|
import datasets |
|
from transformers import CLIPProcessor, CLIPModel |
|
import torch |
|
from PIL import Image |
|
|
|
|
|
dataset = datasets.load_dataset("metmuseum/openaccess") |
|
|
|
|
|
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") |
|
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
|
|
|
|
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") |
|
model.to(device) |
|
|
|
|
|
embeddings_map = {} |
|
|
|
|
|
def create_embedding(image_pil): |
|
try: |
|
inputs = processor(images=image_pil, return_tensors="pt", padding=True).to(device) |
|
with torch.no_grad(): |
|
embeddings = model.get_image_features(**inputs) |
|
return embeddings |
|
except Exception as e: |
|
print(f"Error processing image: {e}") |
|
return None |
|
|
|
|
|
|
|
|
|
for item in dataset['train']: |
|
object_id = item['Object ID'] |
|
image_pil = item['jpg'] |
|
if image_pil: |
|
embedding = create_embedding(image_pil) |
|
if embedding is not None: |
|
embeddings_map[object_id] = embedding.cpu().numpy() |
|
|
|
|
|
|
|
|
|
|
|
embedding_dataset = datasets.Dataset.from_dict({ |
|
'Object ID': list(embeddings_map.keys()), |
|
'Embedding': [embedding.tolist() for embedding in embeddings_map.values()][0] |
|
}) |
|
|
|
|
|
embedding_dataset.save_to_disk('metmuseum_embeddings') |