prompt
stringlengths 123
92.3k
| completion
stringlengths 7
132
| api
stringlengths 9
35
|
---|---|---|
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
@ignore_warnings
def test_grid_search_no_score():
# Test grid-search on classifier that has no score function.
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
clf_no_score = LinearSVCNoScore(random_state=0)
grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
grid_search.fit(X, y)
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
scoring='accuracy')
# smoketest grid search
grid_search_no_score.fit(X, y)
# check that best params are equal
assert grid_search_no_score.best_params_ == grid_search.best_params_
# check that we can call score and that it gives the correct result
assert grid_search.score(X, y) == grid_search_no_score.score(X, y)
# giving no scoring function raises an error
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
[[1]])
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc'
).fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert score_auc < 1.0
assert score_accuracy < 1.0
assert score_auc != score_accuracy
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
def test_grid_search_groups():
# Check if ValueError (when groups is None) propagates to GridSearchCV
# And also check if groups is correctly passed to the cv object
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 3, 15)
clf = LinearSVC(random_state=0)
grid = {'C': [1]}
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2),
GroupKFold(n_splits=3), GroupShuffleSplit()]
for cv in group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
gs.fit, X, y)
gs.fit(X, y, groups=groups)
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
for cv in non_group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
# Should not raise an error
gs.fit(X, y)
def test_classes__property():
# Test that classes_ property matches best_estimator_.classes_
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
Cs = [.1, 1, 10]
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
grid_search.fit(X, y)
assert_array_equal(grid_search.best_estimator_.classes_,
grid_search.classes_)
# Test that regressors do not have a classes_ attribute
grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute before it's fit
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute without a refit
grid_search = GridSearchCV(LinearSVC(random_state=0),
{'C': Cs}, refit=False)
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
def test_trivial_cv_results_attr():
# Test search over a "grid" with only one point.
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1]}, cv=3)
grid_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1, cv=3)
random_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
def test_no_refit():
# Test that GSCV can be used for model selection alone without refitting
clf = MockClassifier()
for scoring in [None, ['accuracy', 'precision']]:
grid_search = GridSearchCV(
clf, {'foo_param': [1, 2, 3]}, refit=False, cv=3
)
grid_search.fit(X, y)
assert not hasattr(grid_search, "best_estimator_") and \
hasattr(grid_search, "best_index_") and \
hasattr(grid_search, "best_params_")
# Make sure the functions predict/transform etc raise meaningful
# error messages
for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
'transform', 'inverse_transform'):
assert_raise_message(NotFittedError,
('refit=False. %s is available only after '
'refitting on the best parameters'
% fn_name), getattr(grid_search, fn_name), X)
# Test that an invalid refit param raises appropriate error messages
for refit in ["", 5, True, 'recall', 'accuracy']:
assert_raise_message(ValueError, "For multi-metric scoring, the "
"parameter refit must be set to a scorer key",
GridSearchCV(clf, {}, refit=refit,
scoring={'acc': 'accuracy',
'prec': 'precision'}
).fit,
X, y)
def test_grid_search_error():
# Test that grid search will capture errors on data with different length
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, X_[:180], y_)
def test_grid_search_one_grid_point():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
clf = SVC(gamma='auto')
cv = GridSearchCV(clf, param_dict)
cv.fit(X_, y_)
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
clf.fit(X_, y_)
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
def test_grid_search_when_param_grid_includes_range():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = None
grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}, cv=3)
grid_search.fit(X, y)
assert grid_search.best_estimator_.foo_param == 2
def test_grid_search_bad_param_grid():
param_dict = {"C": 1}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'int'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": []}
clf = SVC()
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a non-empty sequence.",
GridSearchCV, clf, param_dict)
param_dict = {"C": "1,2,3"}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'str'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": np.ones((3, 2))}
clf = SVC()
assert_raises(ValueError, GridSearchCV, clf, param_dict)
def test_grid_search_sparse():
# Test that grid search works with both dense and sparse matrices
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180].tocoo(), y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert np.mean(y_pred == y_pred2) >= .9
assert C == C2
def test_grid_search_sparse_scoring():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred2)
assert C == C2
# Smoke test the score
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
# cv.score(X_[:180], y[:180]))
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
F1Loss = make_scorer(f1_loss, greater_is_better=False)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
cv.fit(X_[:180], y_[:180])
y_pred3 = cv.predict(X_[180:])
C3 = cv.best_estimator_.C
assert C == C3
assert_array_equal(y_pred, y_pred3)
def test_grid_search_precomputed_kernel():
# Test that grid search works when the input features are given in the
# form of a precomputed kernel matrix
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
# compute the training kernel matrix corresponding to the linear kernel
K_train = np.dot(X_[:180], X_[:180].T)
y_train = y_[:180]
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(K_train, y_train)
assert cv.best_score_ >= 0
# compute the test kernel matrix
K_test = np.dot(X_[180:], X_[:180].T)
y_test = y_[180:]
y_pred = cv.predict(K_test)
assert np.mean(y_pred == y_test) >= 0
# test error is raised when the precomputed kernel is not array-like
# or sparse
assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
def test_grid_search_precomputed_kernel_error_nonsquare():
# Test that grid search returns an error with a non-square precomputed
# training kernel matrix
K_train = np.zeros((10, 20))
y_train = np.ones((10, ))
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, K_train, y_train)
class BrokenClassifier(BaseEstimator):
"""Broken classifier that cannot be fit twice"""
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y):
assert not hasattr(self, 'has_been_fit_')
self.has_been_fit_ = True
def predict(self, X):
return np.zeros(X.shape[0])
@ignore_warnings
def test_refit():
# Regression test for bug in refitting
# Simulates re-fitting a broken estimator; this used to break with
# sparse SVMs.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
scoring="precision", refit=True)
clf.fit(X, y)
def test_refit_callable():
"""
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=True)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results['mean_test_score'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_refit_callable_invalid_type():
"""
Test implementation catches the errors when 'best_index_' returns an
invalid result.
"""
def refit_callable_invalid_type(cv_results):
"""
A dummy function tests when returned 'best_index_' is not integer.
"""
return None
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_invalid_type)
with pytest.raises(TypeError,
match='best_index_ returned is not an integer'):
clf.fit(X, y)
@pytest.mark.parametrize('out_bound_value', [-1, 2])
@pytest.mark.parametrize('search_cv', [RandomizedSearchCV, GridSearchCV])
def test_refit_callable_out_bound(out_bound_value, search_cv):
"""
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
"""
def refit_callable_out_bound(cv_results):
"""
A dummy function tests when returned 'best_index_' is out of bounds.
"""
return out_bound_value
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = search_cv(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_out_bound)
with pytest.raises(IndexError, match='best_index_ index out of range'):
clf.fit(X, y)
def test_refit_callable_multi_metric():
"""
Test refit=callable in multiple metric evaluation setting
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_prec`.
"""
assert 'mean_test_prec' in cv_results
return cv_results['mean_test_prec'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
scoring = {'Accuracy': make_scorer(accuracy_score), 'prec': 'precision'}
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring=scoring, refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_gridsearch_nd():
# Pass X as list in GridSearchCV
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
check_X = lambda x: x.shape[1:] == (5, 3, 2)
check_y = lambda x: x.shape[1:] == (7, 11)
clf = CheckingClassifier(
check_X=check_X, check_y=check_y, methods_to_check=["fit"],
)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_4d, y_3d).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_X_as_list():
# Pass X as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_X=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X.tolist(), y).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_y_as_list():
# Pass y as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_y=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X, y.tolist()).score(X, y)
assert hasattr(grid_search, "cv_results_")
@ignore_warnings
def test_pandas_input():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((DataFrame, Series))
except ImportError:
pass
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
for InputFeatureType, TargetType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y)
def check_df(x):
return isinstance(x, InputFeatureType)
def check_series(x):
return isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
grid_search.predict(X_df)
assert hasattr(grid_search, "cv_results_")
def test_unsupervised_grid_search():
# test grid-search with unsupervised estimator
X, y = make_blobs(n_samples=50, random_state=0)
km = KMeans(random_state=0, init="random", n_init=1)
# Multi-metric evaluation unsupervised
scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring=scoring, refit=refit)
grid_search.fit(X, y)
# Both ARI and FMS can find the right number :)
assert grid_search.best_params_["n_clusters"] == 3
# Single metric evaluation unsupervised
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring='fowlkes_mallows_score')
grid_search.fit(X, y)
assert grid_search.best_params_["n_clusters"] == 3
# Now without a score, and without y
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
grid_search.fit(X)
assert grid_search.best_params_["n_clusters"] == 4
def test_gridsearch_no_predict():
