"""Bank Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ORIGINAL_FEATURE_NAMES = [ "age", "job", "marital", "education", "default", "balance", "housing", "loan", "contact", "day", "month", "duration", "campaign", "pdays", "previous", "poutcome", "y" ] _BASE_FEATURE_NAMES = [ "age", "job", "marital_status", "education_level", "has_defaulted", "account_balance", "has_housing_loan", "has_personal_loan", "month_of_last_contact", "number_of_calls_in_ad_campaign", "days_since_last_contact_of_previous_campaign", "number_of_calls_before_this_campaign", "successful_subscription" ] _ENCODING_DICS = { "education_level": { "unknown": 0, "primary": 1, "secondary": 2, "tertiary": 3 }, "has_personal_loan": { "no": 0, "yes": 1 }, "has_housing_loan": { "no": 0, "yes": 1 }, "has_defaulted": { "no": 0, "yes": 1 }, "successful_subscription": { "no": 0, "yes": 1 } } DESCRIPTION = "Bank dataset for subscription prediction." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/bank+marketing" _URLS = ("https://huggingface.co./datasets/mstz/bank/raw/main/bank-full.csv") _CITATION = """""" # Dataset info urls_per_split = { "train": "https://huggingface.co./datasets/mstz/bank/raw/main/bank-full.csv", } features_types_per_config = { "encoding": { "feature": datasets.Value("string"), "original_value": datasets.Value("string"), "encoded_value": datasets.Value("int8"), }, "subscription": { "age": datasets.Value("int64"), "job": datasets.Value("string"), "marital_status": datasets.Value("string"), "education_level": datasets.Value("int8"), "has_defaulted": datasets.Value("bool"), "account_balance": datasets.Value("int64"), "has_housing_loan": datasets.Value("bool"), "has_personal_loan": datasets.Value("bool"), "month_of_last_contact": datasets.Value("string"), "number_of_calls_in_ad_campaign": datasets.Value("int8"), "days_since_last_contact_of_previous_campaign": datasets.Value("int16"), "number_of_calls_before_this_campaign": datasets.Value("int16"), "successful_subscription": datasets.ClassLabel(num_classes=2, names=("no", "yes")), } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class BankConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(BankConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Bank(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "subscription" BUILDER_CONFIGS = [ BankConfig(name="encoding", description="Encoding dictionaries for discrete features."), BankConfig(name="subscription", description="Bank binary classification for client subscription."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): if self.config.name == "encoding": data = self.encoding_dictionaries() else: data = pandas.read_csv(filepath, sep=";") data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: data.drop("day", axis="columns", inplace=True) data.drop("contact", axis="columns", inplace=True) data.drop("duration", axis="columns", inplace=True) data.drop("poutcome", axis="columns", inplace=True) data.columns = _BASE_FEATURE_NAMES for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) data = data.astype({ "has_defaulted": "bool", "has_housing_loan": "bool", "has_personal_loan": "bool" }) return data def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}") def encoding_dics(self): data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()]) for feature, d in _ENCODING_DICS.items()] data = pandas.concat(data, axis="rows").reset_index() data.drop("index", axis="columns", inplace=True) data.columns = ["feature", "original_value", "encoded_value"] return data