haneulpark commited on
Commit
61d08b8
·
verified ·
1 Parent(s): ffce9ac

Delete MSTI Thiol Interference_preprocessing script.py

Browse files
MSTI Thiol Interference_preprocessing script.py DELETED
@@ -1,104 +0,0 @@
1
- # 1. Load Modules
2
-
3
- pip install rdkit
4
- pip install molvs
5
- import pandas as pd
6
- import numpy as np
7
- import rdkit
8
- import molvs
9
- from rdkit import Chem
10
-
11
- standardizer = molvs.Standardizer()
12
- fragment_remover = molvs.fragment.FragmentRemover()
13
-
14
-
15
- # 2. Convert the SDF file from the original paper into data frame
16
- # Before running the code, please download SDF files from the original paper
17
- # https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00482
18
-
19
- from rdkit.Chem import PandasTools
20
- sdfFile = 'Thiol_training_set_curated.sdf'
21
- dataframe = PandasTools.LoadSDF(sdfFile)
22
- dataframe.to_csv('thiol.csv', index=False)
23
- df = pd.read_csv('thiol.csv')
24
-
25
-
26
- # 3. Resolve SMILES parse error
27
- # Some of the 'Raw_SMILES' rows contain TWO SMILES separated by ';'' and, they cause SMILES parse error (which means they cannot be read)
28
- # So we separated the SMILES and renamed the columns
29
-
30
- df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True)
31
- df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True)
32
-
33
- df.insert(2, 'REGID_3', np.NaN)
34
-
35
- df['REGID_3'] = df['REGID_2'].str.split(',').str[1]
36
- df['REGID_2'] = df['REGID_2'].str.split(',').str[0]
37
-
38
- df.insert(4, 'SMILES_2', np.NaN)
39
- df.insert(5, 'SMILES_3', np.NaN)
40
-
41
- df[['Raw_SMILES', 'SMILES_2', 'SMILES_3']] = df['Raw_SMILES'].str.split(';', expand=True)
42
-
43
- df.rename(columns= {'Raw_SMILES' : 'SMILES_1'}, inplace = True)
44
-
45
-
46
- # 4. Sanitize with MolVS and print problems
47
-
48
- df['X_1'] = [ \
49
- rdkit.Chem.MolToSmiles(
50
- fragment_remover.remove(
51
- standardizer.standardize(
52
- rdkit.Chem.MolFromSmiles(
53
- smiles))))
54
- for smiles in df['SMILES_1']]
55
-
56
- def process_smiles(smiles):
57
- if pd.isna(smiles):
58
- return None
59
- try:
60
- return rdkit.Chem.MolToSmiles(
61
- fragment_remover.remove(
62
- standardizer.standardize(
63
- rdkit.Chem.MolFromSmiles(smiles))))
64
- except Exception as e:
65
- print(f"Error processing SMILES {smiles}: {e}")
66
- return None
67
-
68
- df['X_2'] = df['SMILES_2'].apply(process_smiles)
69
-
70
- def process_smiles(smiles):
71
- if pd.isna(smiles):
72
- return None
73
- try:
74
- return rdkit.Chem.MolToSmiles(
75
- fragment_remover.remove(
76
- standardizer.standardize(
77
- rdkit.Chem.MolFromSmiles(smiles))))
78
- except Exception as e:
79
- print(f"Error processing SMILES {smiles}: {e}")
80
- return None
81
-
82
- df['X_3'] = df['SMILES_3'].apply(process_smiles)
83
-
84
-
85
- # 5. Rename the columns
86
-
87
- df.rename(columns={'X_1' : 'newSMILES_1', 'X_2' : 'newSMILES_2', 'X_3' : 'newSMILES_3'}, inplace = True)
88
-
89
-
90
- # 6. Create a file with sanitized SMILES
91
-
92
- df[['REGID_1',
93
- 'REGID_2',
94
- 'REGID_3',
95
- 'newSMILES_1',
96
- 'newSMILES_2',
97
- 'newSMILES_3',
98
- 'log_AC50_M',
99
- 'Efficacy',
100
- 'CC-v2',
101
- 'Outcome',
102
- 'InChIKey',
103
- 'ID',
104
- 'ROMol']].to_csv('thiol_sanitized.csv', index = False)