# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ReadingBank is a benchmark dataset for reading order detection built with weak supervision from WORD documents, which contains 500K document images with a wide range of document types as well as the corresponding reading order information.""" from pathlib import Path import pandas as pd import datasets _CITATION = """\ @misc{wang2021layoutreader, title={LayoutReader: Pre-training of Text and Layout for Reading Order Detection}, author={Zilong Wang and Yiheng Xu and Lei Cui and Jingbo Shang and Furu Wei}, year={2021}, eprint={2108.11591}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ ReadingBank is a benchmark dataset for reading order detection built with weak supervision from WORD documents, which contains 500K document images with a wide range of document types as well as the corresponding reading order information. """ _HOMEPAGE = "https://github.com/doc-analysis/ReadingBank" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" _URLS = { "dataset": "https://layoutlm.blob.core.windows.net/readingbank/dataset/ReadingBank.zip", } def parse_files(files): layout_text = {} for i in [1,2,3,4,6,7]: layout_text[f'm{i}'] = {} for file in files: stem = file.stem shard = stem.split('-')[-1] if 'text' in stem: layout_text[shard]['text']=file elif 'layout' in stem: layout_text[shard]['layout']=file return layout_text def get_dataframe(files,split): df_list = [] for shard in files.keys(): df_list.append(pd.read_json(files[shard][split],lines=True)) df = pd.concat(df_list) df.reset_index(inplace=True,drop=True) return df class ReadingBank(datasets.GeneratorBasedBuilder): """ReadingBank is a benchmark dataset for reading order detection built with weak supervision from WORD documents, which contains 500K document images with a wide range of document types as well as the corresponding reading order information.""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "src": datasets.Value("string"), "tgt": datasets.Value("string"), "bleu": datasets.Value("float"), "tgt_index": datasets.Sequence(datasets.Value("int16")), "original_filename": datasets.Value("string"), "filename": datasets.Value("string"), "page_idx": datasets.Value("int16"), "src_layout": datasets.Sequence(datasets.Sequence(datasets.Value("int16"))), "tgt_layout": datasets.Sequence(datasets.Sequence(datasets.Value("int16"))), # These are the features of your dataset like images, labels ... } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS["dataset"] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": parse_files(list(Path(f'{data_dir}/train/').glob('*'))), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": parse_files(list(Path(f'{data_dir}/dev/').glob('*'))), "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": parse_files(list(Path(f'{data_dir}/test/').glob('*'))), "split": "test" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): print('\nCreating dataframes.. please wait..') text_df = get_dataframe(filepath,'text') layout_df = get_dataframe(filepath,'layout') layout_df.rename(columns={'src':'src_layout', 'tgt':'tgt_layout'},inplace=True) df = text_df.merge(layout_df,left_index=True,right_index=True) print('Dataframes created..\n') yield from enumerate(df.to_dict(orient='records'))