Datasets:
Delete MSTI Thiol Interference_preprocessing script.py
Browse files
MSTI Thiol Interference_preprocessing script.py
DELETED
@@ -1,104 +0,0 @@
|
|
1 |
-
# 1. Load Modules
|
2 |
-
|
3 |
-
pip install rdkit
|
4 |
-
pip install molvs
|
5 |
-
import pandas as pd
|
6 |
-
import numpy as np
|
7 |
-
import rdkit
|
8 |
-
import molvs
|
9 |
-
from rdkit import Chem
|
10 |
-
|
11 |
-
standardizer = molvs.Standardizer()
|
12 |
-
fragment_remover = molvs.fragment.FragmentRemover()
|
13 |
-
|
14 |
-
|
15 |
-
# 2. Convert the SDF file from the original paper into data frame
|
16 |
-
# Before running the code, please download SDF files from the original paper
|
17 |
-
# https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00482
|
18 |
-
|
19 |
-
from rdkit.Chem import PandasTools
|
20 |
-
sdfFile = 'Thiol_training_set_curated.sdf'
|
21 |
-
dataframe = PandasTools.LoadSDF(sdfFile)
|
22 |
-
dataframe.to_csv('thiol.csv', index=False)
|
23 |
-
df = pd.read_csv('thiol.csv')
|
24 |
-
|
25 |
-
|
26 |
-
# 3. Resolve SMILES parse error
|
27 |
-
# Some of the 'Raw_SMILES' rows contain TWO SMILES separated by ';'' and, they cause SMILES parse error (which means they cannot be read)
|
28 |
-
# So we separated the SMILES and renamed the columns
|
29 |
-
|
30 |
-
df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True)
|
31 |
-
df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True)
|
32 |
-
|
33 |
-
df.insert(2, 'REGID_3', np.NaN)
|
34 |
-
|
35 |
-
df['REGID_3'] = df['REGID_2'].str.split(',').str[1]
|
36 |
-
df['REGID_2'] = df['REGID_2'].str.split(',').str[0]
|
37 |
-
|
38 |
-
df.insert(4, 'SMILES_2', np.NaN)
|
39 |
-
df.insert(5, 'SMILES_3', np.NaN)
|
40 |
-
|
41 |
-
df[['Raw_SMILES', 'SMILES_2', 'SMILES_3']] = df['Raw_SMILES'].str.split(';', expand=True)
|
42 |
-
|
43 |
-
df.rename(columns= {'Raw_SMILES' : 'SMILES_1'}, inplace = True)
|
44 |
-
|
45 |
-
|
46 |
-
# 4. Sanitize with MolVS and print problems
|
47 |
-
|
48 |
-
df['X_1'] = [ \
|
49 |
-
rdkit.Chem.MolToSmiles(
|
50 |
-
fragment_remover.remove(
|
51 |
-
standardizer.standardize(
|
52 |
-
rdkit.Chem.MolFromSmiles(
|
53 |
-
smiles))))
|
54 |
-
for smiles in df['SMILES_1']]
|
55 |
-
|
56 |
-
def process_smiles(smiles):
|
57 |
-
if pd.isna(smiles):
|
58 |
-
return None
|
59 |
-
try:
|
60 |
-
return rdkit.Chem.MolToSmiles(
|
61 |
-
fragment_remover.remove(
|
62 |
-
standardizer.standardize(
|
63 |
-
rdkit.Chem.MolFromSmiles(smiles))))
|
64 |
-
except Exception as e:
|
65 |
-
print(f"Error processing SMILES {smiles}: {e}")
|
66 |
-
return None
|
67 |
-
|
68 |
-
df['X_2'] = df['SMILES_2'].apply(process_smiles)
|
69 |
-
|
70 |
-
def process_smiles(smiles):
|
71 |
-
if pd.isna(smiles):
|
72 |
-
return None
|
73 |
-
try:
|
74 |
-
return rdkit.Chem.MolToSmiles(
|
75 |
-
fragment_remover.remove(
|
76 |
-
standardizer.standardize(
|
77 |
-
rdkit.Chem.MolFromSmiles(smiles))))
|
78 |
-
except Exception as e:
|
79 |
-
print(f"Error processing SMILES {smiles}: {e}")
|
80 |
-
return None
|
81 |
-
|
82 |
-
df['X_3'] = df['SMILES_3'].apply(process_smiles)
|
83 |
-
|
84 |
-
|
85 |
-
# 5. Rename the columns
|
86 |
-
|
87 |
-
df.rename(columns={'X_1' : 'newSMILES_1', 'X_2' : 'newSMILES_2', 'X_3' : 'newSMILES_3'}, inplace = True)
|
88 |
-
|
89 |
-
|
90 |
-
# 6. Create a file with sanitized SMILES
|
91 |
-
|
92 |
-
df[['REGID_1',
|
93 |
-
'REGID_2',
|
94 |
-
'REGID_3',
|
95 |
-
'newSMILES_1',
|
96 |
-
'newSMILES_2',
|
97 |
-
'newSMILES_3',
|
98 |
-
'log_AC50_M',
|
99 |
-
'Efficacy',
|
100 |
-
'CC-v2',
|
101 |
-
'Outcome',
|
102 |
-
'InChIKey',
|
103 |
-
'ID',
|
104 |
-
'ROMol']].to_csv('thiol_sanitized.csv', index = False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|