Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
Dask
License:
brettrenfer commited on
Commit
44f2997
·
verified ·
1 Parent(s): e58c2ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -3
README.md CHANGED
@@ -1,3 +1,148 @@
1
- ---
2
- license: cc0-1.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc0-1.0
3
+ language:
4
+ - en
5
+ pretty_name: The Metropolitan Museum of Art - Open Access CSV
6
+ dataset_info:
7
+ features:
8
+ - name: Object Number
9
+ dtype: string
10
+ - name: Is Highlight
11
+ dtype: bool
12
+ - name: Is Timeline Work
13
+ dtype: bool
14
+ - name: Is Public Domain
15
+ dtype: bool
16
+ - name: Object ID
17
+ dtype: int32
18
+ - name: Gallery Number
19
+ dtype: string
20
+ - name: Department
21
+ dtype: string
22
+ - name: AccessionYear
23
+ dtype: float64
24
+ - name: Object Name
25
+ dtype: string
26
+ - name: Title
27
+ dtype: string
28
+ - name: Culture
29
+ dtype: string
30
+ - name: Period
31
+ dtype: string
32
+ - name: Dynasty
33
+ dtype: string
34
+ - name: Reign
35
+ dtype: string
36
+ - name: Portfolio
37
+ dtype: string
38
+ - name: Constituent ID
39
+ dtype: string
40
+ - name: Artist Role
41
+ dtype: string
42
+ - name: Artist Prefix
43
+ dtype: string
44
+ - name: Artist Display Name
45
+ dtype: string
46
+ - name: Artist Display Bio
47
+ dtype: string
48
+ - name: Artist Suffix
49
+ dtype: string
50
+ - name: Artist Alpha Sort
51
+ dtype: string
52
+ - name: Artist Nationality
53
+ dtype: string
54
+ - name: Artist Begin Date
55
+ dtype: string
56
+ - name: Artist End Date
57
+ dtype: string
58
+ - name: Artist Gender
59
+ dtype: string
60
+ - name: Artist ULAN URL
61
+ dtype: string
62
+ - name: Artist Wikidata URL
63
+ dtype: string
64
+ - name: Object Date
65
+ dtype: string
66
+ - name: Object Begin Date
67
+ dtype: int64
68
+ - name: Object End Date
69
+ dtype: int64
70
+ - name: Medium
71
+ dtype: string
72
+ - name: Dimensions
73
+ dtype: string
74
+ - name: Credit Line
75
+ dtype: string
76
+ - name: Geography Type
77
+ dtype: string
78
+ - name: City
79
+ dtype: string
80
+ - name: State
81
+ dtype: string
82
+ - name: County
83
+ dtype: string
84
+ - name: Country
85
+ dtype: string
86
+ - name: Region
87
+ dtype: string
88
+ - name: Subregion
89
+ dtype: string
90
+ - name: Locale
91
+ dtype: string
92
+ - name: Locus
93
+ dtype: string
94
+ - name: Excavation
95
+ dtype: string
96
+ - name: River
97
+ dtype: string
98
+ - name: Classification
99
+ dtype: string
100
+ - name: Rights and Reproduction
101
+ dtype: string
102
+ - name: Link Resource
103
+ dtype: string
104
+ - name: Object Wikidata URL
105
+ dtype: string
106
+ - name: Metadata Date
107
+ dtype: string
108
+ - name: Repository
109
+ dtype: string
110
+ - name: Tags
111
+ dtype: string
112
+ - name: Tags AAT URL
113
+ dtype: string
114
+ - name: Tags Wikidata URL
115
+ dtype: string
116
+ ---
117
+ The Metropolitan Museum of Art Open Access on HuggingFace
118
+ ===================
119
+
120
+ The [Metropolitan Museum of Art](http://www.metmuseum.org) presents over 5,000 years of art from around the world for everyone to experience and enjoy. The Museum lives in two iconic sites in New York City-The Met Fifth Avenue and The Met Cloisters. Millions of people also take part in The Met experience online.
