import os import datasets from typing import List import json logger = datasets.logging.get_logger(__name__) _CITATION = """ """ _DESCRIPTION = """ This is the dataset repository for BESSTIE Dataset. The dataset can help build text classification models for sarcasm detection and sentiment analysis for low resource languages. """ class BESSTIEConfig(datasets.BuilderConfig): """BuilderConfig for BESSTIE""" def __init__(self, **kwargs): """BuilderConfig for BESSTIE. Args: **kwargs: keyword arguments forwarded to super. """ super(BESSTIEConfig, self).__init__(**kwargs) class BESSTIEConfig(datasets.GeneratorBasedBuilder): """BESSTIE dataset.""" BUILDER_CONFIGS = [ BESSTIEConfig(name="BESSTIE", version=datasets.Version("0.0.2"), description="BESSTIE dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), "sentiment_label": datasets.Value("string"), } ), supervised_keys=None, homepage="https://github.com/surrey-nlp/BESSTIE-google-sentiment-au", citation=_CITATION, ) _URL = "https://huggingface.co./datasets/surrey-nlp/BESSTIE-google-sentiment-au/tree/main/data/" _URLS = { "train": _URL + "google-sentiment-au-train.jsonl", "dev": _URL + "google-sentiment-au-valid.jsonl", "test": _URL + "google-sentiment-au-test.jsonl" } def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = self._URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath) as f: plod = json.load(f) for object in plod: id_ = int(object['id']) yield id_, { "id": str(id_), "text": object['text'], "sentiment_label": object['sentiment_label'], }