# test grid-search with an estimator without predict.
# slight duplication of a test from KDE
def custom_scoring(estimator, X):
return 42 if estimator.bandwidth == .1 else 0
X, _ = make_blobs(cluster_std=.1, random_state=1,
centers=[[0, 1], [1, 0], [0, 0]])
search = GridSearchCV(KernelDensity(),
param_grid=dict(bandwidth=[.01, .1, 1]),
scoring=custom_scoring)
search.fit(X)
assert search.best_params_['bandwidth'] == .1
assert search.best_score_ == 42
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert len(samples) == 10
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
def check_cv_results_array_types(search, param_keys, score_keys):
# Check if the search `cv_results`'s array are of correct types
cv_results = search.cv_results_
assert all(isinstance(cv_results[param], np.ma.MaskedArray)
for param in param_keys)
assert all(cv_results[key].dtype == object for key in param_keys)
assert not any(isinstance(cv_results[key], np.ma.MaskedArray)
for key in score_keys)
assert all(cv_results[key].dtype == np.float64
for key in score_keys if not key.startswith('rank'))
scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']
for key in scorer_keys:
assert cv_results['rank_test_%s' % key].dtype == np.int32
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
# Test the search.cv_results_ contains all the required results
assert_array_equal(sorted(cv_results.keys()),
sorted(param_keys + score_keys + ('params',)))
assert all(cv_results[key].shape == (n_cand,)
for key in param_keys + score_keys)
def test_grid_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4,
random_state=42)
n_splits = 3
n_grid_points = 6
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_candidates = n_grid_points
search = GridSearchCV(SVC(), cv=n_splits, param_grid=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check if score and timing are reasonable
assert all(cv_results['rank_test_score'] >= 1)
assert (all(cv_results[k] >= 0) for k in score_keys
if k != 'rank_test_score')
assert (all(cv_results[k] <= 1) for k in score_keys
if 'time' not in k and
k != 'rank_test_score')
# Check cv_results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
# Check masking
cv_results = search.cv_results_
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
def test_random_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
params = [{'kernel': ['rbf'], 'C': expon(scale=10),
'gamma': expon(scale=0.1)},
{'kernel': ['poly'], 'degree': [2, 3]}]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_cand = n_search_iter
search = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
@pytest.mark.parametrize(
"SearchCV, specialized_params",
[(GridSearchCV, {'param_grid': {'C': [1, 10]}}),
(RandomizedSearchCV,
{'param_distributions': {'C': [1, 10]}, 'n_iter': 2})]
)
def test_search_default_iid(SearchCV, specialized_params):
# Test the IID parameter TODO: Clearly this test does something else???
# noise-free simple 2d-data
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
cluster_std=0.1, shuffle=False, n_samples=80)
# split dataset into two folds that are not iid
# first one contains data of all 4 blobs, second only from two.
mask = np.ones(X.shape[0], dtype=np.bool)
mask[np.where(y == 1)[0][::2]] = 0
mask[np.where(y == 2)[0][::2]] = 0
# this leads to perfect classification on one fold and a score of 1/3 on
# the other
# create "cv" for splits
cv = [[mask, ~mask], [~mask, mask]]
common_params = {'estimator': SVC(), 'cv': cv,
'return_train_score': True}
search = SearchCV(**common_params, **specialized_params)
search.fit(X, y)
test_cv_scores = np.array(
[search.cv_results_['split%d_test_score' % s][0]
for s in range(search.n_splits_)]
)
test_mean = search.cv_results_['mean_test_score'][0]
test_std = search.cv_results_['std_test_score'][0]
train_cv_scores = np.array(
[search.cv_results_['split%d_train_score' % s][0]
for s in range(search.n_splits_)]
)
train_mean = search.cv_results_['mean_train_score'][0]
train_std = search.cv_results_['std_train_score'][0]
assert search.cv_results_['param_C'][0] == 1
# scores are the same as above
assert_allclose(test_cv_scores, [1, 1. / 3.])
assert_allclose(train_cv_scores, [1, 1])
# Unweighted mean/std is used
assert test_mean == pytest.approx(np.mean(test_cv_scores))
assert test_std == pytest.approx(np.std(test_cv_scores))
# For the train scores, we do not take a weighted mean irrespective of
# i.i.d. or not
assert train_mean == pytest.approx(1)
assert train_std == pytest.approx(0)
def test_grid_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
grid_searches = []
for scoring in ({'accuracy': make_scorer(accuracy_score),
'recall': make_scorer(recall_score)},
'accuracy', 'recall'):
grid_search = GridSearchCV(SVC(), cv=n_splits,
param_grid=params,
scoring=scoring, refit=False)
grid_search.fit(X, y)
grid_searches.append(grid_search)
compare_cv_results_multimetric_with_single(*grid_searches)
def test_random_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
# Scipy 0.12's stats dists do not accept seed, hence we use param grid
params = dict(C= | np.logspace(-4, 1, 3) | numpy.logspace |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), | np.linspace(-5.5, 5.5, 101) | numpy.linspace |
'''
-------------------------------------------------------------------------------------------------
This code accompanies the paper titled "Human injury-based safety decision of automated vehicles"
Author: <NAME>, <NAME>, <NAME>, <NAME>
Corresponding author: <NAME> (<EMAIL>)
-------------------------------------------------------------------------------------------------
'''
import torch
import numpy as np
from torch import nn
from torch.nn.utils import weight_norm
__author__ = "<NAME>"
def Collision_cond(veh_striking_list, V1_v, V2_v, delta_angle, veh_param):
''' Estimate the collision condition. '''
(veh_l, veh_w, veh_cgf, veh_cgs, veh_k, veh_m) = veh_param
delta_angle_2 = np.arccos(np.abs(np.cos(delta_angle)))
if -1e-6 < delta_angle_2 < 1e-6:
delta_angle_2 = 1e-6
delta_v1_list = []
delta_v2_list = []
# Estimate the collision condition (delat-v) according to the principal impact direction.
for veh_striking in veh_striking_list:
if veh_striking[0] == 1:
veh_ca = np.arctan(veh_cgf[0] / veh_cgs[0])
veh_a2 = np.abs(veh_cgs[1] - veh_striking[3])
veh_RDS = np.abs(V1_v * np.cos(delta_angle) - V2_v)
veh_a1 = np.abs(np.sqrt(veh_cgf[0] ** 2 + veh_cgs[0] ** 2) * np.cos(veh_ca + delta_angle_2))
if (veh_striking[1]+1) in [16, 1, 2, 3, 17, 20, 21] and (veh_striking[2]+1) in [16, 1, 2, 3, 17, 20, 21]:
veh_e = 2 / veh_RDS
else:
veh_e = 0.5 / veh_RDS
elif veh_striking[0] == 2:
veh_ca = np.arctan(veh_cgf[0] / veh_cgs[0])
veh_a2 = np.abs(veh_cgf[1] - veh_striking[3])
veh_a1 = np.abs( | np.sqrt(veh_cgf[0] ** 2 + veh_cgs[0] ** 2) | numpy.sqrt |
from os import listdir
from os.path import isfile, join
from path import Path
import numpy as np
import cv2
# Dataset path
target_path = Path('target/')
annotation_images_path = Path('dataset/ade20k/annotations/training/').abspath()
dataset = [ f for f in listdir(annotation_images_path) if isfile(join(annotation_images_path,f))]
images = np.empty(len(dataset), dtype = object)
count = 1
# Iterate all Training Images
for n in range(0, len(dataset)):
# Read image
images[n] = cv2.imread(join(annotation_images_path,dataset[n]))
# Convert it to array
array = | np.asarray(images[n],dtype=np.int8) | numpy.asarray |
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
postprocess.
"""
import os
import argparse
import numpy as np
from src.ms_utils import calculate_auc
from mindspore import context, load_checkpoint
def softmax(x):
t_max = np.max(x, axis=1, keepdims=True) # returns max of each row and keeps same dims
e_x = np.exp(x - t_max) # subtracts each row with its max value
t_sum = np.sum(e_x, axis=1, keepdims=True) # returns sum of each row and keeps same dims
f_x = e_x / t_sum
return f_x
def score_model(preds, test_pos, test_neg, weight, bias):
"""
Score the model on the test set edges in each epoch.
