Datasets:
File size: 5,989 Bytes
c51a95d 392ba3f c51a95d 2297435 c51a95d 392ba3f c51a95d 2297435 c51a95d 2297435 c51a95d 392ba3f c51a95d 2297435 c51a95d 2297435 c51a95d 2297435 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Alloprof: a new French question-answer education dataset and its use in an information retrieval case study"""
import json
import datasets
_CITATION = """\
@misc{lef23,
doi = {10.48550/ARXIV.2302.07738},
url = {https://arxiv.org/abs/2302.07738},
author = {Lefebvre-Brossard, Antoine and Gazaille, Stephane and Desmarais, Michel C.},
keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Alloprof: a new French question-answer education dataset and its use in an information retrieval case study},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
}
"""
_DESCRIPTION = """\
This is a re-edit from the Alloprof dataset (which can be found here : https://huggingface.co./datasets/antoinelb7/alloprof).
For more information about the data source and the features, please refer to the original dataset card made by the authors, along with their paper available here : https://arxiv.org/abs/2302.07738
This re-edition of the dataset has been made for easier usage in the MTEB benchmarking pipeline. (https://huggingface.co./spaces/mteb/leaderboard). It is a filtered version of the original dataset, in a more ready-to-use format.
"""
_SPLITS = ["documents", "queries-train", "queries-test"]
_HOMEPAGE = "https://huggingface.co./datasets/antoinelb7/alloprof"
_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 4.0 International"
_URLS = {
split: f"https://huggingface.co./datasets/lyon-nlp/alloprof/resolve/main/{split}.json"\
for split in _SPLITS
}
class Alloprof(datasets.GeneratorBasedBuilder):
"""Alloprof: a new French question-answer education dataset and its use in an information retrieval case study"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="documents", version=VERSION, description="Corpus of documents from the Alloprof website"),
datasets.BuilderConfig(name="queries", version=VERSION, description="Corpus of queries from students"),
]
# Avoid setting default config so that an error is raised asking the user
# to specify the piece of the dataset wanted
DEFAULT_CONFIG_NAME = "documents"
def _info(self):
if self.config.name == "documents":
features = {
"uuid": datasets.Value("string"),
"title": datasets.Value("string"),
"topic": datasets.Value("string"),
"text": datasets.Value("string"),
}
elif self.config.name == "queries":
features = {
"id": datasets.Value("int32"),
"text": datasets.Value("string"),
"answer": datasets.Value("string"),
"relevant": datasets.Sequence(datasets.Value("string")),
"subject": datasets.Value("string"),
}
else:
raise ValueError(f"Please specify a valid config name : {_SPLITS}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name == "documents":
dl_path = dl_manager.download_and_extract(_URLS["documents"])
return [datasets.SplitGenerator(name="documents", gen_kwargs={"filepath": dl_path})]
elif self.config.name == "queries":
dl_path_train = dl_manager.download_and_extract(_URLS["queries-train"])
dl_path_test = dl_manager.download_and_extract(_URLS["queries-test"])
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path_train}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": dl_path_test})]
else:
raise ValueError(f"Please specify a valid config name : {_SPLITS}")
def _generate_examples(self, filepath):
if self.config.name in ["documents", "queries"]:
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for key, row in enumerate(data):
if self.config.name == "documents":
features = {
"uuid": row["uuid"],
"title": row["title"],
"topic": row["topic"],
"text": row["text"],
}
elif self.config.name == "queries":
features = {
"id": row["id"],
"text": row["text"],
"answer": row["answer"],
"relevant": row["relevant"],
"subject": row["subject"],
}
else:
raise ValueError(f"Please specify a valid config name : {_SPLITS}")
yield key, features
else:
raise ValueError(f"Please specify a valid config name : {_SPLITS}")
|