import torch from PIL import Image from transformers import CLIPProcessor, CLIPModel import numpy as np import os from datasets import load_dataset, Dataset # prevent OMP error? os.environ['KMP_DUPLICATE_LIB_OK']='True' # ignore images? Do this unless you have a lot of memory! remove_images = True verbose = True # Save locally for faster use next time cache_on_disk = True # Load datasets and remove images (or not) def load_and_prepare_data(): if verbose: print("Loading") # Load from HF embeddings_data = load_dataset("metmuseum/openaccess_embeddings", split='train') collection_data = load_dataset("metmuseum/openaccess", split='train') # Strip out image binary data (or not) if remove_images: cd_cleaned = collection_data.remove_columns(['jpg']) # Convert collection to pandas dataframes collection_df = cd_cleaned.to_pandas() else: # Convert collection to pandas dataframes collection_df = collection_data.to_pandas() # Convert embeddings to pandas dataframes embedding_df = embeddings_data.to_pandas() # Merge the datasets on "Object ID" if verbose: print("Merging") merged_df = collection_df.merge(embedding_df, on="Object ID", how="left") if verbose: print("Merged") # Convert back to Huggingface dataset first_dataset = Dataset.from_pandas(merged_df) # Remove empty embeddings - note, this will result in about 1/2 of the samples being tossed # But make our lives easier when passing to FAISS etc merged_dataset = first_dataset.filter(lambda example: example['Embedding'] is not None) if cache_on_disk: merged_dataset.save_to_disk('metmuseum_merged') return merged_dataset # Function to build the FAISS index & (optionally) save def build_faiss_index(dataset, index_file): dataset.add_faiss_index('Embedding') if cache_on_disk: dataset.save_faiss_index('Embedding', index_file) # Function to load the FAISS on-disk index def load_faiss_index(dataset, index_file): dataset.load_faiss_index('Embedding',index_file) def search_embeddings(dataset, query_embedding, k=5): # """Search for the top k closest embeddings in the index.""" scores, samples = dataset.get_nearest_examples( "Embedding", query_embedding, k ) return scores, samples def query_text(processor, model, text): """Convert a text query into an embedding.""" inputs = processor(text=text, return_tensors="pt") with torch.no_grad(): text_embedding = model.get_text_features(**inputs).numpy() return text_embedding def query_image(processor, model, image_path): """Convert an image query into an embedding.""" image = Image.open(image_path) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): image_embedding = model.get_image_features(**inputs).numpy() print(image_embedding.shape) return image_embedding[0] if __name__ == "__main__": index_file = "faiss_index_file.index" dataset_path = "metmuseum_merged" # Try to load cahced data & cahced FAISS index if os.path.exists(dataset_path): dataset = Dataset.load_from_disk(dataset_path) else: dataset = load_and_prepare_data() if not os.path.exists(index_file): if verbose: print("Building index") build_faiss_index(dataset, index_file) else: load_faiss_index(dataset, index_file) # Load CLIP to embed text / images to search model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # Example usage for text query # This doesn't really seem to work right now... text_query = "A painting of a sunflower" text_embedding = query_text(processor, model, text_query) # K = how many results to get scores, samples = search_embeddings(dataset, text_embedding, k=5) print("\Text Query Results:") print(scores) # The results are dataset columns -- you could loop through all fields, # Or just get a URL like below for result in samples["Object ID"]: print("https://metmuseum.org/art/collection/search/" + str(result)) # Example usage for image query image_path = "DP355692.jpg" # Replace with the path to your image file image_embedding = query_image(processor, model, image_path) # K = how many results to get scores, samples = search_embeddings(dataset, image_embedding, k=5) print("\nImage Query Results:") print(scores) for result in samples["Object ID"]: print("https://metmuseum.org/art/collection/search/" + str(result))