8,Iris-virginica
129
+ 6.4,2.8,5.6,2.1,Iris-virginica
130
+ 7.2,3.0,5.8,1.6,Iris-virginica
131
+ 7.4,2.8,6.1,1.9,Iris-virginica
132
+ 7.9,3.8,6.4,2.0,Iris-virginica
133
+ 6.4,2.8,5.6,2.2,Iris-virginica
134
+ 6.3,2.8,5.1,1.5,Iris-virginica
135
+ 6.1,2.6,5.6,1.4,Iris-virginica
136
+ 7.7,3.0,6.1,2.3,Iris-virginica
137
+ 6.3,3.4,5.6,2.4,Iris-virginica
138
+ 6.4,3.1,5.5,1.8,Iris-virginica
139
+ 6.0,3.0,4.8,1.8,Iris-virginica
140
+ 6.9,3.1,5.4,2.1,Iris-virginica
141
+ 6.7,3.1,5.6,2.4,Iris-virginica
142
+ 6.9,3.1,5.1,2.3,Iris-virginica
143
+ 5.8,2.7,5.1,1.9,Iris-virginica
144
+ 6.8,3.2,5.9,2.3,Iris-virginica
145
+ 6.7,3.3,5.7,2.5,Iris-virginica
146
+ 6.7,3.0,5.2,2.3,Iris-virginica
147
+ 6.3,2.5,5.0,1.9,Iris-virginica
148
+ 6.5,3.0,5.2,2.0,Iris-virginica
149
+ 6.2,3.4,5.4,2.3,Iris-virginica
150
+ 5.9,3.0,5.1,1.8,Iris-virginica
151
+
iris.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from functools import partial
3
+
4
+ import datasets
5
+
6
+ import pandas
7
+
8
+
9
+ VERSION = datasets.Version("1.0.0")
10
+
11
+
12
+ DESCRIPTION = "Iris efficiency dataset from the UCI repository."
13
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/53/iris"
14
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/53/iris")
15
+ _CITATION = """
16
+ @misc{misc_iris_53,
17
+ author = {Fisher,R. A. & Fisher,R.A.},
18
+ title = {{Iris}},
19
+ year = {1988},
20
+ howpublished = {UCI Machine Learning Repository},
21
+ note = {{DOI}: \\url{10.24432/C56C76}}
22
+ }"""
23
+
24
+ # Dataset info
25
+ _BASE_FEATURE_NAMES = [
26
+ "sepal_length",
27
+ "sepal_width",
28
+ "petal_length",
29
+ "petal_width",
30
+ "class"
31
+ ]
32
+ urls_per_split = {
33
+ "train": "https://huggingface.co/datasets/mstz/iris/raw/main/iris.data"
34
+ }
35
+ features_types_per_config = {
36
+ "iris": {
37
+ "sepal_length": datasets.Value("float16"),
38
+ "sepal_width": datasets.Value("float16"),
39
+ "petal_length": datasets.Value("float16"),
40
+ "petal_width": datasets.Value("float16"),
41
+ "class": datasets.ClassLabel(num_classes=3, names=("setosa", "versicolor", "virginica"))
42
+ },
43
+ "setosa": {
44
+ "sepal_length": datasets.Value("float16"),
45
+ "sepal_width": datasets.Value("float16"),
46
+ "petal_length": datasets.Value("float16"),
47
+ "petal_width": datasets.Value("float16"),
48
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
49
+ },
50
+ "versicolor": {
51
+ "sepal_length": datasets.Value("float16"),
52
+ "sepal_width": datasets.Value("float16"),
53
+ "petal_length": datasets.Value("float16"),
54
+ "petal_width": datasets.Value("float16"),
55
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
56
+ },
57
+ "virginica": {
58
+ "sepal_length": datasets.Value("float16"),
59
+ "sepal_width": datasets.Value("float16"),
60
+ "petal_length": datasets.Value("float16"),
61
+ "petal_width": datasets.Value("float16"),
62
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
63
+ }
64
+ }
65
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
66
+
67
+
68
+ class IrisConfig(datasets.BuilderConfig):
69
+ def __init__(self, **kwargs):
70
+ super(IrisConfig, self).__init__(version=VERSION, **kwargs)
71
+ self.features = features_per_config[kwargs["name"]]
72
+
73
+
74
+ class Iris(datasets.GeneratorBasedBuilder):
75
+ # dataset versions
76
+ DEFAULT_CONFIG = "iris"
77
+ BUILDER_CONFIGS = [
78
+ IrisConfig(name="iris", description="Iris dataset."),
79
+ IrisConfig(name="setosa", description="Binary classification of setosa."),
80
+ IrisConfig(name="versicolor", description="Binary classification of versicolor."),
81
+ IrisConfig(name="virginica", description="Binary classification of virginica.")
82
+ ]
83
+
84
+
85
+ def _info(self):
86
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
87
+ features=features_per_config[self.config.name])
88
+
89
+ return info
90
+
91
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
92
+ downloads = dl_manager.download_and_extract(urls_per_split)
93
+
94
+ return [
95
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
96
+ ]
97
+
98
+ def _generate_examples(self, filepath: str):
99
+ data = pandas.read_csv(filepath, header=None)
100
+ data = self.preprocess(data)
101
+
102
+ for row_id, row in data.iterrows():
103
+ data_row = dict(row)
104
+
105
+ yield row_id, data_row
106
+
107
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
108
+ data.columns = _BASE_FEATURE_NAMES
109
+ data.loc[:, "class"] = data["class"].apply(lambda x: {
110
+ "Iris-setosa": 0,
111
+ "Iris-versicolor": 1,
112
+ "Iris-virginica": 2
113
+ }[x])
114
+
115
+
116
+ if self.config.name == "setosa":
117
+ data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
118
+ elif self.config.name == "versicolor":
119
+ data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
120
+ if self.config.name == "virginica":
121
+ data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
122
+
123
+ return data