Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
File size: 3,754 Bytes
39cfb24
 
 
 
52859c8
adf11f8
 
 
09d72e8
adf11f8
864da0c
 
52859c8
adf11f8
 
 
864da0c
adf11f8
 
8c629c3
52859c8
6f6e24a
adf11f8
6f6e24a
8c629c3
6f6e24a
adf11f8
95d0553
52859c8
6f6e24a
adf11f8
6f6e24a
95d0553
6f6e24a
1eebed4
a924c9a
 
1eebed4
a924c9a
1eebed4
a924c9a
1eebed4
a924c9a
 
 
 
 
 
 
 
a3623da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f46735
 
 
 
 
 
 
 
 
 
 
 
151384b
 
 
 
 
 
55cb459
151384b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32b5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55cb459
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
configs:
- config_name: tech
  data_files:
  - split: train
    path: data/sentence/Tech/train.csv
  - split: test
    path: data/sentence/Tech/test.csv
  - split: validation
    path: data/sentence/Tech/dev.csv
- config_name: health
  data_files:
  - split: train
    path: data/sentence/Health/train.csv
  - split: test
    path: data/sentence/Health/test.csv
  - split: validation
    path: data/sentence/Health/dev.csv
- config_name: doc_tech
  data_files:
  - split: train
    path: data/document_new/Tech/train.csv
  - split: test
    path: data/document_new/Tech/test.csv
  - split: validation
    path: data/document_new/Tech/dev.csv
- config_name: doc_health
  data_files:
  - split: train
    path: data/document_new/Health/train.csv
  - split: test
    path: data/document_new/Health/test.csv
  - split: validation
    path: data/document_new/Health/dev.csv
- config_name: doc_tech_25
  data_files:
  - split: train
    path: data/document_25/Tech/train.csv
  - split: test
    path: data/document_25/Tech/test.csv
  - split: validation
    path: data/document_25/Tech/dev.csv
- config_name: doc_health_25
  data_files:
  - split: train
    path: data/document_25/Health/train.csv
  - split: test
    path: data/document_25/Health/test.csv
  - split: validation
    path: data/document_25/Health/dev.csv
- config_name: doc_tech_5
  data_files:
  - split: train
    path: data/document_5/Tech/train.csv
  - split: test
    path: data/document_5/Tech/test.csv
  - split: validation
    path: data/document_5/Tech/dev.csv
- config_name: doc_health_5
  data_files:
  - split: train
    path: data/document_5/Health/train.csv
  - split: test
    path: data/document_5/Health/test.csv
  - split: validation
    path: data/document_5/Health/dev.csv
- config_name: doc_tech_10
  data_files:
  - split: train
    path: data/document_10/Tech/train.csv
  - split: test
    path: data/document_10/Tech/test.csv
  - split: validation
    path: data/document_10/Tech/dev.csv
- config_name: doc_health_10
  data_files:
  - split: train
    path: data/document_10/Health/train.csv
  - split: test
    path: data/document_10/Health/test.csv
  - split: validation
    path: data/document_10/Health/dev.csv
task_categories:
- translation
language:
- en
- am
- ha
- sw
- yo
- zu
tags:
- health
- IT
---





```
data
├── document
│   ├── Health
│   │   ├── dev.csv
│   │   ├── test.csv
│   │   └── train.csv
│   └── Tech
│       ├── dev.csv
│       ├── test.csv
│       └── train.csv
└── sentence
    ├── Health
    │   ├── dev.csv
    │   ├── test.csv
    │   └── train.csv
    └── Tech
        ├── dev.csv
        ├── test.csv
        └── train.csv
```

AFRIDOC-MT is a document-level multi-parallel translation dataset covering English and five African languages: Amharic, Hausa, Swahili, Yorùbá, and Zulu. The dataset comprises 334 health and 271 information technology news documents, all human-translated from English to these languages.

The project was generously funded by Lacuna Fund.

```
@misc{alabi2025afridocmtdocumentlevelmtcorpus,
      title={AFRIDOC-MT: Document-level MT Corpus for African Languages}, 
      author={Jesujoba O. Alabi and Israel Abebe Azime and Miaoran Zhang and Cristina España-Bonet and Rachel Bawden and Dawei Zhu and David Ifeoluwa Adelani and Clement Oyeleke Odoje and Idris Akinade and Iffat Maab and Davis David and Shamsuddeen Hassan Muhammad and Neo Putini and David O. Ademuyiwa and Andrew Caines and Dietrich Klakow},
      year={2025},
      eprint={2501.06374},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.06374}, 
}
```