|
"""Bank Dataset""" |
|
|
|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_ORIGINAL_FEATURE_NAMES = [ |
|
"age", |
|
"job", |
|
"marital", |
|
"education", |
|
"default", |
|
"balance", |
|
"housing", |
|
"loan", |
|
"contact", |
|
"day", |
|
"month", |
|
"duration", |
|
"campaign", |
|
"pdays", |
|
"previous", |
|
"poutcome", |
|
"y" |
|
] |
|
_BASE_FEATURE_NAMES = [ |
|
"age", |
|
"job", |
|
"marital_status", |
|
"education", |
|
"has_defaulted", |
|
"account_balance", |
|
"has_housing_loan", |
|
"has_personal_loan", |
|
"month_of_last_contact", |
|
"number_of_calls_in_ad_campaign", |
|
"days_since_last_contact_of_previous_campaign", |
|
"number_of_calls_before_this_campaign", |
|
"successfull_subscription" |
|
] |
|
|
|
DESCRIPTION = "Bank dataset for subscription prediction." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/bank+marketing" |
|
_URLS = ("https://huggingface.co./datasets/mstz/bank/raw/main/bank-full.csv") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co./datasets/mstz/bank/raw/main/bank-full.csv", |
|
} |
|
features_types_per_config = { |
|
"encoding": { |
|
"feature": datasets.Value("string"), |
|
"original_value": datasets.Value("string"), |
|
"encoded_value": datasets.Value("int8"), |
|
}, |
|
|
|
"subscription": { |
|
"age": datasets.Value("int64"), |
|
"job": datasets.Value("string"), |
|
"marital_status": datasets.Value("string"), |
|
"education": datasets.Value("int8"), |
|
"has_defaulted": datasets.Value("int8"), |
|
"account_balance": datasets.Value("int16"), |
|
"has_housing_loan": datasets.Value("int8"), |
|
"has_personal_loan": datasets.Value("int8"), |
|
"month_of_last_contact": datasets.Value("string"), |
|
"number_of_calls_in_ad_campaign": datasets.Value("string"), |
|
"days_since_last_contact_of_previous_campaign": datasets.Value("int16"), |
|
"number_of_calls_before_this_campaign": datasets.Value("int16"), |
|
"successfull_subscription": datasets.ClassLabel(num_classes=2, names=("no", "yes")), |
|
} |
|
|
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class BankConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(BankConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Bank(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "subscription" |
|
BUILDER_CONFIGS = [ |
|
BankConfig(name="encoding", |
|
description="Encoding dictionaries for discrete features."), |
|
BankConfig(name="subscription", |
|
description="Bank binary classification for client subscription."), |
|
] |
|
|
|
|
|
def _info(self): |
|
if self.config.name not in features_per_config: |
|
raise ValueError(f"Unknown configuration: {self.config.name}") |
|
|
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
if self.config_name == "encoding": |
|
return self.encoding_dictionaries() |
|
|
|
print(f"reading...") |
|
data = pandas.read_csv(filepath, sep=";") |
|
print(f"read dataset w/ {data.shape} shape") |
|
data = self.preprocess(data, config=self.config.name) |
|
print(f"now got dataset w/ {data.shape} shape") |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame: |
|
data.drop("day", axis="columns", inplace=True) |
|
data.drop("contact", axis="columns", inplace=True) |
|
data.drop("duration", axis="columns", inplace=True) |
|
data.drop("poutcome", axis="columns", inplace=True) |
|
|
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
|
|
data.loc[:, "education"] = data.education.apply(self.encode_education) |
|
data.loc[:, "loan"] = data.loan.apply(self.encode_yes_no) |
|
data.loc[:, "housing"] = data.housing.apply(self.encode_yes_no) |
|
data.loc[:, "default"] = data.default.apply(self.encode_yes_no) |
|
|
|
if config == "subscription": |
|
return data |
|
else: |
|
raise ValueError(f"Unknown config: {config}") |
|
|
|
def encoding_dictionaries(self): |
|
education_dic, binary_dic = self.education_encoding_dic(), self.binary_encoding_dic() |
|
education_data = [("education", education, code) for education, code in education_dic.items()] |
|
loan_data = [("loan", loan, code) for loan, code in binary_dic.items()] |
|
housing_data = [("housing", housing, code) for housing, code in binary_dic.items()] |
|
default_data = [("default", default, code) for default, code in binary_dic.items()] |
|
data = pandas.DataFrame(education_data, loan_data + housing_data + default_data, |
|
columns=["feature", "original_value", "encoded_value"]) |
|
|
|
return data |
|
|
|
def encode_education(self, education): |
|
return self.education_encoding_dic()[education] |
|
|
|
def decode_education(self, code): |
|
return self.education_decoding_dic()[code] |
|
|
|
def education_decoding_dic(self): |
|
return { |
|
0: "unknown", |
|
1: "primary", |
|
2: "secondary", |
|
3: "tertiary" |
|
} |
|
|
|
def education_encoding_dic(self): |
|
return { |
|
"unknown": 0, |
|
"primary": 1, |
|
"secondary": 2, |
|
"tertiary": 3 |
|
} |
|
|
|
def encode_yes_no(self, yes_no): |
|
return self.yes_no_encoding_dic()[yes_no] |
|
|
|
def decode_yes_no(self, code): |
|
return self.yes_no_decoding_dic()[code] |
|
|
|
def yes_no_decoding_dic(self): |
|
return { |
|
0: "no", |
|
1: "yes" |
|
} |
|
|
|
def yes_no_encoding_dic(self): |
|
return { |
|
"no": 0, |
|
"yes": 1 |
|
} |
|
|