File size: 5,626 Bytes
e4376c6
 
 
e114ad7
e4376c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e114ad7
e4376c6
 
 
 
 
 
 
 
3f9cee9
e4376c6
e114ad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4376c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db4e3d0
e4376c6
ab016e7
e4376c6
 
 
 
 
 
3f9cee9
e4376c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53a1e74
14ea993
 
 
 
e4376c6
 
 
 
 
 
e114ad7
 
 
 
 
 
1dcaebd
e114ad7
 
 
 
 
7e18e50
e4376c6
 
 
e114ad7
 
 
 
 
 
 
 
 
 
 
 
e4376c6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""Bank Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
    "age",
    "job",
    "marital",
    "education",
    "default",
    "balance",
    "housing",
    "loan",
    "contact",
    "day",
    "month",
    "duration",
    "campaign",
    "pdays",
    "previous",
    "poutcome",
    "y"
]
_BASE_FEATURE_NAMES = [
    "age",
    "job",
    "marital_status",
    "education_level",
    "has_defaulted",
    "account_balance",
    "has_housing_loan",
    "has_personal_loan",
    "month_of_last_contact",
    "number_of_calls_in_ad_campaign",
    "days_since_last_contact_of_previous_campaign",
    "number_of_calls_before_this_campaign",
    "successful_subscription"
]
_ENCODING_DICS = {
    "education_level": {
        "unknown": 0,
        "primary": 1,
        "secondary": 2,
        "tertiary": 3
    },
    "has_personal_loan": {
        "no": 0,
        "yes": 1
    },
    "has_housing_loan": {
        "no": 0,
        "yes": 1
    },
    "has_defaulted": {
        "no": 0,
        "yes": 1
    },
    "successful_subscription": {
        "no": 0,
        "yes": 1
    }
}


DESCRIPTION = "Bank dataset for subscription prediction."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/bank+marketing"
_URLS = ("https://huggingface.co./datasets/mstz/bank/raw/main/bank-full.csv")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co./datasets/mstz/bank/raw/main/bank-full.csv",
}
features_types_per_config = {
    "encoding": {
        "feature": datasets.Value("string"),
        "original_value": datasets.Value("string"),
        "encoded_value":  datasets.Value("int8"),
    },

    "subscription": {
        "age": datasets.Value("int64"),
        "job": datasets.Value("string"),
        "marital_status": datasets.Value("string"),
        "education_level": datasets.Value("int8"),
        "has_defaulted": datasets.Value("int8"),
        "account_balance": datasets.Value("int64"),
        "has_housing_loan": datasets.Value("int8"),
        "has_personal_loan": datasets.Value("int8"),
        "month_of_last_contact": datasets.Value("string"),
        "number_of_calls_in_ad_campaign": datasets.Value("string"),
        "days_since_last_contact_of_previous_campaign": datasets.Value("int16"),
        "number_of_calls_before_this_campaign": datasets.Value("int16"),
        "successful_subscription": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
    }
    
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class BankConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(BankConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Bank(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "subscription"
    BUILDER_CONFIGS = [
        BankConfig(name="encoding",
                   description="Encoding dictionaries for discrete features."),
        BankConfig(name="subscription",
                   description="Bank binary classification for client subscription."),
    ]


    def _info(self):
        if self.config.name not in features_per_config:
            raise ValueError(f"Unknown configuration: {self.config.name}")
        
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        if self.config.name == "encoding":
            data = self.encoding_dictionaries()
        else:
            data = pandas.read_csv(filepath, sep=";")
            data = self.preprocess(data, config=self.config.name)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = "subscription") -> pandas.DataFrame:
        if config == "subscription":
            data.drop("day", axis="columns", inplace=True)
            data.drop("contact", axis="columns", inplace=True)
            data.drop("duration", axis="columns", inplace=True)
            data.drop("poutcome", axis="columns", inplace=True)

            data.columns = _BASE_FEATURE_NAMES

            for feature in _ENCODING_DICS:
                encoding_function = partial(self.encode, feature)
                data.loc[:, feature] = data[feature].apply(encoding_function)

            return data
        else:
            raise ValueError(f"Unknown config: {config}")
       
    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")

    def encoding_dics(self):
        data = [pandas.DataFrame([(feature, original, encoded) for original, encoded in d.items()])
                for feature, d in _ENCODING_DICS.items()]
        data = pandas.concat(data, axis="rows").reset_index()
        data.drop("index", axis="columns", inplace=True)
        data.columns = ["feature", "original_value", "encoded_value"]

        return data