121
+
122
+ Since it was founded in 1870, The Met has always aspired to be more than a treasury of rare and beautiful objects. Every day, art comes alive in the Museum's galleries and through its exhibitions and events, revealing both new ideas and unexpected connections across time and across cultures.
123
+
124
+ The Metropolitan Museum of Art provides select datasets of information on more than 470,000 artworks in its Collection for unrestricted commercial and noncommercial use. To the extent possible under law, The Metropolitan Museum of Art has waived all copyright and related or neighboring rights to this dataset using [Creative Commons Zero](https://creativecommons.org/publicdomain/zero/1.0/). This work is published from: The United States Of America. You can also find the text of the CC Zero deed in the file [LICENSE](https://github.com/metmuseum/openaccess/blob/master/LICENSE) in this repository. These select datasets are now available for use in any media without permission or fee; they also include identifying data for artworks under copyright. The datasets support the search, use, and interaction with the Museum's collection.
125
+
126
+ ## Additional usage guidelines
127
+ For more details on how to use images of artworks in The Metropolitan Museum of Art’s collection, please visit our [Open Access](http://www.metmuseum.org/about-the-met/policies-and-documents/image-resources) page.
128
+
129
+ ## Updating or recreating the CSV + images
130
+ Right now, this is a manual process. Working on it!
131
+ 1. Download or clone the CSV from our [github](https://github.com/metmuseum/openaccess)
132
+ 2. (Optional) Create a compressed CSV
133
+ * Since some operating systems or machines choke on our huge CSV, it can be convenient to compress the file.
134
+ * Easiest: ```gzip MetObjects.csv```
135
+ 3. Process the CSV
136
+ * Right now, there are many ```\n``` characters in the CSV. Some Python interpreters don't like this.
137
+ * Use ```clean.py``` to create a cleaned version, now called ```metadata.csv.gz```
138
+ 4. (Optional) add images to the CSV
139
+ * Run ```add_images.py```
140
+ * It will take a while
141
+ * CAUTION: be very careful with the ```do_verify``` variable. Some networks do SSL redirects that Python does not like. Disabling this will not verify SSL certs. This is a quick band-aid to bypass this, but totally unsafe.
142
+ 5. Install [img2dataset](https://github.com/rom1504/img2dataset)
143
+ * ```pip install img2dataset```
144
+ 6. Run ```img2dataset``` with the following options:
145
+ * ```img2dataset --processes_count 10 --thread_count 64 --url_list "cleaned_metadata_images.csv.gz" --input_format "csv.gz" --output_format "webdataset" --output_folder "data" --url_col "primaryImageSmall" --disable_all_reencoding "True" --max_shard_retry 10 --retries 10 --save_additional_columns "['Is Highlight', 'Is Timeline Work', 'Is Public Domain', 'Object ID', 'Gallery Number', 'Department', 'AccessionYear', 'Object Name', 'Title', 'Culture', 'Period', 'Dynasty', 'Reign', 'Portfolio', 'Constituent ID', 'Artist Role', 'Artist Prefix', 'Artist Display Name', 'Artist Display Bio', 'Artist Suffix', 'Artist Alpha Sort', 'Artist Nationality', 'Artist Begin Date', 'Artist End Date', 'Artist Gender', 'Artist ULAN URL', 'Artist Wikidata URL', 'Object Date', 'Object Begin Date', 'Object End Date', 'Medium', 'Dimensions', 'Credit Line', 'Geography Type', 'City', 'State', 'County', 'Country', 'Region', 'Subregion', 'Locale', 'Locus', 'Excavation', 'River', 'Classification', 'Rights and Reproduction', 'Link Resource', 'Object Wikidata URL', 'Metadata Date', 'Repository', 'Tags', 'Tags AAT URL', 'Tags Wikidata URL']"```
146
+ * See img2dataset's docs for details on the above. You may want to remove the ```disable_all_reencoding``` option... As-is, it does not downsize or compress images at all
147
+ * This will take some time
148
+ 7. Voila! You should have a large data folder with many json, tar, and parquet files. You should be able to load this in the huggingface client library as a dataset, etc.