Matej Klemen commited on
Commit
04a1a15
1 Parent(s): 86dabe7

Group together metaphor annotations for phrases

Browse files
Files changed (2) hide show
  1. dataset_infos.json +1 -1
  2. vuamc.py +36 -7
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"default": {"description": "The resource contains a selection of excerpts from BNC-Baby files that have been annotated for metaphor. \nThere are four registers, each comprising about 50,000 words: academic texts, news texts, fiction, and conversations. \nWords have been separately labelled as participating in multi-word expressions (about 1.5%) or as discarded for \nmetaphor analysis (0.02%). Main categories include words that are related to metaphor (MRW), words that signal \nmetaphor (MFlag), and words that are not related to metaphor. For metaphor-related words, subdivisions have been made \nbetween clear cases of metaphor versus borderline cases (WIDLII, When In Doubt, Leave It In). Another parameter of \nmetaphor-related words makes a distinction between direct metaphor, indirect metaphor, and implicit metaphor.\n", "citation": "@book{steen2010method,\n title={A method for linguistic metaphor identification: From MIP to MIPVU},\n author={Steen, Gerard and Dorst, Lettie and Herrmann, J. and Kaal, Anna and Krennmayr, Tina and Pasma, Trijntje},\n volume={14},\n year={2010},\n publisher={John Benjamins Publishing}\n}\n", "homepage": "https://hdl.handle.net/20.500.12024/2541", "license": "Available for non-commercial use on condition that the terms of the BNC Licence are observed and that this header is included in its entirety with any copy distributed.", "features": {"document_name": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "met_type": [{"type": {"dtype": "string", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "meta": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "vuamc", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6495566, "num_examples": 16740, "dataset_name": "vuamc"}}, "download_checksums": {"https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/2541/VUAMC.xml": {"num_bytes": 16820946, "checksum": "0ac1a77cc1879aa0c87e2879481d0e1e3f28e36b1701893c096a33ff11aa6e0d"}}, "download_size": 16820946, "post_processing_size": null, "dataset_size": 6495566, "size_in_bytes": 23316512}}
 
1
+ {"default": {"description": "The resource contains a selection of excerpts from BNC-Baby files that have been annotated for metaphor. \nThere are four registers, each comprising about 50,000 words: academic texts, news texts, fiction, and conversations. \nWords have been separately labelled as participating in multi-word expressions (about 1.5%) or as discarded for \nmetaphor analysis (0.02%). Main categories include words that are related to metaphor (MRW), words that signal \nmetaphor (MFlag), and words that are not related to metaphor. For metaphor-related words, subdivisions have been made \nbetween clear cases of metaphor versus borderline cases (WIDLII, When In Doubt, Leave It In). Another parameter of \nmetaphor-related words makes a distinction between direct metaphor, indirect metaphor, and implicit metaphor.\n", "citation": "@book{steen2010method,\n title={A method for linguistic metaphor identification: From MIP to MIPVU},\n author={Steen, Gerard and Dorst, Lettie and Herrmann, J. and Kaal, Anna and Krennmayr, Tina and Pasma, Trijntje},\n volume={14},\n year={2010},\n publisher={John Benjamins Publishing}\n}\n", "homepage": "https://hdl.handle.net/20.500.12024/2541", "license": "Available for non-commercial use on condition that the terms of the BNC Licence are observed and that this header is included in its entirety with any copy distributed.", "features": {"document_name": {"dtype": "string", "id": null, "_type": "Value"}, "words": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "pos_tags": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "met_type": [{"type": {"dtype": "string", "id": null, "_type": "Value"}, "word_indices": {"feature": {"dtype": "uint32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}], "meta": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "vuamc", "config_name": "default", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 6487858, "num_examples": 16740, "dataset_name": "vuamc"}}, "download_checksums": {"https://ota.bodleian.ox.ac.uk/repository/xmlui/bitstream/handle/20.500.12024/2541/VUAMC.xml": {"num_bytes": 16820946, "checksum": "0ac1a77cc1879aa0c87e2879481d0e1e3f28e36b1701893c096a33ff11aa6e0d"}}, "download_size": 16820946, "post_processing_size": null, "dataset_size": 6487858, "size_in_bytes": 23308804}}
vuamc.py CHANGED
@@ -1,6 +1,7 @@
1
  """ English metaphor-annotated corpus. """
2
 
3
  import os
 
4
 
5
  import datasets
6
  import logging
@@ -90,7 +91,15 @@ def resolve_recursively(el, ns):
90
  words.append(_w_text)
91
  pos_tags.append(el.attrib["type"])
92
  meta_tags.append(NA_STR)
93
- met_type.append({"type": curr_met_type, "word_indices": [idx_word]})
 