Args:
epoch (LongTensor): Training epochs.
Returns:
auc(Float32): AUC result.
f1(Float32): F1-Score result.
"""
score_positive_edges = | np.array(test_pos, dtype=np.int32) | numpy.array |
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
class TwoLayerNet(object):
"""
A two-layer fully-connected neural network. The net has an input dimension
of N, a hidden layer dimension of H, and performs classification over C
classes.
We train the network with a softmax loss function and L2 regularization on
the weight matrices. The network uses a ReLU nonlinearity after the first
fully connected layer.
In other words, the network has the following architecture:
input - fully connected layer - ReLU - fully connected layer - softmax
The outputs of the second fully-connected layer are the scores for each
class.
"""
def __init__(self, input_size, hidden_size, output_size, std=1e-4):
"""
Initialize the model. Weights are initialized to small random values
and biases are initialized to zero. Weights and biases are stored in
the variable self.params, which is a dictionary with the following keys
W1: First layer weights; has shape (D, H)
b1: First layer biases; has shape (H,)
W2: Second layer weights; has shape (H, C)
b2: Second layer biases; has shape (C,)
Inputs:
- input_size: The dimension D of the input data.
- hidden_size: The number of neurons H in the hidden layer.
- output_size: The number of classes C.
"""
self.params = {}
self.params['W1'] = std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def loss(self, X, y=None, reg=0.0):
"""
Compute the loss and gradients for a two layer fully connected neural
network.
Inputs:
- X: Input data of shape (N, D). Each X[i] is a training sample.
- y: Vector of training labels. y[i] is the label for X[i], and each
y[i] is an integer in the range 0 <= y[i] < C. This parameter is
optional; if it is not passed then we only return scores, and if it
is passed then we instead return the loss and gradients.
- reg: Regularization strength.
Returns:
If y is None, return a matrix scores of shape (N, C) where scores[i, c]
is the score for class c on input X[i].
If y is not None, instead return a tuple of:
- loss: Loss (data loss and regularization loss) for this batch of
training samples.
- grads: Dictionary mapping parameter names to gradients of those
parameters with respect to the loss function; has the same keys as
self.params.
"""
# Unpack variables from the params dictionary
W1, b1 = self.params['W1'], self.params['b1']
W2, b2 = self.params['W2'], self.params['b2']
N, D = X.shape
# Compute the forward pass
scores = None
#######################################################################
# TODO: Perform the forward pass, computing the class scores for the #
# input. Store the result in the scores variable, which should be an #
# array of shape (N, C). #
#######################################################################
scores1 = X.dot(W1) + b1 # FC1
X2 = np.maximum(0, scores1) # ReLU FC1
scores = X2.dot(W2) + b2 # FC2
#######################################################################
# END OF YOUR CODE #
#######################################################################
# If the targets are not given then jump out, we're done
if y is None:
return scores
scores -= np.max(scores) # Fix Number instability
scores_exp = np.exp(scores)
probs = scores_exp / | np.sum(scores_exp, axis=1, keepdims=True) | numpy.sum |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[1].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
print(f'DFA fluctuation with 11 knots: {np.round(np.var(time_series - imfs_51[3, :]), 3)}')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[2].set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$', r'$5\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[2].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[2].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
plt.savefig('jss_figures/DFA_different_trends.png')
plt.show()
# plot 6b
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences Zoomed Region', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[0].set_ylim(-5.5, 5.5)
axs[0].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].set_ylim(-5.5, 5.5)
axs[1].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([np.pi, (3 / 2) * np.pi])
axs[2].set_xticklabels([r'$\pi$', r'$\frac{3}{2}\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].set_ylim(-5.5, 5.5)
axs[2].set_xlim(0.95 * np.pi, 1.55 * np.pi)
plt.savefig('jss_figures/DFA_different_trends_zoomed.png')
plt.show()
hs_ouputs = hilbert_spectrum(time, imfs_51, hts_51, ifs_51, max_frequency=12, plot=False)
# plot 6c
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Simple Sinusoidal Time Seres with Added Noise', 50))
x_hs, y, z = hs_ouputs
z_min, z_max = 0, np.abs(z).max()
ax.pcolormesh(x_hs, y, np.abs(z), cmap='gist_rainbow', vmin=z_min, vmax=z_max)
ax.plot(x_hs[0, :], 8 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 8$', Linewidth=3)
ax.plot(x_hs[0, :], 4 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 4$', Linewidth=3)
ax.plot(x_hs[0, :], 2 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 2$', Linewidth=3)
ax.set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi])
ax.set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$'])
plt.ylabel(r'Frequency (rad.s$^{-1}$)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.85, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/DFA_hilbert_spectrum.png')
plt.show()
# plot 6c
time = np.linspace(0, 5 * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 51)
fluc = Fluctuation(time=time, time_series=time_series)
max_unsmoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='maxima', smooth=False)
max_smoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='maxima', smooth=True)
min_unsmoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='minima', smooth=False)
min_smoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='minima', smooth=True)
util = Utility(time=time, time_series=time_series)
maxima = util.max_bool_func_1st_order_fd()
minima = util.min_bool_func_1st_order_fd()
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title(textwrap.fill('Plot Demonstrating Unsmoothed Extrema Envelopes if Schoenberg–Whitney Conditions are Not Satisfied', 50))
plt.plot(time, time_series, label='Time series', zorder=2, LineWidth=2)
plt.scatter(time[maxima], time_series[maxima], c='r', label='Maxima', zorder=10)
plt.scatter(time[minima], time_series[minima], c='b', label='Minima', zorder=10)
plt.plot(time, max_unsmoothed[0], label=textwrap.fill('Unsmoothed maxima envelope', 10), c='darkorange')
plt.plot(time, max_smoothed[0], label=textwrap.fill('Smoothed maxima envelope', 10), c='red')
plt.plot(time, min_unsmoothed[0], label=textwrap.fill('Unsmoothed minima envelope', 10), c='cyan')
plt.plot(time, min_smoothed[0], label=textwrap.fill('Smoothed minima envelope', 10), c='blue')
for knot in knots[:-1]:
plt.plot(knot * np.ones(101), np.linspace(-3.0, -2.0, 101), '--', c='grey', zorder=1)
plt.plot(knots[-1] * np.ones(101), np.linspace(-3.0, -2.0, 101), '--', c='grey', label='Knots', zorder=1)
plt.xticks((0, 1 * np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi),
(r'$0$', r'$\pi$', r'2$\pi$', r'3$\pi$', r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
plt.xlim(-0.25 * np.pi, 5.25 * np.pi)
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Schoenberg_Whitney_Conditions.png')
plt.show()
# plot 7
a = 0.25
width = 0.2
time = np.linspace((0 + a) * np.pi, (5 - a) * np.pi, 1001)
knots = np.linspace((0 + a) * np.pi, (5 - a) * np.pi, 11)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
inflection_bool = utils.inflection_point()
inflection_x = time[inflection_bool]
inflection_y = time_series[inflection_bool]
fluctuation = emd_mean.Fluctuation(time=time, time_series=time_series)
maxima_envelope = fluctuation.envelope_basis_function_approximation(knots, 'maxima', smooth=False,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
maxima_envelope_smooth = fluctuation.envelope_basis_function_approximation(knots, 'maxima', smooth=True,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
minima_envelope = fluctuation.envelope_basis_function_approximation(knots, 'minima', smooth=False,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
