Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
File size: 1,639 Bytes
bcdc130
 
e9dffed
bcdc130
 
 
 
 
 
 
 
b205c50
bcdc130
 
 
 
daf0863
 
 
 
 
 
 
 
 
 
 
 
e9dffed
 
 
 
 
 
 
 
 
 
 
 
 
 
bcdc130
 
 
b205c50
092ee10
daf0863
 
 
 
e9dffed
 
 
 
bcdc130
46c4461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
dataset_info:
- config_name: default
  features:
  - name: query
    dtype: string
  - name: negative
    sequence: string
  - name: positive
    sequence: string
  splits:
  - name: test
    num_bytes: 683409
    num_examples: 100
  download_size: 107153
  dataset_size: 683409
- config_name: documents
  features:
  - name: doc_id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: test
    num_bytes: 121961
    num_examples: 90
  download_size: 70666
  dataset_size: 121961
- config_name: queries
  features:
  - name: query
    dtype: string
  - name: positive
    sequence: string
  - name: negative
    sequence: string
  splits:
  - name: test
    num_bytes: 26599
    num_examples: 100
  download_size: 8995
  dataset_size: 26599
configs:
- config_name: default
  data_files:
  - split: test
    path: queries/test-*
- config_name: documents
  data_files:
  - split: test
    path: documents/test-*
- config_name: queries
  data_files:
  - split: test
    path: queries/test-*
---

### Description
This dataset was built upon [Syntec](https://huggingface.co./datasets/lyon-nlp/mteb-fr-retrieval-syntec-s2p) information retrieval dataset, negative samples were created using BM25. 
Please refer to our paper for more details. 

### Citation
If you use this dataset in your work, please consider citing:
```
@misc{ciancone2024extending,
      title={Extending the Massive Text Embedding Benchmark to French}, 
      author={Mathieu Ciancone and Imene Kerboua and Marion Schaeffer and Wissam Siblini},
      year={2024},
      eprint={2405.20468},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```