File size: 1,470 Bytes
ff01e3f ec8032f 8ad0ec9 67a6b92 222621c 67a6b92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
dataset_info:
features:
- name: id
dtype: string
- name: created_at
dtype: string
- name: prompt
dtype: string
- name: negative_prompt
dtype: string
- name: likes
dtype: int64
- name: sampler
dtype: string
- name: height
dtype: int64
- name: steps
dtype: int64
- name: width
dtype: int64
- name: cursor
dtype: int64
- name: url
dtype: string
- name: cfg_scale
dtype: float64
- name: model
dtype: string
splits:
- name: train
num_bytes: 248764537
num_examples: 256224
download_size: 54319285
dataset_size: 248764537
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- image generation
- negative prompts
- stable-diffusion
pretty_name: NegOpt Full
language:
- en
size_categories:
- 100K<n<1M
task_categories:
- text-to-image
- text-generation
---
This is the dataset constructed in and used to fine-tune the models proposed in our paper [Optimizing Negative Prompts for Enhanced Aesthetics and Fidelity in Text-To-Image Generation](https://arxiv.org/abs/2403.07605). The data is gotten from [Playground](https://playground.com/).
If you find this dataset useful, please cite us here:
```
@article{ogezi2024optimizing,
title={Optimizing Negative Prompts for Enhanced Aesthetics and Fidelity in Text-To-Image Generation},
author={Ogezi, Michael and Shi, Ning},
journal={arXiv preprint arXiv:2403.07605},
year={2024}
}
``` |