minima_envelope_smooth = fluctuation.envelope_basis_function_approximation(knots, 'minima', smooth=True,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
inflection_points_envelope = fluctuation.direct_detrended_fluctuation_estimation(knots,
smooth=True,
smoothing_penalty=0.2,
technique='inflection_points')[0]
binomial_points_envelope = fluctuation.direct_detrended_fluctuation_estimation(knots,
smooth=True,
smoothing_penalty=0.2,
technique='binomial_average', order=21,
increment=20)[0]
derivative_of_lsq = utils.derivative_forward_diff()
derivative_time = time[:-1]
derivative_knots = np.linspace(knots[0], knots[-1], 31)
# change (1) detrended_fluctuation_technique and (2) max_internal_iter and (3) debug (confusing with external debugging)
emd = AdvEMDpy.EMD(time=derivative_time, time_series=derivative_of_lsq)
imf_1_of_derivative = emd.empirical_mode_decomposition(knots=derivative_knots,
knot_time=derivative_time, text=False, verbose=False)[0][1, :]
utils = emd_utils.Utility(time=time[:-1], time_series=imf_1_of_derivative)
optimal_maxima = np.r_[False, utils.derivative_forward_diff() < 0, False] & \
np.r_[utils.zero_crossing() == 1, False]
optimal_minima = np.r_[False, utils.derivative_forward_diff() > 0, False] & \
np.r_[utils.zero_crossing() == 1, False]
EEMD_maxima_envelope = fluctuation.envelope_basis_function_approximation_fixed_points(knots, 'maxima',
optimal_maxima,
optimal_minima,
smooth=False,
smoothing_penalty=0.2,
edge_effect='none')[0]
EEMD_minima_envelope = fluctuation.envelope_basis_function_approximation_fixed_points(knots, 'minima',
optimal_maxima,
optimal_minima,
smooth=False,
smoothing_penalty=0.2,
edge_effect='none')[0]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Detrended Fluctuation Analysis Examples')
plt.plot(time, time_series, LineWidth=2, label='Time series')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(time[optimal_maxima], time_series[optimal_maxima], c='darkred', zorder=4,
label=textwrap.fill('Optimal maxima', 10))
plt.scatter(time[optimal_minima], time_series[optimal_minima], c='darkblue', zorder=4,
label=textwrap.fill('Optimal minima', 10))
plt.scatter(inflection_x, inflection_y, c='magenta', zorder=4, label=textwrap.fill('Inflection points', 10))
plt.plot(time, maxima_envelope, c='darkblue', label=textwrap.fill('EMD envelope', 10))
plt.plot(time, minima_envelope, c='darkblue')
plt.plot(time, (maxima_envelope + minima_envelope) / 2, c='darkblue')
plt.plot(time, maxima_envelope_smooth, c='darkred', label=textwrap.fill('SEMD envelope', 10))
plt.plot(time, minima_envelope_smooth, c='darkred')
plt.plot(time, (maxima_envelope_smooth + minima_envelope_smooth) / 2, c='darkred')
plt.plot(time, EEMD_maxima_envelope, c='darkgreen', label=textwrap.fill('EEMD envelope', 10))
plt.plot(time, EEMD_minima_envelope, c='darkgreen')
plt.plot(time, (EEMD_maxima_envelope + EEMD_minima_envelope) / 2, c='darkgreen')
plt.plot(time, inflection_points_envelope, c='darkorange', label=textwrap.fill('Inflection point envelope', 10))
plt.plot(time, binomial_points_envelope, c='deeppink', label=textwrap.fill('Binomial average envelope', 10))
plt.plot(time, np.cos(time), c='black', label='True mean')
plt.xticks((0, 1 * np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi), (r'$0$', r'$\pi$', r'2$\pi$', r'3$\pi$',
r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
plt.xlim(-0.25 * np.pi, 5.25 * np.pi)
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/detrended_fluctuation_analysis.png')
plt.show()
# Duffing Equation Example
def duffing_equation(xy, ts):
gamma = 0.1
epsilon = 1
omega = ((2 * np.pi) / 25)
return [xy[1], xy[0] - epsilon * xy[0] ** 3 + gamma * np.cos(omega * ts)]
t = np.linspace(0, 150, 1501)
XY0 = [1, 1]
solution = odeint(duffing_equation, XY0, t)
x = solution[:, 0]
dxdt = solution[:, 1]
x_points = [0, 50, 100, 150]
x_names = {0, 50, 100, 150}
y_points_1 = [-2, 0, 2]
y_points_2 = [-1, 0, 1]
fig, axs = plt.subplots(2, 1)
plt.subplots_adjust(hspace=0.2)
axs[0].plot(t, x)
axs[0].set_title('Duffing Equation Displacement')
axs[0].set_ylim([-2, 2])
axs[0].set_xlim([0, 150])
axs[1].plot(t, dxdt)
axs[1].set_title('Duffing Equation Velocity')
axs[1].set_ylim([-1.5, 1.5])
axs[1].set_xlim([0, 150])
axis = 0
for ax in axs.flat:
ax.label_outer()
if axis == 0:
ax.set_ylabel('x(t)')
ax.set_yticks(y_points_1)
if axis == 1:
ax.set_ylabel(r'$ \dfrac{dx(t)}{dt} $')
ax.set(xlabel='t')
ax.set_yticks(y_points_2)
ax.set_xticks(x_points)
ax.set_xticklabels(x_names)
axis += 1
plt.savefig('jss_figures/Duffing_equation.png')
plt.show()
# compare other packages Duffing - top
pyemd = pyemd0215()
py_emd = pyemd(x)
IP, IF, IA = emd040.spectra.frequency_transform(py_emd.T, 10, 'hilbert')
freq_edges, freq_bins = emd040.spectra.define_hist_bins(0, 0.2, 100)
hht = emd040.spectra.hilberthuang(IF, IA, freq_edges)
hht = gaussian_filter(hht, sigma=1)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 1.0
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Duffing Equation using PyEMD 0.2.10', 40))
plt.pcolormesh(t, freq_bins, hht, cmap='gist_rainbow', vmin=0, vmax=np.max(np.max(np.abs(hht))))
plt.plot(t[:-1], 0.124 * np.ones_like(t[:-1]), '--', label=textwrap.fill('Hamiltonian frequency approximation', 15))
plt.plot(t[:-1], 0.04 * np.ones_like(t[:-1]), 'g--', label=textwrap.fill('Driving function frequency', 15))
plt.xticks([0, 50, 100, 150])
plt.yticks([0, 0.1, 0.2])
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.75, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Duffing_equation_ht_pyemd.png')
plt.show()
plt.show()
emd_sift = emd040.sift.sift(x)
IP, IF, IA = emd040.spectra.frequency_transform(emd_sift, 10, 'hilbert')
freq_edges, freq_bins = emd040.spectra.define_hist_bins(0, 0.2, 100)
hht = emd040.spectra.hilberthuang(IF, IA, freq_edges)
hht = gaussian_filter(hht, sigma=1)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 1.0
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Duffing Equation using emd 0.3.3', 40))
plt.pcolormesh(t, freq_bins, hht, cmap='gist_rainbow', vmin=0, vmax=np.max(np.max(np.abs(hht))))
plt.plot(t[:-1], 0.124 * np.ones_like(t[:-1]), '--', label=textwrap.fill('Hamiltonian frequency approximation', 15))
plt.plot(t[:-1], 0.04 * np.ones_like(t[:-1]), 'g--', label=textwrap.fill('Driving function frequency', 15))
plt.xticks([0, 50, 100, 150])
plt.yticks([0, 0.1, 0.2])
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.75, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Duffing_equation_ht_emd.png')
plt.show()
# compare other packages Duffing - bottom
emd_duffing = AdvEMDpy.EMD(time=t, time_series=x)
emd_duff, emd_ht_duff, emd_if_duff, _, _, _, _ = emd_duffing.empirical_mode_decomposition(verbose=False)
fig, axs = plt.subplots(2, 1)
plt.subplots_adjust(hspace=0.3)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
axs[0].plot(t, emd_duff[1, :], label='AdvEMDpy')
axs[0].plot(t, py_emd[0, :], '--', label='PyEMD 0.2.10')
axs[0].plot(t, emd_sift[:, 0], '--', label='emd 0.3.3')
axs[0].set_title('IMF 1')
axs[0].set_ylim([-2, 2])
axs[0].set_xlim([0, 150])
axs[1].plot(t, emd_duff[2, :], label='AdvEMDpy')
print(f'AdvEMDpy driving function error: {np.round(sum(abs(0.1 * np.cos(0.04 * 2 * np.pi * t) - emd_duff[2, :])), 3)}')
axs[1].plot(t, py_emd[1, :], '--', label='PyEMD 0.2.10')
print(f'PyEMD driving function error: {np.round(sum(abs(0.1 * np.cos(0.04 * 2 * np.pi * t) - py_emd[1, :])), 3)}')
axs[1].plot(t, emd_sift[:, 1], '--', label='emd 0.3.3')
print(f'emd driving function error: {np.round(sum(abs(0.1 * np.cos(0.04 * 2 * np.pi * t) - emd_sift[:, 1])), 3)}')
axs[1].plot(t, 0.1 * np.cos(0.04 * 2 * np.pi * t), '--', label=r'$0.1$cos$(0.08{\pi}t)$')
axs[1].set_title('IMF 2')
axs[1].set_ylim([-0.2, 0.4])
axs[1].set_xlim([0, 150])
axis = 0
for ax in axs.flat:
ax.label_outer()
if axis == 0:
ax.set_ylabel(r'$\gamma_1(t)$')
ax.set_yticks([-2, 0, 2])
if axis == 1:
ax.set_ylabel(r'$\gamma_2(t)$')
ax.set_yticks([-0.2, 0, 0.2])
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
ax.set_xticks(x_points)
ax.set_xticklabels(x_names)
axis += 1
plt.savefig('jss_figures/Duffing_equation_imfs.png')
plt.show()
hs_ouputs = hilbert_spectrum(t, emd_duff, emd_ht_duff, emd_if_duff, max_frequency=1.3, plot=False)
ax = plt.subplot(111)
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Duffing Equation using AdvEMDpy', 40))
x, y, z = hs_ouputs
y = y / (2 * np.pi)
z_min, z_max = 0, | np.abs(z) | numpy.abs |
