Datasets:
Upload 3 files
Browse files
README.md
CHANGED
@@ -1,3 +1,39 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- iris
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
- multiclass_classification
|
9 |
+
pretty_name: Iris
|
10 |
+
size_categories:
|
11 |
+
- n<1k
|
12 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
13 |
+
- tabular-classification
|
14 |
+
configs:
|
15 |
+
- iris
|
16 |
+
- setosa
|
17 |
+
- versicolor
|
18 |
+
- virginica
|
19 |
+
|
20 |
---
|
21 |
+
# Iris
|
22 |
+
The [Iris-Roth dataset](https://archive-beta.ics.uci.edu/dataset/44/iris+roth) from the [UCI repository](https://archive-beta.ics.uci.edu).
|
23 |
+
|
24 |
+
# Configurations and tasks
|
25 |
+
| **Configuration** | **Task** | **Description** |
|
26 |
+
|-------------------|---------------------------|-------------------------------|
|
27 |
+
| iris | Multiclass classification | Classify iris type. |
|
28 |
+
| setosa | Binary classification | Is this a iris-setosa? |
|
29 |
+
| versicolor | Binary classification | Is this a iris-versicolor? |
|
30 |
+
| virginica | Binary classification | Is this a iris-virginica? |
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# Usage
|
35 |
+
```python
|
36 |
+
from datasets import load_dataset
|
37 |
+
|
38 |
+
dataset = load_dataset("mstz/iris", "iris")["train"]
|
39 |
+
```
|
iris.data
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
5.1,3.5,1.4,0.2,Iris-setosa
|
2 |
+
4.9,3.0,1.4,0.2,Iris-setosa
|
3 |
+
4.7,3.2,1.3,0.2,Iris-setosa
|
4 |
+
4.6,3.1,1.5,0.2,Iris-setosa
|
5 |
+
5.0,3.6,1.4,0.2,Iris-setosa
|
6 |
+
5.4,3.9,1.7,0.4,Iris-setosa
|
7 |
+
4.6,3.4,1.4,0.3,Iris-setosa
|
8 |
+
5.0,3.4,1.5,0.2,Iris-setosa
|
9 |
+
4.4,2.9,1.4,0.2,Iris-setosa
|
10 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
11 |
+
5.4,3.7,1.5,0.2,Iris-setosa
|
12 |
+
4.8,3.4,1.6,0.2,Iris-setosa
|
13 |
+
4.8,3.0,1.4,0.1,Iris-setosa
|
14 |
+
4.3,3.0,1.1,0.1,Iris-setosa
|
15 |
+
5.8,4.0,1.2,0.2,Iris-setosa
|
16 |
+
5.7,4.4,1.5,0.4,Iris-setosa
|
17 |
+
5.4,3.9,1.3,0.4,Iris-setosa
|
18 |
+
5.1,3.5,1.4,0.3,Iris-setosa
|
19 |
+
5.7,3.8,1.7,0.3,Iris-setosa
|
20 |
+
5.1,3.8,1.5,0.3,Iris-setosa
|
21 |
+
5.4,3.4,1.7,0.2,Iris-setosa
|
22 |
+
5.1,3.7,1.5,0.4,Iris-setosa
|
23 |
+
4.6,3.6,1.0,0.2,Iris-setosa
|
24 |
+
5.1,3.3,1.7,0.5,Iris-setosa
|
25 |
+
4.8,3.4,1.9,0.2,Iris-setosa
|
26 |
+
5.0,3.0,1.6,0.2,Iris-setosa
|
27 |
+
5.0,3.4,1.6,0.4,Iris-setosa
|
28 |
+
5.2,3.5,1.5,0.2,Iris-setosa
|
29 |
+
5.2,3.4,1.4,0.2,Iris-setosa
|
30 |
+
4.7,3.2,1.6,0.2,Iris-setosa
|
31 |
+
4.8,3.1,1.6,0.2,Iris-setosa
