Datasets:
Tasks:
Text Classification
Formats:
json
Languages:
English
Size:
1K - 10K
Tags:
sentiment-analysis
License:
import os | |
import datasets | |
from typing import List | |
import json | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
This is the dataset repository for BESSTIE Dataset. | |
The dataset can help build text classification models for sarcasm detection and sentiment analysis for low resource languages. | |
""" | |
class BESSTIEConfig(datasets.BuilderConfig): | |
"""BuilderConfig for BESSTIE""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for BESSTIE. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(BESSTIEConfig, self).__init__(**kwargs) | |
class BESSTIEConfig(datasets.GeneratorBasedBuilder): | |
"""BESSTIE dataset.""" | |
BUILDER_CONFIGS = [ | |
BESSTIEConfig(name="BESSTIE", version=datasets.Version("0.0.2"), description="BESSTIE dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
"sentiment_label": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/surrey-nlp/BESSTIE-google-sentiment-au", | |
citation=_CITATION, | |
) | |
_URL = "https://huggingface.co./datasets/surrey-nlp/BESSTIE-google-sentiment-au/tree/main/data/" | |
_URLS = { | |
"train": _URL + "google-sentiment-au-train.jsonl", | |
"dev": _URL + "google-sentiment-au-valid.jsonl", | |
"test": _URL + "google-sentiment-au-test.jsonl" | |
} | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
urls_to_download = self._URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath) as f: | |
plod = json.load(f) | |
for object in plod: | |
id_ = int(object['id']) | |
yield id_, { | |
"id": str(id_), | |
"text": object['text'], | |
"sentiment_label": object['sentiment_label'], | |
} | |