|
"""Acute_Inflammation""" |
|
|
|
from typing import List |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
_BASE_FEATURE_NAMES = [ |
|
"temperature", |
|
"has_nausea", |
|
"has_lumbar_pain", |
|
"has_urine_pushing", |
|
"has_micturition_pains", |
|
"has_burnt_urethra", |
|
"has_inflammed_bladder", |
|
"has_nephritis_of_renal_pelvis" |
|
] |
|
|
|
DESCRIPTION = "Acute_Inflammation dataset from the UCI ML repository." |
|
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Acute_Inflammation" |
|
_URLS = ("https://huggingface.co./datasets/mstz/acute_inflammation/raw/main/diagnosis.csv") |
|
_CITATION = """ |
|
@misc{misc_acute_inflammations_184, |
|
author = {Czerniak,Jacek}, |
|
title = {{Acute Inflammations}}, |
|
year = {2009}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5V59S}} |
|
}""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co./datasets/mstz/acute_inflammation/raw/main/diagnosis.csv" |
|
} |
|
features_types_per_config = { |
|
"inflammation": { |
|
"temperature": datasets.Value("float64"), |
|
"has_nausea": datasets.Value("bool"), |
|
"has_lumbar_pain": datasets.Value("bool"), |
|
"has_urine_pushing": datasets.Value("bool"), |
|
"has_micturition_pains": datasets.Value("bool"), |
|
"has_burnt_urethra": datasets.Value("bool"), |
|
"has_inflammed_bladder": datasets.Value("bool"), |
|
"has_nephritis_of_renal_pelvis": datasets.Value("int8") |
|
} |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class Acute_InflammationConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(Acute_InflammationConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Acute_Inflammation(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "inflammation" |
|
BUILDER_CONFIGS = [ |
|
Acute_InflammationConfig(name="inflammation", |
|
description="Binary classification of inflammation.") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data = self.preprocess(data, config=self.config.name) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
boolean_features = ["has_nausea", "has_lumbar_pain", "has_urine_pushing", |
|
"has_micturition_pains", "has_burnt_urethra", "has_inflammed_bladder"] |
|
for f in boolean_features: |
|
data.loc[:, f] = data[f].apply(lambda x: True if x == "yes" else False) |
|
|
|
data = data.astype({f: "bool" for f in boolean_features}) |
|
|
|
return data |
|
|