File size: 1,252 Bytes
99383cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# baased on https://huggingface.co./blog/getting-started-with-embeddings
import torch
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, util
embeddings = load_dataset('metmuseum/openaccess_embeddings')
with torch.no_grad():
embeddings.set_format("torch", columns=['Embedding'], output_all_columns=True)
#First, we load the respective CLIP model
model = SentenceTransformer('clip-ViT-B-32')
def search(query, k=3):
# First, we encode the query (which can either be an image or a text string)
query_emb = model.encode([query], convert_to_tensor=True, show_progress_bar=False)
# Then, we use the util.semantic_search function, which computes the cosine-similarity
# between the query embedding and all image embeddings.
# It then returns the top_k highest ranked images, which we output
hits = util.semantic_search(query_emb, embeddings["train"]["Embedding"], top_k=k)[0]
print("Results for '"+query+"'")
for hit in hits:
# print(hit)
print("https://www.metmuseum.org/art/collection/search/"+str(embeddings["train"][hit['corpus_id']]["Object ID"]))
print("score: "+str(hit["score"]))
search("Painting of a sunset")
print("\n")
search("Angry cat") |