File size: 1,147 Bytes
356fae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdcb5c5
ab78c9d
 
 
 
493cdf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2148280
ab78c9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- invoices
- data extraction
- invoice
- FATURA2
pretty_name: FATURA 2 invoices
size_categories:
- 1K<n<10K
---


The dataset consists of 10000 jpg images with white backgrounds, 10000 jpg images with colored backgrounds (the same colors used in the paper) as well as 3x10000 json annotation files. The images are generated from 50 different templates.

https://zenodo.org/records/10371464

---
dataset_info:
  features:
  - name: image
    dtype: image
  - name: ner_tags
    sequence: int64
  - name: words
    sequence: string
  - name: bboxes
    sequence:
      sequence: int64
  splits:
  - name: train
    num_bytes: 477503369.0
    num_examples: 10000
  download_size: 342662174
  dataset_size: 477503369.0
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

@misc{limam2023fatura, title={FATURA: A Multi-Layout Invoice Image Dataset for Document Analysis and Understanding}, author={Mahmoud Limam and Marwa Dhiaf and Yousri Kessentini}, year={2023}, eprint={2311.11856}, archivePrefix={arXiv}, primaryClass={cs.CV} }