minhanhto09
commited on
Commit
•
f64c774
1
Parent(s):
cf3a022
Update BuilderConfig
Browse files- NuCLS_dataset.py +35 -7
NuCLS_dataset.py
CHANGED
@@ -23,7 +23,7 @@ Created on Tue Mar 12 16:13:56 2024
|
|
23 |
import pandas as pd
|
24 |
from PIL import Image as PilImage # Import PIL Image with an alias
|
25 |
import datasets
|
26 |
-
from datasets import DatasetBuilder, GeneratorBasedBuilder, DownloadManager, DatasetInfo, Features, Image, ClassLabel, Value, Sequence, load_dataset, SplitGenerator
|
27 |
import os
|
28 |
import io
|
29 |
from typing import Tuple, Dict, List
|
@@ -51,10 +51,29 @@ _LICENSE = "CC0 1.0 license"
|
|
51 |
|
52 |
_URL = "https://www.dropbox.com/scl/fi/zsm9l3bkwx808wfryv5zm/NuCLS_dataset.zip?rlkey=x3358slgrxt00zpn7zpkpjr2h&dl=1"
|
53 |
|
54 |
-
class NuCLSDataset(GeneratorBasedBuilder):
|
55 |
-
"""The NuCLS dataset."""
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def _info(self):
|
60 |
"""Returns the dataset info."""
|
@@ -118,7 +137,12 @@ class NuCLSDataset(GeneratorBasedBuilder):
|
|
118 |
unique_filenames = [os.path.splitext(f)[0] for f in os.listdir(rgb_dir)]
|
119 |
|
120 |
# Process train/test split files to get slide names for each split and fold
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Create the split generators for each fold
|
124 |
split_generators = []
|
@@ -149,13 +173,17 @@ class NuCLSDataset(GeneratorBasedBuilder):
|
|
149 |
|
150 |
return split_generators
|
151 |
|
152 |
-
def _process_train_test_split_files(self, split_dir):
|
153 |
"""Reads the train/test split CSV files and returns a dictionary with fold numbers as keys and tuple of train/test slide names as values."""
|
|
|
154 |
split_slide_names = {}
|
155 |
for split_file in os.listdir(split_dir):
|
|
|
|
|
|
|
|
|
156 |
file_path = os.path.join(split_dir, split_file)
|
157 |
fold_number = split_file.split('_')[1] # Assumes file naming format "fold_X_[train/test].csv"
|
158 |
-
|
159 |
with open(file_path, 'r') as f:
|
160 |
csv_reader = csv.reader(f)
|
161 |
next(csv_reader) # Skip header
|
|
|
23 |
import pandas as pd
|
24 |
from PIL import Image as PilImage # Import PIL Image with an alias
|
25 |
import datasets
|
26 |
+
from datasets import DatasetBuilder, GeneratorBasedBuilder, DownloadManager, DatasetInfo, Features, Image, ClassLabel, Value, Sequence, load_dataset, SplitGenerator, BuilderConfig
|
27 |
import os
|
28 |
import io
|
29 |
from typing import Tuple, Dict, List
|
|
|
51 |
|
52 |
_URL = "https://www.dropbox.com/scl/fi/zsm9l3bkwx808wfryv5zm/NuCLS_dataset.zip?rlkey=x3358slgrxt00zpn7zpkpjr2h&dl=1"
|
53 |
|
|
|
|
|
54 |
|
55 |
+
class NuCLSDatasetConfig(BuilderConfig):
|
56 |
+
def __init__(self, use_fold_999=False, **kwargs):
|
57 |
+
super(NuCLSDatasetConfig, self).__init__(**kwargs)
|
58 |
+
self.use_fold_999 = use_fold_999
|
59 |
+
|
60 |
+
class NuCLSDataset(GeneratorBasedBuilder):
|
61 |
+
# Define multiple configurations for your dataset
|
62 |
+
BUILDER_CONFIGS = [
|
63 |
+
NuCLSDatasetConfig(
|
64 |
+
name="default",
|
65 |
+
version=datasets.Version("1.1.0"),
|
66 |
+
description="Default configuration with the full dataset",
|
67 |
+
),
|
68 |
+
NuCLSDatasetConfig(
|
69 |
+
name="debug",
|
70 |
+
version=datasets.Version("1.1.0"),
|
71 |
+
description="Debug configuration which uses fold 999 for quick tests",
|
72 |
+
use_fold_999=True
|
73 |
+
),
|
74 |
+
]
|
75 |
+
|
76 |
+
DEFAULT_CONFIG_NAME = "default"
|
77 |
|
78 |
def _info(self):
|
79 |
"""Returns the dataset info."""
|
|
|
137 |
unique_filenames = [os.path.splitext(f)[0] for f in os.listdir(rgb_dir)]
|
138 |
|
139 |
# Process train/test split files to get slide names for each split and fold
|
140 |
+
if self.config.use_fold_999:
|
141 |
+
# Generate the split generators for fold 999
|
142 |
+
split_slide_names = self._process_train_test_split_files(split_dir, specific_fold = '999')
|
143 |
+
else:
|
144 |
+
# Generate the split generators for all folds
|
145 |
+
split_slide_names = self._process_train_test_split_files(split_dir)
|
146 |
|
147 |
# Create the split generators for each fold
|
148 |
split_generators = []
|
|
|
173 |
|
174 |
return split_generators
|
175 |
|
176 |
+
def _process_train_test_split_files(self, split_dir, specific_fold=None):
|
177 |
"""Reads the train/test split CSV files and returns a dictionary with fold numbers as keys and tuple of train/test slide names as values."""
|
178 |
+
|
179 |
split_slide_names = {}
|
180 |
for split_file in os.listdir(split_dir):
|
181 |
+
fold_number = split_file.split('_')[1] # Assumes file naming format "fold_X_[train/test].csv"
|
182 |
+
# If specific_fold is set, skip all other folds
|
183 |
+
if specific_fold is not None and fold_number != specific_fold:
|
184 |
+
continue
|
185 |
file_path = os.path.join(split_dir, split_file)
|
186 |
fold_number = split_file.split('_')[1] # Assumes file naming format "fold_X_[train/test].csv"
|
|
|
187 |
with open(file_path, 'r') as f:
|
188 |
csv_reader = csv.reader(f)
|
189 |
next(csv_reader) # Skip header
|