import json import os import copy import re from os import listdir from os.path import isfile, join import argparse import sys INSTRUCT_CHUNKED_PROMPT = """你是一个擅长翻译科技新闻的翻译专家。请将以下内容翻译为中文,使用相同格式输出,并保留时间戳。不要漏掉任何信息。合并多行文本时,保留第一个和最后一个时间戳。 """ def break_line(line: str): pattern = re.compile(r"^\[(\d+.\d+)\](.*)\[(\d+.\d+)\]$") match = pattern.match(line) start_time = match.group(1) text = match.group(2) end_time = match.group(3) return start_time, text.strip(), end_time, float(start_time), float(end_time) def get_total_chars(cn_lines: list[str], en_lines: list[str]): cn_total_chars = 0 en_total_chars = 0 for line in cn_lines: cn_total_chars += len(line) for line in en_lines: en_total_chars += len(line) return cn_total_chars + en_total_chars def chunk_messages(cn_lines: list[str], en_lines: list[str], MAX_LEN: int = 2000): cn_lines_copy = copy.deepcopy(cn_lines) en_lines_copy = copy.deepcopy(en_lines) final_chunks: list[tuple[list[str], list[str]]] = [] while True: en_current_chunk = [] cn_current_chunk = [] while True: curr_total_len = get_total_chars(cn_current_chunk, en_current_chunk) if len(cn_lines_copy) == 0 or len(en_lines_copy) == 0: final_chunks.append((cn_current_chunk, en_current_chunk)) return final_chunks elif curr_total_len > MAX_LEN: final_chunks.append((cn_current_chunk, en_current_chunk)) break else: # Try append a new line to current chunk latest_cn_line = cn_lines_copy.pop(0) cn_start, cn_text, cn_end, cn_start_f, cn_end_f = break_line(latest_cn_line) cn_current_chunk.append(latest_cn_line) while True: latest_en_line = en_lines_copy.pop(0) en_start, en_text, en_end, en_start_f, en_end_f = break_line(latest_en_line) en_current_chunk.append(latest_en_line) if en_end == cn_end: break else: if en_start_f > cn_end_f: raise Exception("English and Chinese lines are not in sync. Offensing line: " + latest_cn_line) def new_message(eng_in, chs_out, prev_in = None, prev_out = None): if(prev_in == None or prev_out == None): return {"messages": [ {"role": "system", "content": INSTRUCT_CHUNKED_PROMPT}, {"role": "user", "content": eng_in}, {"role": "assistant", "content": chs_out}] } else: return {"messages": [ {"role": "system", "content": INSTRUCT_CHUNKED_PROMPT}, {"role": "user", "content": prev_in}, {"role": "assistant", "content": prev_out}, {"role": "user", "content": eng_in}, {"role": "assistant", "content": chs_out}] } def write_jsonl(message_groups, filename): json_lines = [] with open(filename, "w", encoding='utf-8-sig') as fout: for i in range(len(message_groups)): if(i>0): msg_obj = new_message( message_groups[i][0].strip(), message_groups[i][1].strip(), message_groups[i-1][0].strip(), message_groups[i-1][1].strip() ) else: msg_obj = new_message( message_groups[i][0].strip(), message_groups[i][1].strip() ) json.dump(msg_obj, fout) fout.write("\n") json_lines.append(json.dumps(msg_obj)) return json_lines if __name__ == "__main__": parser = argparse.ArgumentParser(description='Generate ChatGPT training data from a directory of subtitle files.') parser.add_argument('data_dir', type=str, help='The directory containing the subtitle files.', default="data") parser.add_argument('--maxlen', type=int, help='The maximum length of a combined message. \nNote that this limit will be exceeded a little bit, so leave some headroom. \nRecommended value is max context length / 4.', default=2000) parser.add_argument('--test-ratio', type=float, help='The ratio of test data to training data.', default=0.2) args = parser.parse_args() message_groups = [] DOCUMENT_ROOT = args.data_dir files = listdir(DOCUMENT_ROOT) files = list(filter(lambda x: x.endswith(".en.txt"), files)) files.sort() print(files) for f in files: en_fname = join(DOCUMENT_ROOT, f) if en_fname.endswith(".en.txt") and isfile(en_fname): cn_fname = join(DOCUMENT_ROOT, f.replace(".en.txt", ".cn.txt")) if os.path.exists(cn_fname) and isfile(cn_fname): print(f"Found data pair: {en_fname} and {cn_fname}") with open(en_fname, "r", encoding='utf-8-sig') as enfin: en_messages = enfin.read() with open(cn_fname, "r", encoding='utf-8-sig') as cnfin: cn_messages = cnfin.read() en_messages = [part.strip() for part in en_messages.split("\n") if part.strip() != ""] cn_messages = [part.strip() for part in cn_messages.split("\n") if part.strip() != ""] try: chunks = chunk_messages(cn_messages, en_messages, MAX_LEN=args.maxlen) en_messages = [] cn_messages = [] for chunk in chunks: cn_chunk, en_chunk = chunk en_messages.append("\n".join(en_chunk)) cn_messages.append("\n".join(cn_chunk)) print("\n".join(en_chunk)) print("---") print("\n".join(cn_chunk)) print("\n") except Exception as e: print(f"Error: {e}") continue if(len(en_messages) != len(cn_messages)): print(f"English and Chinese version mismatch. Discarding {en_fname} pair.") messages = zip(en_messages, cn_messages) message_groups.extend(messages) jsonl_lines = write_jsonl(message_groups, f"combined-{args.maxlen}.jsonl") import random random.shuffle(jsonl_lines) TEST_RATIO = args.test_ratio split_index = int(len(jsonl_lines) * TEST_RATIO) test = jsonl_lines[:split_index] train = jsonl_lines[split_index:] with open (f"chatgpt-train-{args.maxlen}.jsonl", "w", encoding='utf-8-sig') as fout: for line in train: fout.write(line + "\n") with open (f"chatgpt-test-{args.maxlen}.jsonl", "w", encoding='utf-8-sig') as fout: for line in test: fout.write(line + "\n") # recent_files = files[-5:] # recent_messages = [] # for f in recent_files: # en_fname = join(DOCUMENT_ROOT, f) # if en_fname.endswith(".en.txt") and isfile(en_fname): # cn_fname = join(DOCUMENT_ROOT, f.replace(".en.txt", ".cn.txt")) # if os.path.exists(cn_fname) and isfile(cn_fname): # print(f"Found data pair: {en_fname} and {cn_fname}") # with open(en_fname, "r", encoding='utf-8-sig') as enfin: # en_messages = enfin.read() # with open(cn_fname, "r", encoding='utf-8-sig') as cnfin: # cn_messages = cnfin.read() # en_messages = [part.strip() for part in en_messages.split("\n") if part.strip() != ""] # cn_messages = [part.strip() for part in cn_messages.split("\n") if part.strip() != ""] # if(len(en_messages) != len(cn_messages)): # print(f"English and Chinese version mismatch. Discarding {en_fname} pair.") # messages = zip(en_messages, cn_messages) # recent_messages.extend(messages) # write_jsonl(recent_messages, "recent-combined.jsonl") # TEST_RATIO = 0.2 # split_index = int(len(recent_messages) * TEST_RATIO) # test = recent_messages[:split_index] # train = recent_messages[split_index:] # write_jsonl(train, "chatgpt-recent-train.jsonl") # write_jsonl(test, "chatgpt-recent-test.jsonl")