import argparse
import json
import numpy as np
import pandas as pd
import os
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,f1_score
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import backend as K
from keras.utils.vis_utils import plot_model
from sklearn.externals import joblib
import time
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def get_embeddings(sentences_list,layer_json):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:return: Dictionary with key each sentence of the sentences_list and as value the embedding
'''
sentences = dict()#dict with key the index of each line of the sentences_list.txt and as value the sentence
embeddings = dict()##dict with key the index of each sentence and as value the its embedding
sentence_emb = dict()#key:sentence,value:its embedding
with open(sentences_list,'r') as file:
for index,line in enumerate(file):
sentences[index] = line.strip()
with open(layer_json, 'r',encoding='utf-8') as f:
for line in f:
embeddings[json.loads(line)['linex_index']] = np.asarray(json.loads(line)['features'])
for key,value in sentences.items():
sentence_emb[value] = embeddings[key]
return sentence_emb
def train_classifier(sentences_list,layer_json,dataset_csv,filename):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:param filename: The path of the pickle file that the model will be stored
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = np.asarray(label)
print(errors)
features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1)
features = np.column_stack([features, length]) # np.append(features,length,axis=1)
print(features.shape)
X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42)
log = LogisticRegression(random_state=0, solver='newton-cg', max_iter=1000, C=0.1)
log.fit(X_train, y_train)
#save the model
_ = joblib.dump(log, filename, compress=9)
predictions = log.predict(X_val)
print("###########################################")
print("Results using embeddings from the",layer_json,"file")
print(classification_report(y_val, predictions))
print("F1 score using Logistic Regression:",f1_score(y_val, predictions))
print("###########################################")
#train a DNN
f1_results = list()
for i in range(3):
model = Sequential()
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dense(128, activation='relu', trainable=True))
model.add(Dropout(0.30))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.25))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.35))
model.add(Dense(1, activation='sigmoid'))
# compile network
model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[f1])
# fit network
model.fit(X_train, y_train, epochs=100, batch_size=64)
loss, f_1 = model.evaluate(X_val, y_val, verbose=1)
print('\nTest F1: %f' % (f_1 * 100))
f1_results.append(f_1)
model = None
print("###########################################")
print("Results using embeddings from the", layer_json, "file")
# evaluate
print(np.mean(f1_results))
print("###########################################")
def parameter_tuning_LR(sentences_list,layer_json,dataset_csv):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append( | np.zeros(768) | numpy.zeros |
import os
import string
from collections import Counter
from datetime import datetime
from functools import partial
from pathlib import Path
from typing import Optional
import numpy as np
import pandas as pd
from scipy.stats.stats import chisquare
from tangled_up_in_unicode import block, block_abbr, category, category_long, script
from pandas_profiling.config import Settings
from pandas_profiling.model.summary_helpers_image import (
extract_exif,
hash_image,
is_image_truncated,
open_image,
)
def mad(arr: np.ndarray) -> np.ndarray:
"""Median Absolute Deviation: a "Robust" version of standard deviation.
Indices variability of the sample.
https://en.wikipedia.org/wiki/Median_absolute_deviation
"""
return np.median(np.abs(arr - np.median(arr)))
def named_aggregate_summary(series: pd.Series, key: str) -> dict:
summary = {
f"max_{key}": np.max(series),
f"mean_{key}": np.mean(series),
f"median_{key}": np.median(series),
f"min_{key}": np.min(series),
}
return summary
def length_summary(series: pd.Series, summary: dict = None) -> dict:
if summary is None:
summary = {}
length = series.str.len()
summary.update({"length": length})
summary.update(named_aggregate_summary(length, "length"))
return summary
def file_summary(series: pd.Series) -> dict:
"""
Args:
series: series to summarize
Returns:
"""
# Transform
stats = series.map(lambda x: os.stat(x))
def convert_datetime(x: float) -> str:
return datetime.fromtimestamp(x).strftime("%Y-%m-%d %H:%M:%S")
# Transform some more
summary = {
"file_size": stats.map(lambda x: x.st_size),
"file_created_time": stats.map(lambda x: x.st_ctime).map(convert_datetime),
"file_accessed_time": stats.map(lambda x: x.st_atime).map(convert_datetime),
"file_modified_time": stats.map(lambda x: x.st_mtime).map(convert_datetime),
}
return summary
def path_summary(series: pd.Series) -> dict:
"""
Args:
series: series to summarize
Returns:
"""
# TODO: optimize using value counts
summary = {
"common_prefix": os.path.commonprefix(series.values.tolist())
or "No common prefix",
"stem_counts": series.map(lambda x: os.path.splitext(x)[0]).value_counts(),
"suffix_counts": series.map(lambda x: os.path.splitext(x)[1]).value_counts(),
"name_counts": series.map(lambda x: os.path.basename(x)).value_counts(),
"parent_counts": series.map(lambda x: os.path.dirname(x)).value_counts(),
"anchor_counts": series.map(lambda x: os.path.splitdrive(x)[0]).value_counts(),
}
summary["n_stem_unique"] = len(summary["stem_counts"])
summary["n_suffix_unique"] = len(summary["suffix_counts"])
summary["n_name_unique"] = len(summary["name_counts"])
summary["n_parent_unique"] = len(summary["parent_counts"])
summary["n_anchor_unique"] = len(summary["anchor_counts"])
return summary
def url_summary(series: pd.Series) -> dict:
"""
Args:
series: series to summarize
Returns:
"""
summary = {
"scheme_counts": series.map(lambda x: x.scheme).value_counts(),
"netloc_counts": series.map(lambda x: x.netloc).value_counts(),
"path_counts": series.map(lambda x: x.path).value_counts(),
"query_counts": series.map(lambda x: x.query).value_counts(),
"fragment_counts": series.map(lambda x: x.fragment).value_counts(),
}
return summary
def count_duplicate_hashes(image_descriptions: dict) -> int:
"""
Args:
image_descriptions:
Returns:
"""
counts = pd.Series(
[x["hash"] for x in image_descriptions if "hash" in x]
).value_counts()
return counts.sum() - len(counts)
def extract_exif_series(image_exifs: list) -> dict:
"""
Args:
image_exifs:
Returns:
"""
exif_keys = []
exif_values: dict = {}
for image_exif in image_exifs:
# Extract key
exif_keys.extend(list(image_exif.keys()))
# Extract values per key
for exif_key, exif_val in image_exif.items():
if exif_key not in exif_values:
exif_values[exif_key] = []
exif_values[exif_key].append(exif_val)
series = {"exif_keys": pd.Series(exif_keys, dtype=object).value_counts().to_dict()}
for k, v in exif_values.items():
series[k] = pd.Series(v).value_counts()
return series
def extract_image_information(
path: Path, exif: bool = False, hash: bool = False
) -> dict:
"""Extracts all image information per file, as opening files is slow
Args:
path: Path to the image
exif: extract exif information
hash: calculate hash (for duplicate detection)
Returns:
A dict containing image information
"""
information: dict = {}
image = open_image(path)
information["opened"] = image is not None
if image is not None:
information["truncated"] = is_image_truncated(image)
if not information["truncated"]:
information["size"] = image.size
if exif:
information["exif"] = extract_exif(image)
if hash:
information["hash"] = hash_image(image)
return information
def image_summary(series: pd.Series, exif: bool = False, hash: bool = False) -> dict:
"""
Args:
series: series to summarize
exif: extract exif information
hash: calculate hash (for duplicate detection)
Returns:
"""
image_information = series.apply(
partial(extract_image_information, exif=exif, hash=hash)
)
summary = {
"n_truncated": sum(
[1 for x in image_information if "truncated" in x and x["truncated"]]
),
"image_dimensions": pd.Series(
[x["size"] for x in image_information if "size" in x],
name="image_dimensions",
),
}
image_widths = summary["image_dimensions"].map(lambda x: x[0])