|
32 |
+
5.4,3.4,1.5,0.4,Iris-setosa
|
33 |
+
5.2,4.1,1.5,0.1,Iris-setosa
|
34 |
+
5.5,4.2,1.4,0.2,Iris-setosa
|
35 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
36 |
+
5.0,3.2,1.2,0.2,Iris-setosa
|
37 |
+
5.5,3.5,1.3,0.2,Iris-setosa
|
38 |
+
4.9,3.1,1.5,0.1,Iris-setosa
|
39 |
+
4.4,3.0,1.3,0.2,Iris-setosa
|
40 |
+
5.1,3.4,1.5,0.2,Iris-setosa
|
41 |
+
5.0,3.5,1.3,0.3,Iris-setosa
|
42 |
+
4.5,2.3,1.3,0.3,Iris-setosa
|
43 |
+
4.4,3.2,1.3,0.2,Iris-setosa
|
44 |
+
5.0,3.5,1.6,0.6,Iris-setosa
|
45 |
+
5.1,3.8,1.9,0.4,Iris-setosa
|
46 |
+
4.8,3.0,1.4,0.3,Iris-setosa
|
47 |
+
5.1,3.8,1.6,0.2,Iris-setosa
|
48 |
+
4.6,3.2,1.4,0.2,Iris-setosa
|
49 |
+
5.3,3.7,1.5,0.2,Iris-setosa
|
50 |
+
5.0,3.3,1.4,0.2,Iris-setosa
|
51 |
+
7.0,3.2,4.7,1.4,Iris-versicolor
|
52 |
+
6.4,3.2,4.5,1.5,Iris-versicolor
|
53 |
+
6.9,3.1,4.9,1.5,Iris-versicolor
|
54 |
+
5.5,2.3,4.0,1.3,Iris-versicolor
|
55 |
+
6.5,2.8,4.6,1.5,Iris-versicolor
|
56 |
+
5.7,2.8,4.5,1.3,Iris-versicolor
|
57 |
+
6.3,3.3,4.7,1.6,Iris-versicolor
|
58 |
+
4.9,2.4,3.3,1.0,Iris-versicolor
|
59 |
+
6.6,2.9,4.6,1.3,Iris-versicolor
|
60 |
+
5.2,2.7,3.9,1.4,Iris-versicolor
|
61 |
+
5.0,2.0,3.5,1.0,Iris-versicolor
|
62 |
+
5.9,3.0,4.2,1.5,Iris-versicolor
|
63 |
+
6.0,2.2,4.0,1.0,Iris-versicolor
|
64 |
+
6.1,2.9,4.7,1.4,Iris-versicolor
|
65 |
+
5.6,2.9,3.6,1.3,Iris-versicolor
|
66 |
+
6.7,3.1,4.4,1.4,Iris-versicolor
|
67 |
+
5.6,3.0,4.5,1.5,Iris-versicolor
|
68 |
+
5.8,2.7,4.1,1.0,Iris-versicolor
|
69 |
+
6.2,2.2,4.5,1.5,Iris-versicolor
|
70 |
+
5.6,2.5,3.9,1.1,Iris-versicolor
|
71 |
+
5.9,3.2,4.8,1.8,Iris-versicolor
|
72 |
+
6.1,2.8,4.0,1.3,Iris-versicolor
|
73 |
+
6.3,2.5,4.9,1.5,Iris-versicolor
|
74 |
+
6.1,2.8,4.7,1.2,Iris-versicolor
|
75 |
+
6.4,2.9,4.3,1.3,Iris-versicolor
|
76 |
+
6.6,3.0,4.4,1.4,Iris-versicolor
|
77 |
+
6.8,2.8,4.8,1.4,Iris-versicolor
|
78 |
+
6.7,3.0,5.0,1.7,Iris-versicolor
|
79 |
+
6.0,2.9,4.5,1.5,Iris-versicolor
|
80 |
+
5.7,2.6,3.5,1.0,Iris-versicolor
|
81 |
+
5.5,2.4,3.8,1.1,Iris-versicolor
|
82 |
+
5.5,2.4,3.7,1.0,Iris-versicolor
|
83 |
+
5.8,2.7,3.9,1.2,Iris-versicolor
|
84 |
+
6.0,2.7,5.1,1.6,Iris-versicolor
|
85 |
+
5.4,3.0,4.5,1.5,Iris-versicolor
|
86 |
+
6.0,3.4,4.5,1.6,Iris-versicolor
|
87 |
+
6.7,3.1,4.7,1.5,Iris-versicolor
|
88 |
+
6.3,2.3,4.4,1.3,Iris-versicolor
|
89 |
+
5.6,3.0,4.1,1.3,Iris-versicolor
|
90 |
+
5.5,2.5,4.0,1.3,Iris-versicolor
|
91 |
+
5.5,2.6,4.4,1.2,Iris-versicolor
|
92 |
+
6.1,3.0,4.6,1.4,Iris-versicolor
|
93 |
+
5.8,2.6,4.0,1.2,Iris-versicolor
|
94 |
+
5.0,2.3,3.3,1.0,Iris-versicolor
|
95 |
