import logging import os from copy import deepcopy import datasets _CITATION = """\ @inproceedings{dahlmeier-etal-2013-building, title = "Building a Large Annotated Corpus of Learner {E}nglish: The {NUS} Corpus of Learner {E}nglish", author = "Dahlmeier, Daniel and Ng, Hwee Tou and Wu, Siew Mei", booktitle = "Proceedings of the Eighth Workshop on Innovative Use of {NLP} for Building Educational Applications", month = jun, year = "2013", url = "https://aclanthology.org/W13-1703", pages = "22--31", } """ _DESCRIPTION = """\ The National University of Singapore Corpus of Learner English (NUCLE) consists of 1,400 essays written by mainly Asian undergraduate students at the National University of Singapore """ _HOMEPAGE = "https://www.comp.nus.edu.sg/~nlp/corpora.html" _LICENSE = "other" _URLS = { "dummy_link": "https://example.com/" } class NUCLE(datasets.GeneratorBasedBuilder): """NUCLE dataset for grammatical error correction""" VERSION = datasets.Version("3.3.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="public", version=VERSION, description="Dummy public config so that datasets tests pass"), datasets.BuilderConfig(name="private", version=VERSION, description="Actual config used for loading the data") ] DEFAULT_CONFIG_NAME = "public" def _info(self): features = datasets.Features( { "src_tokens": datasets.Sequence(datasets.Value("string")), "tgt_tokens": datasets.Sequence(datasets.Value("string")), "corrections": [{ "idx_src": datasets.Sequence(datasets.Value("int32")), "idx_tgt": datasets.Sequence(datasets.Value("int32")), "corr_type": datasets.Value("string") }] } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): file_path = f"dummy.m2" if self.config.name == "private": data_dir = dl_manager.manual_dir if data_dir is not None: file_path = os.path.join(data_dir, "nucle.train.gold.bea19.m2") else: logging.warning("Manual data_dir not provided, so the data will not be loaded") else: logging.warning("The default config 'public' is intended to enable passing the tests and loading the " "private data separately. If you have access to the data, please use the config 'private' " "and provide the directory to the BEA19-formatted data as `data_dir=...`") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file_path": file_path} ) ] def _generate_examples(self, file_path): if not os.path.exists(file_path): return skip_edits = {"noop", "UNK", "Um"} with open(file_path, "r", encoding="utf-8") as f: idx_ex = 0 src_sent, tgt_sent, corrections, offset = None, None, [], 0 for idx_line, _line in enumerate(f): line = _line.strip() if len(line) > 0: prefix, remainder = line[0], line[2:] if prefix == "S": src_sent = remainder.split(" ") tgt_sent = deepcopy(src_sent) elif prefix == "A": annotation_data = remainder.split("|||") idx_start, idx_end = map(int, annotation_data[0].split(" ")) edit_type, edit_text = annotation_data[1], annotation_data[2] if edit_type in skip_edits: continue formatted_correction = { "idx_src": list(range(idx_start, idx_end)), "idx_tgt": [], "corr_type": edit_type } annotator_id = int(annotation_data[-1]) assert annotator_id == 0 removal = len(edit_text) == 0 or edit_text == "-NONE-" if removal: for idx_to_remove in range(idx_start, idx_end): del tgt_sent[offset + idx_to_remove] offset -= 1 else: # replacement/insertion edit_tokens = edit_text.split(" ") len_diff = len(edit_tokens) - (idx_end - idx_start) formatted_correction["idx_tgt"] = list( range(offset + idx_start, offset + idx_end + len_diff)) tgt_sent[offset + idx_start: offset + idx_end] = edit_tokens offset += len_diff corrections.append(formatted_correction) else: # empty line, indicating end of example yield idx_ex, { "src_tokens": src_sent, "tgt_tokens": tgt_sent, "corrections": corrections } src_sent, tgt_sent, corrections, offset = None, None, [], 0 idx_ex += 1