Datasets:
Update REDOX Interference_ preprocessing script.py
Browse files
REDOX Interference_ preprocessing script.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
pip install rdkit
|
2 |
pip install molvs
|
3 |
import pandas as pd
|
@@ -9,17 +11,19 @@ from rdkit import Chem
|
|
9 |
standardizer = molvs.Standardizer()
|
10 |
fragment_remover = molvs.fragment.FragmentRemover()
|
11 |
|
|
|
|
|
|
|
|
|
12 |
from rdkit.Chem import PandasTools
|
13 |
sdfFile = 'Redox_training_set_curated.sdf'
|
14 |
dataframe = PandasTools.LoadSDF(sdfFile)
|
15 |
-
|
16 |
-
dataframe.to_csv('Nano Luciferase.csv', index=False)
|
17 |
-
|
18 |
df = pd.read_csv('redox.csv')
|
19 |
|
20 |
-
#
|
21 |
-
#
|
22 |
-
# So
|
23 |
|
24 |
df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True)
|
25 |
df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True)
|
@@ -34,6 +38,8 @@ df['AC50_uM_2'] = df['AC50_uM'].str.split(';').str[1]
|
|
34 |
df['AC50_uM'] = df['AC50_uM'].str.split(';').str[0]
|
35 |
df.rename(columns = {'AC50_uM': 'AC50_uM_1'}, inplace = True)
|
36 |
|
|
|
|
|
37 |
df['X_1'] = [ \
|
38 |
rdkit.Chem.MolToSmiles(
|
39 |
fragment_remover.remove(
|
@@ -56,8 +62,12 @@ def process_smiles(smiles):
|
|
56 |
|
57 |
df['X_2'] = df['SMILES_2'].apply(process_smiles)
|
58 |
|
|
|
|
|
59 |
df.rename(columns={'X_1' : 'newSMILES_1', 'X_2' : 'newSMILES_2'}, inplace = True)
|
60 |
|
|
|
|
|
61 |
df[['REGID_1',
|
62 |
'REGID_2',
|
63 |
'newSMILES_1',
|
|
|
1 |
+
#1. Import modules
|
2 |
+
|
3 |
pip install rdkit
|
4 |
pip install molvs
|
5 |
import pandas as pd
|
|
|
11 |
standardizer = molvs.Standardizer()
|
12 |
fragment_remover = molvs.fragment.FragmentRemover()
|
13 |
|
14 |
+
# 2. Convert the SDF file from the original paper into data frame
|
15 |
+
# Before running the code, please download SDF files from the original paper
|
16 |
+
# https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00482
|
17 |
+
|
18 |
from rdkit.Chem import PandasTools
|
19 |
sdfFile = 'Redox_training_set_curated.sdf'
|
20 |
dataframe = PandasTools.LoadSDF(sdfFile)
|
21 |
+
dataframe.to_csv('redox.csv', index=False)
|
|
|
|
|
22 |
df = pd.read_csv('redox.csv')
|
23 |
|
24 |
+
# 3. Resolve SMILES parse error
|
25 |
+
# Some of the 'Raw_SMILES' rows contain TWO SMILES separated by ';'' and, they cause SMILES parse error (which means they cannot be read)
|
26 |
+
# So we separated the SMILES and renamed the columns
|
27 |
|
28 |
df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True)
|
29 |
df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True)
|
|
|
38 |
df['AC50_uM'] = df['AC50_uM'].str.split(';').str[0]
|
39 |
df.rename(columns = {'AC50_uM': 'AC50_uM_1'}, inplace = True)
|
40 |
|
41 |
+
# 4. Sanitize with MolVS and print problems
|
42 |
+
|
43 |
df['X_1'] = [ \
|
44 |
rdkit.Chem.MolToSmiles(
|
45 |
fragment_remover.remove(
|
|
|
62 |
|
63 |
df['X_2'] = df['SMILES_2'].apply(process_smiles)
|
64 |
|
65 |
+
# 5. Rename the columns
|
66 |
+
|
67 |
df.rename(columns={'X_1' : 'newSMILES_1', 'X_2' : 'newSMILES_2'}, inplace = True)
|
68 |
|
69 |
+
# 6. Create a file with sanitized SMILES
|
70 |
+
|
71 |
df[['REGID_1',
|
72 |
'REGID_2',
|
73 |
'newSMILES_1',
|