File size: 6,480 Bytes
dc5cbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d75d0
 
 
 
 
 
 
 
 
 
 
 
 
dc5cbf0
b6d75d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
dataset_info:
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence: string
  - name: ner_tags_index
    sequence: int64
  splits:
  - name: train
    num_bytes: 177058008
    num_examples: 446243
  - name: validation
    num_bytes: 22025192
    num_examples: 55780
  - name: test
    num_bytes: 22202539
    num_examples: 55781
  download_size: 46003884
  dataset_size: 221285739
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- token-classification
language:
- fa
tags:
- persian
- farsi
- ner
- name entity recognition
- persian ner
size_categories:
- 100K<n<1M
---

# Persian-NER-Dataset-500k

This repository contains a comprehensive Persian Named Entity Recognition (NER) dataset with approximately 500,000 tokens. This dataset is a collection of all available Persian NER datasets, carefully cleaned and consolidated to ensure the highest quality for training, validating, and testing NER models in the Persian language. The dataset is divided into three subsets: training, validation, and test.

## Updating...

## Dataset Overview

The dataset is structured as follows:

- **Training Set:**
  - Number of rows: 446,243
  - Features: `ner_tags`, `tokens`, `ner_tags_index`

- **Validation Set:**
  - Number of rows: 55,780
  - Features: `ner_tags`, `tokens`, `ner_tags_index`

- **Test Set:**
  - Number of rows: 55,781
  - Features: `ner_tags`, `tokens`, `ner_tags_index`

### Features

- `ner_tags`: The Named Entity Recognition tags associated with each token.
- `tokens`: The tokens (words) that have been tagged.
- `ner_tags_index`: The index values corresponding to the NER tags, which map to specific named entities.

### NER Tags

The dataset includes the following NER tags:

- **EVENT**: Events, including historically significant events or recurring cultural phenomena, etc.
- **NORP**: Nationalities, religious or political groups, etc.
- **TIME**: Times less specific than dates, including years, seasons, and general times of day, etc.
- **MONEY**: Monetary values, including unit, etc.
- **DATE**: Absolute or relative dates or periods, etc.
- **MED**: Medicines, including drugs and their categories, etc.
- **WORK_OF_ART**: Titles of books, songs, and other creative works, etc.
- **PERCENT**: Percentage expressions, etc.
- **FAC**: Buildings, airports, highways, bridges, and other facilities, etc.
- **LANGUAGE**: Any named language, etc.
- **ORG**: Organizations, including companies, institutions, government bodies, etc.
- **PERSON**: People, including fictional, etc.
- **GPE**: Countries, cities, states, etc.
- **LAW**: Named documents made into laws, etc.
- **QUANTITY**: Measurements that are not monetary or percentages, etc.
- **MISC**: Miscellaneous entities, catch-all for entities that do not fit in the above categories, etc.
- **DISEASE**: Names of diseases and medical conditions, etc.
- **PRODUCT**: Objects, vehicles, foods, etc., that are products or commodities, etc.
- **ORDINAL**: "First", "second", etc.
- **CARDINAL**: Cardinal numbers, etc.

### Tag Counts

Below is a table summarizing the counts of each NER tag across the training, validation, and test datasets:

| NER Tag        | Train  | Validation | Test   |
|----------------|--------|------------|--------|
| B-ORG          | 74,751 | 9,177      | 9,397  |
| I-ORG          | 93,323 | 11,065     | 11,581 |
| B-PRODUCT      | 35,624 | 4,515      | 4,441  |
| I-PRODUCT      | 31,539 | 3,995      | 3,975  |
| B-PERSON       | 160,596| 19,785     | 19,932 |
| I-PERSON       | 161,614| 19,912     | 20,195 |
| B-NORP         | 44,956 | 5,445      | 5,751  |
| I-NORP         | 58,288 | 6,986      | 7,502  |
| B-GPE          | 133,887| 16,638     | 16,517 |
| I-GPE          | 73,628 | 8,993      | 8,987  |
| B-WORK_OF_ART  | 65,521 | 8,268      | 8,134  |
| I-WORK_OF_ART  | 84,308 | 10,770     | 10,461 |
| B-CARDINAL     | 6,560  | 880        | 875    |
| I-CARDINAL     | 2,059  | 243        | 258    |
| I-GPE          | 73,628 | 8,993      | 8,987  |
| B-MED          | 9,347  | 1,173      | 1,177  |
| B-EVENT        | 1,885  | 233        | 231    |
| I-EVENT        | 4,422  | 579        | 532    |
| B-FAC          | 10,167 | 1,305      | 1,261  |
| I-FAC          | 12,465 | 1,599      | 1,501  |
| B-DATE         | 11,712 | 1,407      | 1,451  |
| I-DATE         | 12,323 | 1,537      | 1,544  |
| B-QUANTITY     | 632    | 79         | 78     |
| I-QUANTITY     | 1,162  | 155        | 146    |
| B-MONEY        | 2,514  | 325        | 331    |
| I-MONEY        | 5,383  | 738        | 726    |
| B-TIME         | 1,468  | 179        | 200    |
| I-TIME         | 1,844  | 234        | 266    |
| B-DISEASE      | 8,524  | 1,072      | 1,021  |
| B-ORDINAL      | 1,486  | 181        | 182    |
| I-DISEASE      | 8,783  | 1,135      | 1,086  |
| B-LAW          | 241    | 46         | 50     |
| I-MED          | 4,457  | 605        | 600    |
| B-MISC         | 3,477  | 474        | 435    |
| I-LAW          | 498    | 103        | 131    |
| B-PERCENT      | 1,895  | 249        | 190    |
| I-PERCENT      | 2,340  | 313        | 243    |
| I-MISC         | 1,819  | 238        | 210    |
| B-LANGUAGE     | 280    | 38         | 25     |
| I-ORDINAL      | 19     | 6          | 3      |
| I-LANGUAGE     | 19     | 4          | 6      |

## Usage

This dataset can be used to train, validate, and test NER models in the Persian language. The structured format of the dataset allows easy integration into various deep learning frameworks like TensorFlow, PyTorch, or Hugging Face's `transformers`.

### Example Code

Here's an example of how you might load and use this dataset in Python using the `datasets` library:

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("mansoorhamidzadeh/Persian-NER-Dataset-500k")

# Access the train, validation, and test sets
train_dataset = dataset['train']
validation_dataset = dataset['validation']
test_dataset = dataset['test']

# Example: Accessing the first example from the train set
print(train_dataset[0])
```

```bibtext
@dataset{hamidzadeh2024persian_ner_500k,
  author       = {Mansoor Hamidzadeh},
  title        = {Persian-NER-Dataset-500k},
  year         = 2024,
  url          = {https://huggingface.co./datasets/mansoorhamidzadeh/Persian-NER-Dataset-500k}
}
```