+
5.6,2.7,4.2,1.3,Iris-versicolor
|
96 |
+
5.7,3.0,4.2,1.2,Iris-versicolor
|
97 |
+
5.7,2.9,4.2,1.3,Iris-versicolor
|
98 |
+
6.2,2.9,4.3,1.3,Iris-versicolor
|
99 |
+
5.1,2.5,3.0,1.1,Iris-versicolor
|
100 |
+
5.7,2.8,4.1,1.3,Iris-versicolor
|
101 |
+
6.3,3.3,6.0,2.5,Iris-virginica
|
102 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
103 |
+
7.1,3.0,5.9,2.1,Iris-virginica
|
104 |
+
6.3,2.9,5.6,1.8,Iris-virginica
|
105 |
+
6.5,3.0,5.8,2.2,Iris-virginica
|
106 |
+
7.6,3.0,6.6,2.1,Iris-virginica
|
107 |
+
4.9,2.5,4.5,1.7,Iris-virginica
|
108 |
+
7.3,2.9,6.3,1.8,Iris-virginica
|
109 |
+
6.7,2.5,5.8,1.8,Iris-virginica
|
110 |
+
7.2,3.6,6.1,2.5,Iris-virginica
|
111 |
+
6.5,3.2,5.1,2.0,Iris-virginica
|
112 |
+
6.4,2.7,5.3,1.9,Iris-virginica
|
113 |
+
6.8,3.0,5.5,2.1,Iris-virginica
|
114 |
+
5.7,2.5,5.0,2.0,Iris-virginica
|
115 |
+
5.8,2.8,5.1,2.4,Iris-virginica
|
116 |
+
6.4,3.2,5.3,2.3,Iris-virginica
|
117 |
+
6.5,3.0,5.5,1.8,Iris-virginica
|
118 |
+
7.7,3.8,6.7,2.2,Iris-virginica
|
119 |
+
7.7,2.6,6.9,2.3,Iris-virginica
|
120 |
+
6.0,2.2,5.0,1.5,Iris-virginica
|
121 |
+
6.9,3.2,5.7,2.3,Iris-virginica
|
122 |
+
5.6,2.8,4.9,2.0,Iris-virginica
|
123 |
+
7.7,2.8,6.7,2.0,Iris-virginica
|
124 |
+
6.3,2.7,4.9,1.8,Iris-virginica
|
125 |
+
6.7,3.3,5.7,2.1,Iris-virginica
|
126 |
+
7.2,3.2,6.0,1.8,Iris-virginica
|
127 |
+
6.2,2.8,4.8,1.8,Iris-virginica
|
128 |
+
6.1,3.0,4.9,1.8,Iris-virginica
|
129 |
+
6.4,2.8,5.6,2.1,Iris-virginica
|
130 |
+
7.2,3.0,5.8,1.6,Iris-virginica
|
131 |
+
7.4,2.8,6.1,1.9,Iris-virginica
|
132 |
+
7.9,3.8,6.4,2.0,Iris-virginica
|
133 |
+
6.4,2.8,5.6,2.2,Iris-virginica
|
134 |
+
6.3,2.8,5.1,1.5,Iris-virginica
|
135 |
+
6.1,2.6,5.6,1.4,Iris-virginica
|
136 |
+
7.7,3.0,6.1,2.3,Iris-virginica
|
137 |
+
6.3,3.4,5.6,2.4,Iris-virginica
|
138 |
+
6.4,3.1,5.5,1.8,Iris-virginica
|
139 |
+
6.0,3.0,4.8,1.8,Iris-virginica
|
140 |
+
6.9,3.1,5.4,2.1,Iris-virginica
|
141 |
+
6.7,3.1,5.6,2.4,Iris-virginica
|
142 |
+
6.9,3.1,5.1,2.3,Iris-virginica
|
143 |
+
5.8,2.7,5.1,1.9,Iris-virginica
|
144 |
+
6.8,3.2,5.9,2.3,Iris-virginica
|
145 |
+
6.7,3.3,5.7,2.5,Iris-virginica
|
146 |
+
6.7,3.0,5.2,2.3,Iris-virginica
|
147 |
+
6.3,2.5,5.0,1.9,Iris-virginica
|
148 |
+
6.5,3.0,5.2,2.0,Iris-virginica
|
149 |
+
6.2,3.4,5.4,2.3,Iris-virginica
|
150 |
+
5.9,3.0,5.1,1.8,Iris-virginica
|
151 |
+
|
iris.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
import pandas
|
7 |
+
|
8 |
+
|
9 |
+
VERSION = datasets.Version("1.0.0")
|
10 |
+
|
11 |
+
|
12 |
+
DESCRIPTION = "Iris efficiency dataset from the UCI repository."