 
 
 
 
 
 
 
94
  idx_word += 1
95
 
96
  if not parse_tail:
@@ -198,23 +207,43 @@ def resolve_recursively(el, ns):
198
  return words, pos_tags, met_type, meta_tags
199
 
200
 
201
- def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[str], List[Dict], List[str]]:
202
  all_words, all_pos_tags, all_met_types, all_metas = [], [], [], []
203
  for child_el in sent_el:
204
  word, pos, mtype, meta = resolve_recursively(child_el, ns=ns)
205
  # Need to remap local (index inside the word group) `word_indices` to global (index inside the sentence)
206
  if len(mtype) > 0:
207
  base = len(all_words)
208
- mtype = list(map(lambda met_info: {
209
- "type": met_info["type"],
210
- "word_indices": list(map(lambda _i: base + _i, met_info["word_indices"]))
211
- }, mtype))
212
 
213
  all_words.extend(word)
214
  all_pos_tags.extend(pos)
215
  all_met_types.extend(mtype)
216
  all_metas.extend(meta)
217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218
  return all_words, all_pos_tags, all_met_types, all_metas
219
 
220
 
@@ -268,7 +297,7 @@ def parse_text_body(body_el, ns):
268
  class VUAMC(datasets.GeneratorBasedBuilder):
269
  """English metaphor-annotated corpus. """
270
 
271
- VERSION = datasets.Version("1.0.0")
272
 
273
  def _info(self):
274
  features = datasets.Features(
 
1
  """ English metaphor-annotated corpus. """
2
 
3
  import os
4
+ from copy import deepcopy
5
 
6
  import datasets
7
  import logging
 
91
  words.append(_w_text)
92
  pos_tags.append(el.attrib["type"])
93
  meta_tags.append(NA_STR)
94
+
95
+ met_dict = {"type": curr_met_type, "word_indices": [idx_word]}
96
+ # Multi-word metaphors are annotated with xml:id="..." or corresp="..."
97
+ if f"{XML_NAMESPACE}id" in met_el.attrib:
98
+ met_dict["id"] = met_el.attrib[f"{XML_NAMESPACE}id"]
99
+ elif "corresp" in met_el.attrib:
100
+ met_dict["id"] = met_el.attrib["corresp"][1:] # remove the "#" in front
101
+
102
+ met_type.append(met_dict)
103
  idx_word += 1
104
 
105
  if not parse_tail:
 
207
  return words, pos_tags, met_type, meta_tags
208
 
209
 
210
+ def parse_sent(sent_el, ns) -> Tuple[List[str], List[str], List[Dict], List[str]]:
211
  all_words, all_pos_tags, all_met_types, all_metas = [], [], [], []
212
  for child_el in sent_el:
213
  word, pos, mtype, meta = resolve_recursively(child_el, ns=ns)
214
  # Need to remap local (index inside the word group) `word_indices` to global (index inside the sentence)
215
  if len(mtype) > 0:
216
  base = len(all_words)
217
+ for idx_met, met_info in enumerate(mtype):
218
+ mtype[idx_met]["word_indices"] = list(map(lambda _i: base + _i, met_info["word_indices"]))
 
 
219
 
220
  all_words.extend(word)
221
  all_pos_tags.extend(pos)
222
  all_met_types.extend(mtype)
223
  all_metas.extend(meta)
224
 
225
+ # Check if any of the independent metaphor annotations belong to the same word group (e.g., "taking" and "over")
226
+ if len(all_met_types) > 0:
227
+ grouped_met_type = {}
228
+ for met_info in all_met_types:
229
+ curr_id = met_info.get("id", f"met{len(grouped_met_type)}")
230
+
231
+ if curr_id in grouped_met_type:
232
+ existing_data = grouped_met_type[curr_id]
233
+ existing_data["word_indices"].extend(met_info["word_indices"])
234
+ else:
235
+ existing_data = deepcopy(met_info)
236
+
237
+ grouped_met_type[curr_id] = existing_data
238
+
239
+ new_met_types = []
240
+ for _, met_info in grouped_met_type.items():
241
+ if "id" in met_info:
242
+ del met_info["id"]
243
+ new_met_types.append(met_info)
244
+
245
+ all_met_types = new_met_types
246
+
247
  return all_words, all_pos_tags, all_met_types, all_metas
248
 
249
 
 
297
  class VUAMC(datasets.GeneratorBasedBuilder):
298
  """English metaphor-annotated corpus. """
299
 
300
+ VERSION = datasets.Version("1.0.1")
301
 
302
  def _info(self):
303
  features = datasets.Features(