Datasets:
Languages:
Indonesian
Tags:
summarization
import os | |
from pathlib import Path | |
from typing import Dict, List, Tuple | |
import datasets | |
from nusacrowd.utils.configs import NusantaraConfig | |
from nusacrowd.utils.constants import Tasks | |
from nusacrowd.utils import schemas | |
import jsonlines | |
from nltk.tokenize.treebank import TreebankWordDetokenizer | |
_CITATION = """\ | |
@INPROCEEDINGS{8629109, | |
author={Kurniawan, Kemal and Louvan, Samuel}, | |
booktitle={2018 International Conference on Asian Language Processing (IALP)}, | |
title={Indosum: A New Benchmark Dataset for Indonesian Text Summarization}, | |
year={2018}, | |
volume={}, | |
number={}, | |
pages={215-220}, | |
doi={10.1109/IALP.2018.8629109}} | |
""" | |
_LOCAL = False | |
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) | |
_DATASETNAME = "indosum" | |
_DESCRIPTION = """\ | |
INDOSUM is a new benchmark dataset for Indonesian text summarization. | |
The dataset consists of news articles and manually constructed summaries. | |
""" | |
_HOMEPAGE = "https://github.com/kata-ai/indosum" | |
_LICENSE = "Apache License, Version 2.0" | |
_URLS = { | |
_DATASETNAME: "https://github.com/maryantocinn/indosum/raw/main/indosum.tar.gz", | |
} | |
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION] | |
_SOURCE_VERSION = "1.0.0" | |
_NUSANTARA_VERSION = "1.0.0" | |
class IndoSUM(datasets.GeneratorBasedBuilder): | |
"""INDOSUM is a new benchmark dataset for Indonesian text summarization. The dataset consists of news articles and manually constructed summaries.""" | |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) | |
BUILDER_CONFIGS = ( | |
[ | |
NusantaraConfig( | |
name="indosum_fold{fold_number}_source".format(fold_number=i), | |
version=_SOURCE_VERSION, | |
description="indosum source schema", | |
schema="source", | |
subset_id="indosum_fold{fold_number}".format(fold_number=i), | |
) for i in range(5) | |
] | |
+ | |
[ | |
NusantaraConfig( | |
name="indosum_fold{fold_number}_nusantara_t2t".format(fold_number=i), | |
version=_NUSANTARA_VERSION, | |
description="indosum Nusantara schema", | |
schema="nusantara_t2t", | |
subset_id="indosum_fold{fold_number}".format(fold_number=i), | |
) for i in range(5) | |
] | |
) | |
DEFAULT_CONFIG_NAME = "indosum_fold0_source" | |
def _info(self) -> datasets.DatasetInfo: | |
if self.config.schema == "source": | |
features = datasets.Features( | |
{ | |
"document": datasets.Value("string"), | |
"id": datasets.Value("string"), | |
"summary": datasets.Value("string") | |
} | |
) | |
elif self.config.schema == "nusantara_t2t": | |
features = schemas.text2text_features | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _get_fold_index(self): | |
try: | |
subset_id = self.config.subset_id | |
idx_fold = subset_id.index("_fold") | |
file_id = subset_id[(idx_fold + 5):] | |
return int(file_id) | |
except: | |
return 0 | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
idx = self._get_fold_index() | |
urls = _URLS[_DATASETNAME] | |
data_dir = Path(dl_manager.download_and_extract(urls)) | |
location = { | |
"train": "indosum/train.0{fold_number}.jsonl", | |
"test": "indosum/test.0{fold_number}.jsonl", | |
"dev": "indosum/dev.0{fold_number}.jsonl" | |
} | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, location["train"].format(fold_number=idx+1)), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, location["test"].format(fold_number=idx+1)), | |
"split": "test", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, location["dev"].format(fold_number=idx+1)), | |
"split": "dev", | |
}, | |
), | |
] | |
def _get_full_paragraph_and_summary(self, data: Dict) -> Tuple[str, str]: | |
detokenizer = TreebankWordDetokenizer() | |
paragraph = "" | |
summary = "" | |
begin_paragraph = True | |
begin_summary = True | |
for each_paragraph in data["paragraphs"]: | |
for each_sentence in each_paragraph: | |
detokenized_sentence = detokenizer.detokenize(each_sentence) | |
if begin_paragraph: | |
paragraph+=detokenized_sentence | |
begin_paragraph = False | |
else: | |
paragraph = "{} {}".format(paragraph, detokenized_sentence) | |
for each_summary in data["summary"]: | |
detokenized_sentence = detokenizer.detokenize(each_summary) | |
if begin_summary: | |
summary+=detokenized_sentence | |
begin_summary = False | |
else: | |
summary = "{} {}".format(summary, detokenized_sentence) | |
return paragraph, summary | |
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | |
if self.config.schema == "source": | |
i = 0 | |
with jsonlines.open(filepath) as f: | |
for each_data in f.iter(): | |
full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data) | |
ex = { | |
"id": each_data["id"], | |
"document": full_paragraph, | |
"summary": full_summary | |
} | |
yield i, ex | |
i+=1 | |
elif self.config.schema == "nusantara_t2t": | |
i = 0 | |
with jsonlines.open(filepath) as f: | |
for each_data in f.iter(): | |
full_paragraph, full_summary = self._get_full_paragraph_and_summary(each_data) | |
ex = { | |
"id": each_data["id"], | |
"text_1": full_paragraph, | |
"text_2": full_summary, | |
"text_1_name": "document", | |
"text_2_name": "summary" | |
} | |
yield i, ex | |
i+=1 | |