Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
1K - 10K
ArXiv:
License:
File size: 7,607 Bytes
a20d66a 48528ac 50ca061 48528ac 26b773b a20d66a 2d7e346 3f9a4fb 2d7e346 3f9a4fb 1df9aea 3f9a4fb 1df9aea a20d66a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
- extended|onestop_english
task_categories:
- question-answering
task_ids:
- multiple-choice-qa
paperswithcode_id: onestopqa
pretty_name: OneStopQA
language_bcp47:
- en-US
dataset_info:
features:
- name: title
dtype: string
- name: paragraph
dtype: string
- name: level
dtype:
class_label:
names:
'0': Adv
'1': Int
'2': Ele
- name: question
dtype: string
- name: paragraph_index
dtype: int32
- name: answers
sequence: string
length: 4
- name: a_span
sequence: int32
- name: d_span
sequence: int32
splits:
- name: train
num_bytes: 1423066
num_examples: 1458
download_size: 218736
dataset_size: 1423066
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for OneStopQA
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [OneStopQA repository](https://github.com/berzak/onestop-qa)
- **Repository:** [OneStopQA repository](https://github.com/berzak/onestop-qa)
- **Paper:** [STARC: Structured Annotations for Reading Comprehension](https://arxiv.org/abs/2004.14797)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
OneStopQA is a multiple choice reading comprehension dataset annotated according to the STARC (Structured Annotations for Reading Comprehension) scheme. The reading materials are Guardian articles taken from the [OneStopEnglish corpus](https://github.com/nishkalavallabhi/OneStopEnglishCorpus). Each article comes in three difficulty levels, Elementary, Intermediate and Advanced. Each paragraph is annotated with three multiple choice reading comprehension questions. The reading comprehension questions can be answered based on any of the three paragraph levels.
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
English (`en-US`).
The original Guardian articles were manually converted from British to American English.
## Dataset Structure
### Data Instances
An example of instance looks as follows.
```json
{
"title": "101-Year-Old Bottle Message",
"paragraph": "Angela Erdmann never knew her grandfather. He died in 1946, six years before she was born. But, on Tuesday 8th April, 2014, she described the extraordinary moment when she received a message in a bottle, 101 years after he had lobbed it into the Baltic Sea. Thought to be the world’s oldest message in a bottle, it was presented to Erdmann by the museum that is now exhibiting it in Germany.",
"paragraph_index": 1,
"level": "Adv",
"question": "How did Angela Erdmann find out about the bottle?",
"answers": ["A museum told her that they had it",
"She coincidentally saw it at the museum where it was held",
"She found it in her basement on April 28th, 2014",
"A friend told her about it"],
"a_span": [56, 70],
"d_span": [16, 34]
}
```
Where,
| Answer | Description | Textual Span |
|--------|------------------------------------------------------------|-----------------|
| a | Correct answer. | Critical Span |
| b | Incorrect answer. A miscomprehension of the critical span. | Critical Span |
| c | Incorrect answer. Refers to an additional span. | Distractor Span |
| d | Incorrect answer. Has no textual support. | - |
The order of the answers in the `answers` list corresponds to the order of the answers in the table.
### Data Fields
- `title`: A `string` feature. The article title.
- `paragraph`: A `string` feature. The paragraph from the article.
- `paragraph_index`: An `int` feature. Corresponds to the paragraph index in the article.
- `question`: A `string` feature. The given question.
- `answers`: A list of `string` feature containing the four possible answers.
- `a_span`: A list of start and end indices (inclusive) of the critical span.
- `d_span`: A list of start and end indices (inclusive) of the distractor span.
*Span indices are according to word positions after whitespace tokenization.
**In the rare case where a span is spread over multiple sections,
the span list will contain multiple instances of start and stop indices in the format:
[start_1, stop_1, start_2, stop_2,...].
### Data Splits
Articles: 30
Paragraphs: 162
Questions: 486
Question-Paragraph Level pairs: 1,458
No preconfigured split is currently provided.
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
The annotation and piloting process of the dataset is described in Appendix A in
[STARC: Structured Annotations for Reading Comprehension](https://aclanthology.org/2020.acl-main.507.pdf).
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
### Citation Information
[STARC: Structured Annotations for Reading Comprehension](http://people.csail.mit.edu/berzak/papers/acl2020.pdf)
```
@inproceedings{starc2020,
author = {Berzak, Yevgeni and Malmaud, Jonathan and Levy, Roger},
title = {STARC: Structured Annotations for Reading Comprehension},
booktitle = {ACL},
year = {2020},
publisher = {Association for Computational Linguistics}
}
```
### Contributions
Thanks to [@scaperex](https://github.com/scaperex) for adding this dataset. |