|
13 |
+
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/53/iris"
|
14 |
+
_URLS = ("https://archive-beta.ics.uci.edu/dataset/53/iris")
|
15 |
+
_CITATION = """
|
16 |
+
@misc{misc_iris_53,
|
17 |
+
author = {Fisher,R. A. & Fisher,R.A.},
|
18 |
+
title = {{Iris}},
|
19 |
+
year = {1988},
|
20 |
+
howpublished = {UCI Machine Learning Repository},
|
21 |
+
note = {{DOI}: \\url{10.24432/C56C76}}
|
22 |
+
}"""
|
23 |
+
|
24 |
+
# Dataset info
|
25 |
+
_BASE_FEATURE_NAMES = [
|
26 |
+
"sepal_length",
|
27 |
+
"sepal_width",
|
28 |
+
"petal_length",
|
29 |
+
"petal_width",
|
30 |
+
"class"
|
31 |
+
]
|
32 |
+
urls_per_split = {
|
33 |
+
"train": "https://huggingface.co/datasets/mstz/iris/raw/main/iris.data"
|
34 |
+
}
|
35 |
+
features_types_per_config = {
|
36 |
+
"iris": {
|
37 |
+
"sepal_length": datasets.Value("float16"),
|
38 |
+
"sepal_width": datasets.Value("float16"),
|
39 |
+
"petal_length": datasets.Value("float16"),
|
40 |
+
"petal_width": datasets.Value("float16"),
|
41 |
+
"class": datasets.ClassLabel(num_classes=3, names=("setosa", "versicolor", "virginica"))
|
42 |
+
},
|
43 |
+
"setosa": {
|
44 |
+
"sepal_length": datasets.Value("float16"),
|
45 |
+
"sepal_width": datasets.Value("float16"),
|
46 |
+
"petal_length": datasets.Value("float16"),
|
47 |
+
"petal_width": datasets.Value("float16"),
|
48 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
49 |
+
},
|
50 |
+
"versicolor": {
|
51 |
+
"sepal_length": datasets.Value("float16"),
|
52 |
+
"sepal_width": datasets.Value("float16"),
|
53 |
+
"petal_length": datasets.Value("float16"),
|
54 |
+
"petal_width": datasets.Value("float16"),
|
55 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
56 |
+
},
|
57 |
+
"virginica": {
|
58 |
+
"sepal_length": datasets.Value("float16"),
|
59 |
+
"sepal_width": datasets.Value("float16"),
|
60 |
+
"petal_length": datasets.Value("float16"),
|
61 |
+
"petal_width": datasets.Value("float16"),
|
62 |
+
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
|
63 |
+
}
|
64 |
+
}
|
65 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
66 |
+
|
67 |
+
|
68 |
+
class IrisConfig(datasets.BuilderConfig):
|
69 |
+
def __init__(self, **kwargs):
|
70 |
+
super(IrisConfig, self).__init__(version=VERSION, **kwargs)
|
71 |
+
self.features = features_per_config[kwargs["name"]]
|
72 |
+
|
73 |
+
|
74 |
+
class Iris(datasets.GeneratorBasedBuilder):
|
75 |
+
# dataset versions
|
76 |
+
DEFAULT_CONFIG = "iris"
|
77 |
+
BUILDER_CONFIGS = [
|
78 |
+
IrisConfig(name="iris", description="Iris dataset."),
|
79 |
+
IrisConfig(name="setosa", description="Binary classification of setosa."),
|
80 |
+
IrisConfig(name="versicolor", description="Binary classification of versicolor."),
|
81 |
+
IrisConfig(name="virginica", description="Binary classification of virginica.")
|
82 |
+
]
|
83 |
+
|
84 |
+
|
85 |
+
def _info(self):
|
86 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
87 |
+
features=features_per_config[self.config.name])
|
88 |
+
|
89 |
+
return info
|
90 |
+
|
91 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
92 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
93 |
+
|
94 |
+
return [
|
95 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
96 |
+
]
|
97 |
+
|
98 |
+
def _generate_examples(self, filepath: str):
|
99 |
+
data = pandas.read_csv(filepath, header=None)
|
100 |
+
data = self.preprocess(data)
|
101 |
+
|
102 |
+
for row_id, row in data.iterrows():
|
103 |
+
data_row = dict(row)
|
104 |
+
|
105 |
+
yield row_id, data_row
|
106 |
+
|
107 |
+
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
108 |
+
data.columns = _BASE_FEATURE_NAMES
|
109 |
+
data.loc[:, "class"] = data["class"].apply(lambda x: {
|
110 |
+
"Iris-setosa": 0,
|
111 |
+
"Iris-versicolor": 1,
|
112 |
+
"Iris-virginica": 2
|
113 |
+
}[x])
|
114 |
+
|
115 |
+
|
116 |
+
if self.config.name == "setosa":
|
117 |
+
data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
|
118 |
+
elif self.config.name == "versicolor":
|
119 |
+
data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
|
120 |
+
if self.config.name == "virginica":
|
121 |
+
data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
|
122 |
+
|
123 |
+
return data
|