summary.update(named_aggregate_summary(image_widths, "width"))
image_heights = summary["image_dimensions"].map(lambda x: x[1])
summary.update(named_aggregate_summary(image_heights, "height"))
image_areas = image_widths * image_heights
summary.update(named_aggregate_summary(image_areas, "area"))
if hash:
summary["n_duplicate_hash"] = count_duplicate_hashes(image_information)
if exif:
exif_series = extract_exif_series(
[x["exif"] for x in image_information if "exif" in x]
)
summary["exif_keys_counts"] = exif_series["exif_keys"]
summary["exif_data"] = exif_series
return summary
def get_character_counts(series: pd.Series) -> Counter:
"""Function to return the character counts
Args:
series: the Series to process
Returns:
A dict with character counts
"""
return Counter(series.str.cat())
def counter_to_series(counter: Counter) -> pd.Series:
if not counter:
return pd.Series([], dtype=object)
counter_as_tuples = counter.most_common()
items, counts = zip(*counter_as_tuples)
return pd.Series(counts, index=items)
def unicode_summary(series: pd.Series) -> dict:
# Unicode Character Summaries (category and script name)
character_counts = get_character_counts(series)
character_counts_series = counter_to_series(character_counts)
char_to_block = {key: block(key) for key in character_counts.keys()}
char_to_category_short = {key: category(key) for key in character_counts.keys()}
char_to_script = {key: script(key) for key in character_counts.keys()}
summary = {
"n_characters": len(character_counts_series),
"character_counts": character_counts_series,
"category_alias_values": {
key: category_long(value) for key, value in char_to_category_short.items()
},
"block_alias_values": {
key: block_abbr(value) for key, value in char_to_block.items()
},
}
# Retrieve original distribution
block_alias_counts: Counter = Counter()
per_block_char_counts: dict = {
k: Counter() for k in summary["block_alias_values"].values()
}
for char, n_char in character_counts.items():
block_name = summary["block_alias_values"][char]
block_alias_counts[block_name] += n_char
per_block_char_counts[block_name][char] = n_char
summary["block_alias_counts"] = counter_to_series(block_alias_counts)
summary["block_alias_char_counts"] = {
k: counter_to_series(v) for k, v in per_block_char_counts.items()
}
script_counts: Counter = Counter()
per_script_char_counts: dict = {k: Counter() for k in char_to_script.values()}
for char, n_char in character_counts.items():
script_name = char_to_script[char]
script_counts[script_name] += n_char
per_script_char_counts[script_name][char] = n_char
summary["script_counts"] = counter_to_series(script_counts)
summary["script_char_counts"] = {
k: counter_to_series(v) for k, v in per_script_char_counts.items()
}
category_alias_counts: Counter = Counter()
per_category_alias_char_counts: dict = {
k: Counter() for k in summary["category_alias_values"].values()
}
for char, n_char in character_counts.items():
category_alias_name = summary["category_alias_values"][char]
category_alias_counts[category_alias_name] += n_char
per_category_alias_char_counts[category_alias_name][char] += n_char
summary["category_alias_counts"] = counter_to_series(category_alias_counts)
summary["category_alias_char_counts"] = {
k: counter_to_series(v) for k, v in per_category_alias_char_counts.items()
}
# Unique counts
summary["n_category"] = len(summary["category_alias_counts"])
summary["n_scripts"] = len(summary["script_counts"])
summary["n_block_alias"] = len(summary["block_alias_counts"])
if len(summary["category_alias_counts"]) > 0:
summary["category_alias_counts"].index = summary[
"category_alias_counts"
].index.str.replace("_", " ")
return summary
def histogram_compute(
config: Settings,
finite_values: np.ndarray,
n_unique: int,
name: str = "histogram",
weights: Optional[np.ndarray] = None,
) -> dict:
stats = {}
bins = config.plot.histogram.bins
bins_arg = "auto" if bins == 0 else min(bins, n_unique)
stats[name] = np.histogram(finite_values, bins=bins_arg, weights=weights)
max_bins = config.plot.histogram.max_bins
if bins_arg == "auto" and len(stats[name][1]) > max_bins:
stats[name] = np.histogram(finite_values, bins=max_bins, weights=None)
return stats
def chi_square(
values: Optional[np.ndarray] = None, histogram: Optional[np.ndarray] = None
) -> dict:
if histogram is None:
histogram, _ = | np.histogram(values, bins="auto") | numpy.histogram |
#!/usr/bin/env python3
import tensorflow as tf
physical_devices = tf.config.list_physical_devices('GPU')
try:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
except:
# Invalid device or cannot modify virtual devices once initialized.
pass
import numpy as np
import os, time, csv
import tqdm
import umap
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import datetime
import signal
import net
from matplotlib import rcParams
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio', 'Takao', 'IPAexGothic', 'IPAPGothic', 'Noto Sans CJK JP']
import net
class SimpleEncodeDecoder:
def __init__(self):
self.save_dir = './result/step1/'
self.result_dir = './result/plot/'
os.makedirs(self.result_dir, exist_ok=True)
checkpoint_dir = self.save_dir
self.max_epoch = 300
self.steps_per_epoch = 1000
self.batch_size = 64
lr = tf.keras.optimizers.schedules.ExponentialDecay(1e-3, 1e5, 0.5)
self.optimizer = tf.keras.optimizers.Adam(lr)
self.encoder = net.FeatureBlock()
self.encoder.summary()
self.decoder = net.SimpleDecoderBlock()
self.decoder.summary()
inputs = {
'image': tf.keras.Input(shape=(128,128,3)),
}
feature_out = self.encoder(inputs)
outputs = self.decoder(feature_out)
self.model = tf.keras.Model(inputs, outputs, name='SimpleEncodeDecoder')
checkpoint = tf.train.Checkpoint(optimizer=self.optimizer,
model=self.model)
last = tf.train.latest_checkpoint(checkpoint_dir)
checkpoint.restore(last)
self.manager = tf.train.CheckpointManager(
checkpoint, directory=checkpoint_dir, max_to_keep=2)
if not last is None:
self.init_epoch = int(os.path.basename(last).split('-')[1])
print('loaded %d epoch'%self.init_epoch)
else:
self.init_epoch = 0
self.model.summary()
def eval(self):
self.data = net.FontData()
print("Plot: ", self.init_epoch + 1)
acc = self.make_plot(self.data.test_data(self.batch_size), (self.init_epoch + 1))
print('acc', acc)
@tf.function
def eval_substep(self, inputs):
input_data = {
'image': inputs['input'],
}
feature = self.encoder(input_data)
outputs = self.decoder(feature)
target_id = inputs['index']
target_id1 = inputs['idx1']
target_id2 = inputs['idx2']
pred_id1 = tf.nn.softmax(outputs['id1'], -1)
pred_id2 = tf.nn.softmax(outputs['id2'], -1)
return {
'feature': feature,
'pred_id1': pred_id1,
'pred_id2': pred_id2,
'target_id': target_id,
'target_id1': target_id1,
'target_id2': target_id2,
}
def make_plot(self, test_ds, epoch):
result = []
labels = []
with open(os.path.join(self.result_dir,'test_result-%d.txt'%epoch),'w') as txt:
correct_count = 0
failed_count = 0
with tqdm.tqdm(total=len(self.data.test_keys)) as pbar:
for inputs in test_ds:
pred = self.eval_substep(inputs)
result += [pred['feature']]
labels += [pred['target_id']]
for i in range(pred['target_id1'].shape[0]):
txt.write('---\n')
target = pred['target_id'][i].numpy()
txt.write('target: id %d = %s\n'%(target, self.data.glyphs[target-1]))
predid1 = np.argmax(pred['pred_id1'][i])
predid2 = np.argmax(pred['pred_id2'][i])
predid = predid1 * 100 + predid2
if predid == 0:
txt.write('predict: id %d nothing (p=%f)\n'%(predid, pred['pred_id1'][i][predid1] * pred['pred_id2'][i][predid2]))
elif predid > self.data.id_count + 1:
txt.write('predict: id %d nothing (p=%f)\n'%(predid, pred['pred_id1'][i][predid1] * pred['pred_id2'][i][predid2]))
else:
txt.write('predict: id %d = %s (p=%f)\n'%(predid, self.data.glyphs[predid-1], pred['pred_id1'][i][predid1] * pred['pred_id2'][i][predid2]))
if target == predid:
txt.write('Correct!\n')
correct_count += 1
else:
txt.write('Failed!\n')
failed_count += 1
pbar.update(1)
acc = correct_count / (correct_count + failed_count)
txt.write('==============\n')
txt.write('Correct = %d\n'%correct_count)
txt.write('Failed = %d\n'%failed_count)
txt.write('accuracy = %f\n'%acc)
result = np.concatenate(result)
labels = | np.concatenate(labels) | numpy.concatenate |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), | np.linspace(-2, 2, 101) | numpy.linspace |
"""
Random Variables.
