Datasets:
Update acute_inflammation.py
Browse files- acute_inflammation.py +39 -7
acute_inflammation.py
CHANGED
@@ -47,6 +47,28 @@ features_types_per_config = {
|
|
47 |
"has_inflammed_bladder": datasets.Value("bool"),
|
48 |
"has_nephritis_of_renal_pelvis": datasets.Value("bool"),
|
49 |
"has_acute_inflammation": datasets.ClassLabel(num_classes=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
}
|
51 |
}
|
52 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
@@ -63,7 +85,11 @@ class Acute_Inflammation(datasets.GeneratorBasedBuilder):
|
|
63 |
DEFAULT_CONFIG = "inflammation"
|
64 |
BUILDER_CONFIGS = [
|
65 |
Acute_InflammationConfig(name="inflammation",
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
]
|
68 |
|
69 |
|
@@ -77,7 +103,7 @@ class Acute_Inflammation(datasets.GeneratorBasedBuilder):
|
|
77 |
downloads = dl_manager.download_and_extract(urls_per_split)
|
78 |
|
79 |
return [
|
80 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
81 |
]
|
82 |
|
83 |
def _generate_examples(self, filepath: str):
|
@@ -92,12 +118,18 @@ class Acute_Inflammation(datasets.GeneratorBasedBuilder):
|
|
92 |
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
93 |
data.columns = _BASE_FEATURE_NAMES
|
94 |
boolean_features = ["has_nausea", "has_lumbar_pain", "has_urine_pushing",
|
95 |
-
|
96 |
-
|
97 |
for f in boolean_features:
|
98 |
data.loc[:, f] = data[f].apply(lambda x: True if x == "yes" else False)
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
return data
|
|
|
47 |
"has_inflammed_bladder": datasets.Value("bool"),
|
48 |
"has_nephritis_of_renal_pelvis": datasets.Value("bool"),
|
49 |
"has_acute_inflammation": datasets.ClassLabel(num_classes=2)
|
50 |
+
},
|
51 |
+
"nephritis": {
|
52 |
+
"temperature": datasets.Value("float64"),
|
53 |
+
"has_nausea": datasets.Value("bool"),
|
54 |
+
"has_lumbar_pain": datasets.Value("bool"),
|
55 |
+
"has_urine_pushing": datasets.Value("bool"),
|
56 |
+
"has_micturition_pains": datasets.Value("bool"),
|
57 |
+
"has_burnt_urethra": datasets.Value("bool"),
|
58 |
+
"has_inflammed_bladder": datasets.Value("bool"),
|
59 |
+
"has_acute_inflammation": datasets.Value("bool"),
|
60 |
+
"has_nephritis_of_renal_pelvis": datasets.ClassLabel(num_classes=2)
|
61 |
+
},
|
62 |
+
"bladder": {
|
63 |
+
"temperature": datasets.Value("float64"),
|
64 |
+
"has_nausea": datasets.Value("bool"),
|
65 |
+
"has_lumbar_pain": datasets.Value("bool"),
|
66 |
+
"has_urine_pushing": datasets.Value("bool"),
|
67 |
+
"has_micturition_pains": datasets.Value("bool"),
|
68 |
+
"has_burnt_urethra": datasets.Value("bool"),
|
69 |
+
"has_acute_inflammation": datasets.Value("bool"),
|
70 |
+
"has_nephritis_of_renal_pelvis": datasets.Value("bool"),
|
71 |
+
"has_inflammed_bladder": datasets.ClassLabel(num_classes=2),
|
72 |
}
|
73 |
}
|
74 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
|
|
85 |
DEFAULT_CONFIG = "inflammation"
|
86 |
BUILDER_CONFIGS = [
|
87 |
Acute_InflammationConfig(name="inflammation",
|
88 |
+
description="Binary classification of inflammation."),
|
89 |
+
Acute_InflammationConfig(name="nephritis",
|
90 |
+
description="Binary classification of nephritis."),
|
91 |
+
Acute_InflammationConfig(name="bladder",
|
92 |
+
description="Binary classification of bladder inflammation."),
|
93 |
]
|
94 |
|
95 |
|
|
|
103 |
downloads = dl_manager.download_and_extract(urls_per_split)
|
104 |
|
105 |
return [
|
106 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
|
107 |
]
|
108 |
|
109 |
def _generate_examples(self, filepath: str):
|
|
|
118 |
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
119 |
data.columns = _BASE_FEATURE_NAMES
|
120 |
boolean_features = ["has_nausea", "has_lumbar_pain", "has_urine_pushing",
|
121 |
+
"has_micturition_pains", "has_burnt_urethra", "has_inflammed_bladder",
|
122 |
+
"has_nephritis_of_renal_pelvis", "has_acute_inflammation"]
|
123 |
for f in boolean_features:
|
124 |
data.loc[:, f] = data[f].apply(lambda x: True if x == "yes" else False)
|
125 |
+
|
126 |
+
if config == "inflammation":
|
127 |
+
data = data.astype({"has_acute_inflammation": int})
|
128 |
+
elif config == "nephritis"
|
129 |
+
data = data.astype({"has_nephritis_of_renal_pelvis": int})
|
130 |
+
elif config == "bladder":
|
131 |
+
data = data.astype({"has_inflammed_bladder": int})
|
132 |
+
|
133 |
+
data = data[list(features_types_per_config[config].keys())]
|
134 |
|
135 |
return data
|