"""Ionosphere""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") DESCRIPTION = "Ionosphere dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Ionosphere" _URLS = ("https://huggingface.co./datasets/mstz/ionosphere/raw/ionosphere.data") _CITATION = """ @misc{misc_ionosphere_52, author = {Sigillito,V., Wing,S., Hutton,L. & Baker,K.}, title = {{Ionosphere}}, year = {1989}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5W01B}} }""" # Dataset info urls_per_split = { "train": "https://huggingface.co./datasets/mstz/ionosphere/raw/main/ionosphere.data" } features_types_per_config = { "ionosphere": { "signal_0": datasets.Value("float64"), "signal_1": datasets.Value("float64"), "signal_2": datasets.Value("float64"), "signal_3": datasets.Value("float64"), "signal_4": datasets.Value("float64"), "signal_5": datasets.Value("float64"), "signal_6": datasets.Value("float64"), "signal_7": datasets.Value("float64"), "signal_8": datasets.Value("float64"), "signal_9": datasets.Value("float64"), "signal_10": datasets.Value("float64"), "signal_11": datasets.Value("float64"), "signal_12": datasets.Value("float64"), "signal_13": datasets.Value("float64"), "signal_14": datasets.Value("float64"), "signal_15": datasets.Value("float64"), "signal_16": datasets.Value("float64"), "signal_17": datasets.Value("float64"), "signal_18": datasets.Value("float64"), "signal_19": datasets.Value("float64"), "signal_20": datasets.Value("float64"), "signal_21": datasets.Value("float64"), "signal_22": datasets.Value("float64"), "signal_23": datasets.Value("float64"), "signal_24": datasets.Value("float64"), "signal_25": datasets.Value("float64"), "signal_26": datasets.Value("float64"), "signal_27": datasets.Value("float64"), "signal_28": datasets.Value("float64"), "signal_29": datasets.Value("float64"), "signal_30": datasets.Value("float64"), "signal_31": datasets.Value("float64"), "signal_32": datasets.Value("float64"), "signal_33": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class IonosphereConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(IonosphereConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Ionosphere(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "ionosphere" BUILDER_CONFIGS = [ IonosphereConfig(name="ionosphere", description="Ionosphere for binary classification."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data.columns = [f"signal_{i}" for i in range(data.shape[1] - 1)] + ["class"] data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == "g" else 0) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row