This module implements random variables. Random variables are the main in- and outputs
of probabilistic numerical methods.
"""
from typing import Any, Callable, Dict, Generic, Optional, Tuple, TypeVar, Union
import numpy as np
from probnum import utils as _utils
from probnum.type import (
ArrayLikeGetitemArgType,
DTypeArgType,
FloatArgType,
RandomStateArgType,
RandomStateType,
ShapeArgType,
ShapeType,
)
try:
# functools.cached_property is only available in Python >=3.8
from functools import cached_property
except ImportError:
from cached_property import cached_property
_ValueType = TypeVar("ValueType")
class RandomVariable(Generic[_ValueType]):
"""
Random variables are the main objects used by probabilistic numerical methods.
Every probabilistic numerical method takes a random variable encoding the prior
distribution as input and outputs a random variable whose distribution encodes the
uncertainty arising from finite computation. The generic signature of a
probabilistic numerical method is:
``output_rv = probnum_method(input_rv, method_params)``
In practice, most random variables used by methods in ProbNum have Dirac or Gaussian
measure.
Instances of :class:`RandomVariable` can be added, multiplied, etc. with arrays and
linear operators. This may change their ``distribution`` and not necessarily all
previously available methods are retained.
The internals of :class:`RandomVariable` objects are assumed to be constant over
their whole lifecycle. This is due to the caches used to make certain computations
more efficient. As a consequence, altering the internal state of a
:class:`RandomVariable` (e.g. its mean, cov, sampling function, etc.) will result in
undefined behavior. In particular, this should be kept in mind when subclassing
:class:`RandomVariable` or any of its descendants.
Parameters
----------
shape :
Shape of realizations of this random variable.
dtype :
Data type of realizations of this random variable. If ``object`` will be
converted to ``numpy.dtype``.
as_value_type :
Function which can be used to transform user-supplied arguments, interpreted as
realizations of this random variable, to an easy-to-process, normalized format.
Will be called internally to transform the argument of functions like
``in_support``, ``cdf`` and ``logcdf``, ``pmf`` and ``logpmf`` (in
:class:`DiscreteRandomVariable`), ``pdf`` and ``logpdf`` (in
:class:`ContinuousRandomVariable`), and potentially by similar functions in
subclasses.
For instance, this method is useful if (``log``)``cdf`` and (``log``)``pdf``
both only work on :class:`np.float_` arguments, but we still want the user to be
able to pass Python :class:`float`. Then ``as_value_type`` should be set to
something like ``lambda x: np.float64(x)``.
See Also
--------
asrandvar : Transform into a :class:`RandomVariable`.
Examples
--------
"""
# pylint: disable=too-many-instance-attributes,too-many-public-methods
def __init__(
self,
shape: ShapeArgType,
dtype: DTypeArgType,
random_state: RandomStateArgType = None,
parameters: Optional[Dict[str, Any]] = None,
sample: Optional[Callable[[ShapeType], _ValueType]] = None,
in_support: Optional[Callable[[_ValueType], bool]] = None,
cdf: Optional[Callable[[_ValueType], np.float_]] = None,
logcdf: Optional[Callable[[_ValueType], np.float_]] = None,
quantile: Optional[Callable[[FloatArgType], _ValueType]] = None,
mode: Optional[Callable[[], _ValueType]] = None,
median: Optional[Callable[[], _ValueType]] = None,
mean: Optional[Callable[[], _ValueType]] = None,
cov: Optional[Callable[[], _ValueType]] = None,
var: Optional[Callable[[], _ValueType]] = None,
std: Optional[Callable[[], _ValueType]] = None,
entropy: Optional[Callable[[], np.float_]] = None,
as_value_type: Optional[Callable[[Any], _ValueType]] = None,
):
# pylint: disable=too-many-arguments,too-many-locals
"""Create a new random variable."""
self.__shape = _utils.as_shape(shape)
# Data Types
self.__dtype = np.dtype(dtype)
self.__median_dtype = RandomVariable.infer_median_dtype(self.__dtype)
self.__moment_dtype = RandomVariable.infer_moment_dtype(self.__dtype)
self._random_state = _utils.as_random_state(random_state)
# Probability distribution of the random variable
self.__parameters = parameters.copy() if parameters is not None else {}
self.__sample = sample
self.__in_support = in_support
self.__cdf = cdf
self.__logcdf = logcdf
self.__quantile = quantile
# Properties of the random variable
self.__mode = mode
self.__median = median
self.__mean = mean
self.__cov = cov
self.__var = var
self.__std = std
self.__entropy = entropy
# Utilities
self.__as_value_type = as_value_type
def __repr__(self) -> str:
return f"<{self.shape} {self.__class__.__name__} with dtype={self.dtype}>"
@property
def shape(self) -> ShapeType:
"""Shape of realizations of the random variable."""
return self.__shape
@cached_property
def ndim(self) -> int:
return len(self.__shape)
@cached_property
def size(self) -> int:
return int( | np.prod(self.__shape) | numpy.prod |
from abc import ABCMeta, abstractmethod
import os
from vmaf.tools.misc import make_absolute_path, run_process
from vmaf.tools.stats import ListStats
__copyright__ = "Copyright 2016-2018, Netflix, Inc."
__license__ = "Apache, Version 2.0"
import re
import numpy as np
import ast
from vmaf import ExternalProgramCaller, to_list
from vmaf.config import VmafConfig, VmafExternalConfig
from vmaf.core.executor import Executor
from vmaf.core.result import Result
from vmaf.tools.reader import YuvReader
class FeatureExtractor(Executor):
"""
FeatureExtractor takes in a list of assets, and run feature extraction on
them, and return a list of corresponding results. A FeatureExtractor must
specify a unique type and version combination (by the TYPE and VERSION
attribute), so that the Result generated by it can be identified.
A derived class of FeatureExtractor must:
1) Override TYPE and VERSION
2) Override _generate_result(self, asset), which call a
command-line executable and generate feature scores in a log file.
3) Override _get_feature_scores(self, asset), which read the feature
scores from the log file, and return the scores in a dictionary format.
For an example, follow VmafFeatureExtractor.
"""
__metaclass__ = ABCMeta
@property
@abstractmethod
def ATOM_FEATURES(self):
raise NotImplementedError
def _read_result(self, asset):
result = {}
result.update(self._get_feature_scores(asset))
executor_id = self.executor_id
return Result(asset, executor_id, result)
@classmethod
def get_scores_key(cls, atom_feature):
return "{type}_{atom_feature}_scores".format(
type=cls.TYPE, atom_feature=atom_feature)
@classmethod
def get_score_key(cls, atom_feature):
return "{type}_{atom_feature}_score".format(
type=cls.TYPE, atom_feature=atom_feature)
def _get_feature_scores(self, asset):
# routine to read the feature scores from the log file, and return
# the scores in a dictionary format.
log_file_path = self._get_log_file_path(asset)
atom_feature_scores_dict = {}
atom_feature_idx_dict = {}
for atom_feature in self.ATOM_FEATURES:
atom_feature_scores_dict[atom_feature] = []
atom_feature_idx_dict[atom_feature] = 0
with open(log_file_path, 'rt') as log_file:
for line in log_file.readlines():
for atom_feature in self.ATOM_FEATURES:
re_template = "{af}: ([0-9]+) ([a-zA-Z0-9.-]+)".format(af=atom_feature)
mo = re.match(re_template, line)
if mo:
cur_idx = int(mo.group(1))
assert cur_idx == atom_feature_idx_dict[atom_feature]
# parse value, allowing NaN and inf
val = float(mo.group(2))
if np.isnan(val) or np.isinf(val):
val = None
atom_feature_scores_dict[atom_feature].append(val)
atom_feature_idx_dict[atom_feature] += 1
continue
len_score = len(atom_feature_scores_dict[self.ATOM_FEATURES[0]])
assert len_score != 0
for atom_feature in self.ATOM_FEATURES[1:]:
assert len_score == len(atom_feature_scores_dict[atom_feature]), \
"Feature data possibly corrupt. Run cleanup script and try again."
