import os from copy import deepcopy import datasets _CITATION = """\ @article{naplava2019wnut, title={Grammatical Error Correction in Low-Resource Scenarios}, author={N{\'a}plava, Jakub and Straka, Milan}, journal={arXiv preprint arXiv:1910.00353}, year={2019} } """ _DESCRIPTION = """\ AKCES-GEC is a grammar error correction corpus for Czech generated from a subset of AKCES resources. """ _HOMEPAGE = "https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3057" _LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)" _URLS = { "akces_gec": "https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-3057/AKCES-GEC.zip" } class AkcesGEC(datasets.GeneratorBasedBuilder): """AKCES-GEC dataset for grammatical error correction. """ VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="ann0", version=VERSION, description="Use annotations from annotator#0"), datasets.BuilderConfig(name="ann1", version=VERSION, description="Use annotations from annotator#1") ] DEFAULT_CONFIG_NAME = "ann0" def _info(self): features = datasets.Features( { "src_tokens": datasets.Sequence(datasets.Value("string")), "tgt_tokens": datasets.Sequence(datasets.Value("string")), "corrections": [{ "idx_src": datasets.Sequence(datasets.Value("int32")), "idx_tgt": datasets.Sequence(datasets.Value("int32")), "corr_types": datasets.Sequence(datasets.Value("string")) }] } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS["akces_gec"] data_dir = dl_manager.download_and_extract(urls) consider_annotator = 0 if self.config.name == "ann0" else 1 return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file_path": os.path.join(data_dir, "train", "train.all.m2"), "annotator": consider_annotator}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"file_path": os.path.join(data_dir, "dev", "dev.all.m2"), "annotator": consider_annotator}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"file_path": os.path.join(data_dir, "test", "test.all.m2"), "annotator": consider_annotator}, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, file_path, annotator=0): skip_edits = {"noop", "UNK", "Um"} with open(file_path, "r", encoding="utf-8") as f: idx_ex = 0 src_sent, tgt_sent, corrections, offset = None, None, [], 0 for idx_line, _line in enumerate(f): line = _line.strip() if len(line) > 0: prefix, remainder = line[0], line[2:] if prefix == "S": src_sent = remainder.split(" ") tgt_sent = deepcopy(src_sent) elif prefix == "A": annotation_data = remainder.split("|||") idx_start, idx_end = map(int, annotation_data[0].split(" ")) edit_types, edit_text = annotation_data[1], annotation_data[2] edit_types = edit_types.split(",") if len(set(edit_types) & skip_edits) > 0: continue formatted_correction = { "idx_src": list(range(idx_start, idx_end)), "idx_tgt": [], "corr_types": edit_types } annotator_id = int(annotation_data[-1]) if annotator_id != annotator: continue removal = len(edit_text) == 0 or edit_text == "-NONE-" if removal: for idx_to_remove in range(idx_start, idx_end): del tgt_sent[offset + idx_to_remove] offset -= 1 else: # replacement/insertion edit_tokens = edit_text.split(" ") len_diff = len(edit_tokens) - (idx_end - idx_start) formatted_correction["idx_tgt"] = list( range(offset + idx_start, offset + idx_end + len_diff)) tgt_sent[offset + idx_start: offset + idx_end] = edit_tokens offset += len_diff corrections.append(formatted_correction) else: # empty line, indicating end of example if src_sent is None and tgt_sent is None: # multiple empty lines continue yield idx_ex, { "src_tokens": src_sent, "tgt_tokens": tgt_sent, "corrections": corrections } src_sent, tgt_sent, corrections, offset = None, None, [], 0 idx_ex += 1