|
|
|
import csv |
|
import json |
|
import os |
|
from copy import deepcopy |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{boyd2018wnut, |
|
author = {Adriane Boyd}, |
|
title = {Using Wikipedia Edits in Low Resource Grammatical Error Correction}, |
|
booktitle = {Proceedings of the 4th Workshop on Noisy User-generated Text}, |
|
publisher = {Association for Computational Linguistics}, |
|
year = {2018}, |
|
url = {http://aclweb.org/anthology/W18-6111} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Falko-MERLIN is a grammatical error correction corpus consisting of essays and exams. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/adrianeboyd/boyd-wnut2018" |
|
|
|
_LICENSE = "Creative Commons Attribution Share Alike 4.0 International" |
|
|
|
_URLS = { |
|
"falko_merlin_wikipedia": "http://www.sfs.uni-tuebingen.de/~adriane/download/wnut2018/data.tar.gz" |
|
} |
|
|
|
|
|
class FalkoMERLIN(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"src_tokens": datasets.Sequence(datasets.Value("string")), |
|
"tgt_tokens": datasets.Sequence(datasets.Value("string")), |
|
"corrections": [{ |
|
"idx_src": datasets.Sequence(datasets.Value("int32")), |
|
"idx_tgt": datasets.Sequence(datasets.Value("int32")), |
|
"corr_type": datasets.Value("string") |
|
}] |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = _URLS["falko_merlin_wikipedia"] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"file_path": os.path.join(data_dir, "data", "fm-train.m2")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"file_path": os.path.join(data_dir, "data", "fm-dev.m2")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"file_path": os.path.join(data_dir, "data", "fm-test.m2")} |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, file_path): |
|
skip_edits = {"noop", "UNK", "Um"} |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
idx_ex = 0 |
|
src_sent, tgt_sent, corrections, offset = None, None, [], 0 |
|
for idx_line, _line in enumerate(f): |
|
line = _line.strip() |
|
|
|
if len(line) > 0: |
|
prefix, remainder = line[0], line[2:] |
|
if prefix == "S": |
|
src_sent = remainder.split(" ") |
|
tgt_sent = deepcopy(src_sent) |
|
|
|
elif prefix == "A": |
|
annotation_data = remainder.split("|||") |
|
idx_start, idx_end = map(int, annotation_data[0].split(" ")) |
|
edit_type, edit_text = annotation_data[1], annotation_data[2] |
|
if edit_type in skip_edits: |
|
continue |
|
|
|
formatted_correction = { |
|
"idx_src": list(range(idx_start, idx_end)), |
|
"idx_tgt": [], |
|
"corr_type": edit_type |
|
} |
|
annotator_id = int(annotation_data[-1]) |
|
assert annotator_id == 0 |
|
|
|
removal = len(edit_text) == 0 or edit_text == "-NONE-" |
|
if removal: |
|
for idx_to_remove in range(idx_start, idx_end): |
|
del tgt_sent[offset + idx_to_remove] |
|
offset -= 1 |
|
|
|
else: |
|
edit_tokens = edit_text.split(" ") |
|
len_diff = len(edit_tokens) - (idx_end - idx_start) |
|
|
|
formatted_correction["idx_tgt"] = list( |
|
range(offset + idx_start, offset + idx_end + len_diff)) |
|
tgt_sent[offset + idx_start: offset + idx_end] = edit_tokens |
|
offset += len_diff |
|
|
|
corrections.append(formatted_correction) |
|
|
|
else: |
|
yield idx_ex, { |
|
"src_tokens": src_sent, |
|
"tgt_tokens": tgt_sent, |
|
"corrections": corrections |
|
} |
|
src_sent, tgt_sent, corrections, offset = None, None, [], 0 |
|
idx_ex += 1 |
|
|
|
|