|
import logging |
|
import os |
|
from copy import deepcopy |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{dahlmeier-etal-2013-building, |
|
title = "Building a Large Annotated Corpus of Learner {E}nglish: The {NUS} Corpus of Learner {E}nglish", |
|
author = "Dahlmeier, Daniel and |
|
Ng, Hwee Tou and |
|
Wu, Siew Mei", |
|
booktitle = "Proceedings of the Eighth Workshop on Innovative Use of {NLP} for Building Educational Applications", |
|
month = jun, |
|
year = "2013", |
|
url = "https://aclanthology.org/W13-1703", |
|
pages = "22--31", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The National University of Singapore Corpus of Learner English (NUCLE) consists of 1,400 essays written by mainly Asian undergraduate students at the National University of Singapore |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://www.comp.nus.edu.sg/~nlp/corpora.html" |
|
|
|
_LICENSE = "other" |
|
|
|
_URLS = { |
|
"dummy_link": "https://example.com/" |
|
} |
|
|
|
|
|
class NUCLE(datasets.GeneratorBasedBuilder): |
|
"""NUCLE dataset for grammatical error correction""" |
|
|
|
VERSION = datasets.Version("3.3.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="public", version=VERSION, description="Dummy public config so that datasets tests pass"), |
|
datasets.BuilderConfig(name="private", version=VERSION, description="Actual config used for loading the data") |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "public" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"src_tokens": datasets.Sequence(datasets.Value("string")), |
|
"tgt_tokens": datasets.Sequence(datasets.Value("string")), |
|
"corrections": [{ |
|
"idx_src": datasets.Sequence(datasets.Value("int32")), |
|
"idx_tgt": datasets.Sequence(datasets.Value("int32")), |
|
"corr_type": datasets.Value("string") |
|
}] |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
file_path = f"dummy.m2" |
|
if self.config.name == "private": |
|
data_dir = dl_manager.manual_dir |
|
if data_dir is not None: |
|
file_path = os.path.join(data_dir, "nucle.train.gold.bea19.m2") |
|
else: |
|
logging.warning("Manual data_dir not provided, so the data will not be loaded") |
|
else: |
|
logging.warning("The default config 'public' is intended to enable passing the tests and loading the " |
|
"private data separately. If you have access to the data, please use the config 'private' " |
|
"and provide the directory to the BEA19-formatted data as `data_dir=...`") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"file_path": file_path} |
|
) |
|
] |
|
|
|
def _generate_examples(self, file_path): |
|
if not os.path.exists(file_path): |
|
return |
|
|
|
skip_edits = {"noop", "UNK", "Um"} |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
idx_ex = 0 |
|
src_sent, tgt_sent, corrections, offset = None, None, [], 0 |
|
for idx_line, _line in enumerate(f): |
|
line = _line.strip() |
|
|
|
if len(line) > 0: |
|
prefix, remainder = line[0], line[2:] |
|
if prefix == "S": |
|
src_sent = remainder.split(" ") |
|
tgt_sent = deepcopy(src_sent) |
|
|
|
elif prefix == "A": |
|
annotation_data = remainder.split("|||") |
|
idx_start, idx_end = map(int, annotation_data[0].split(" ")) |
|
edit_type, edit_text = annotation_data[1], annotation_data[2] |
|
if edit_type in skip_edits: |
|
continue |
|
|
|
formatted_correction = { |
|
"idx_src": list(range(idx_start, idx_end)), |
|
"idx_tgt": [], |
|
"corr_type": edit_type |
|
} |
|
annotator_id = int(annotation_data[-1]) |
|
assert annotator_id == 0 |
|
|
|
removal = len(edit_text) == 0 or edit_text == "-NONE-" |
|
if removal: |
|
for idx_to_remove in range(idx_start, idx_end): |
|
del tgt_sent[offset + idx_to_remove] |
|
offset -= 1 |
|
|
|
else: |
|
edit_tokens = edit_text.split(" ") |
|
len_diff = len(edit_tokens) - (idx_end - idx_start) |
|
|
|
formatted_correction["idx_tgt"] = list( |
|
range(offset + idx_start, offset + idx_end + len_diff)) |
|
tgt_sent[offset + idx_start: offset + idx_end] = edit_tokens |
|
offset += len_diff |
|
|
|
corrections.append(formatted_correction) |
|
|
|
else: |
|
yield idx_ex, { |
|
"src_tokens": src_sent, |
|
"tgt_tokens": tgt_sent, |
|
"corrections": corrections |
|
} |
|
src_sent, tgt_sent, corrections, offset = None, None, [], 0 |
|
idx_ex += 1 |
|
|