feature_result = {}
for atom_feature in self.ATOM_FEATURES:
scores_key = self.get_scores_key(atom_feature)
feature_result[scores_key] = atom_feature_scores_dict[atom_feature]
return feature_result
class VmafFeatureExtractor(FeatureExtractor):
TYPE = "VMAF_feature"
# VERSION = '0.1' # vmaf_study; Anush's VIF fix
# VERSION = '0.2' # expose vif_num, vif_den, adm_num, adm_den, anpsnr
# VERSION = '0.2.1' # expose vif num/den of each scale
# VERSION = '0.2.2' # adm abs-->fabs, corrected border handling, uniform reading with option of offset for input YUV, updated VIF corner case
# VERSION = '0.2.2b' # expose adm_den/num_scalex
# VERSION = '0.2.3' # AVX for VMAF convolution; update adm features by folding noise floor into per coef
# VERSION = '0.2.4' # Fix a bug in adm feature passing scale into dwt_quant_step
# VERSION = '0.2.4b' # Modify by adding ADM noise floor outside cube root; add derived feature motion2
VERSION = '0.2.4c' # Modify by moving motion2 to c code
ATOM_FEATURES = ['vif', 'adm', 'ansnr', 'motion', 'motion2',
'vif_num', 'vif_den', 'adm_num', 'adm_den', 'anpsnr',
'vif_num_scale0', 'vif_den_scale0',
'vif_num_scale1', 'vif_den_scale1',
'vif_num_scale2', 'vif_den_scale2',
'vif_num_scale3', 'vif_den_scale3',
'adm_num_scale0', 'adm_den_scale0',
'adm_num_scale1', 'adm_den_scale1',
'adm_num_scale2', 'adm_den_scale2',
'adm_num_scale3', 'adm_den_scale3',
]
DERIVED_ATOM_FEATURES = ['vif_scale0', 'vif_scale1', 'vif_scale2', 'vif_scale3',
'vif2', 'adm2', 'adm3',
'adm_scale0', 'adm_scale1', 'adm_scale2', 'adm_scale3',
]
ADM2_CONSTANT = 0
ADM_SCALE_CONSTANT = 0
def _generate_result(self, asset):
# routine to call the command-line executable and generate feature
# scores in the log file.
quality_width, quality_height = asset.quality_width_height
log_file_path = self._get_log_file_path(asset)
yuv_type=self._get_workfile_yuv_type(asset)
ref_path=asset.ref_workfile_path
dis_path=asset.dis_workfile_path
w=quality_width
h=quality_height
logger = self.logger
ExternalProgramCaller.call_vmaf_feature(yuv_type, ref_path, dis_path, w, h, log_file_path, logger)
@classmethod
def _post_process_result(cls, result):
# override Executor._post_process_result
result = super(VmafFeatureExtractor, cls)._post_process_result(result)
# adm2 =
# (adm_num + ADM2_CONSTANT) / (adm_den + ADM2_CONSTANT)
adm2_scores_key = cls.get_scores_key('adm2')
adm_num_scores_key = cls.get_scores_key('adm_num')
adm_den_scores_key = cls.get_scores_key('adm_den')
result.result_dict[adm2_scores_key] = list(
(np.array(result.result_dict[adm_num_scores_key]) + cls.ADM2_CONSTANT) /
(np.array(result.result_dict[adm_den_scores_key]) + cls.ADM2_CONSTANT)
)
# vif_scalei = vif_num_scalei / vif_den_scalei, i = 0, 1, 2, 3
vif_num_scale0_scores_key = cls.get_scores_key('vif_num_scale0')
vif_den_scale0_scores_key = cls.get_scores_key('vif_den_scale0')
vif_num_scale1_scores_key = cls.get_scores_key('vif_num_scale1')
vif_den_scale1_scores_key = cls.get_scores_key('vif_den_scale1')
vif_num_scale2_scores_key = cls.get_scores_key('vif_num_scale2')
vif_den_scale2_scores_key = cls.get_scores_key('vif_den_scale2')
vif_num_scale3_scores_key = cls.get_scores_key('vif_num_scale3')
vif_den_scale3_scores_key = cls.get_scores_key('vif_den_scale3')
vif_scale0_scores_key = cls.get_scores_key('vif_scale0')
vif_scale1_scores_key = cls.get_scores_key('vif_scale1')
vif_scale2_scores_key = cls.get_scores_key('vif_scale2')
vif_scale3_scores_key = cls.get_scores_key('vif_scale3')
result.result_dict[vif_scale0_scores_key] = list(
(np.array(result.result_dict[vif_num_scale0_scores_key])
/ np.array(result.result_dict[vif_den_scale0_scores_key]))
)
result.result_dict[vif_scale1_scores_key] = list(
(np.array(result.result_dict[vif_num_scale1_scores_key])
/ np.array(result.result_dict[vif_den_scale1_scores_key]))
)
result.result_dict[vif_scale2_scores_key] = list(
(np.array(result.result_dict[vif_num_scale2_scores_key])
/ np.array(result.result_dict[vif_den_scale2_scores_key]))
)
result.result_dict[vif_scale3_scores_key] = list(
(np.array(result.result_dict[vif_num_scale3_scores_key])
/ np.array(result.result_dict[vif_den_scale3_scores_key]))
)
# vif2 =
# ((vif_num_scale0 / vif_den_scale0) + (vif_num_scale1 / vif_den_scale1) +
# (vif_num_scale2 / vif_den_scale2) + (vif_num_scale3 / vif_den_scale3)) / 4.0
vif_scores_key = cls.get_scores_key('vif2')
result.result_dict[vif_scores_key] = list(
(
( | np.array(result.result_dict[vif_num_scale0_scores_key]) | numpy.array |
#
# Copyright (c) 2021 The GPflux Contributors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import abc
import numpy as np
import pytest
import tensorflow as tf
import tensorflow_probability as tfp
from gpflow.kullback_leiblers import gauss_kl
from gpflux.encoders import DirectlyParameterizedNormalDiag
from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer
tf.keras.backend.set_floatx("float64")
############
# Utilities
############
def _zero_one_normal_prior(w_dim):
""" N(0, I) prior """
return tfp.distributions.MultivariateNormalDiag(loc=np.zeros(w_dim), scale_diag=np.ones(w_dim))
def get_distributions_with_w_dim():
distributions = []
for d in [1, 5]:
mean = np.zeros(d)
scale_tri_l = np.eye(d)
mvn = tfp.distributions.MultivariateNormalTriL(mean, scale_tri_l)
std = np.ones(d)
mvn_diag = tfp.distributions.MultivariateNormalDiag(mean, std)
distributions.append((mvn, d))
distributions.append((mvn_diag, d))
return distributions
############
# Tests
############
@pytest.mark.parametrize("distribution, w_dim", get_distributions_with_w_dim())
def test_local_kls(distribution, w_dim):
lv = LatentVariableLayer(encoder=None, prior=distribution)
# test kl is 0 when posteriors == priors
posterior = distribution
assert lv._local_kls(posterior) == 0
# test kl > 0 when posteriors != priors
batch_size = 10
params = distribution.parameters
posterior_params = {
k: [v + 0.5 for _ in range(batch_size)]
for k, v in params.items()
if isinstance(v, np.ndarray)
}
posterior = lv.distribution_class(**posterior_params)
local_kls = lv._local_kls(posterior)
assert np.all(local_kls > 0)
assert local_kls.shape == (batch_size,)
@pytest.mark.parametrize("w_dim", [1, 5])
def test_local_kl_gpflow_consistency(w_dim):
num_data = 400
means = np.random.randn(num_data, w_dim)
encoder = DirectlyParameterizedNormalDiag(num_data, w_dim, means)
lv = LatentVariableLayer(encoder=encoder, prior=_zero_one_normal_prior(w_dim))
posteriors = lv._inference_posteriors(
[np.random.randn(num_data, 3), np.random.randn(num_data, 2)]
)
q_mu = posteriors.parameters["loc"]
q_sqrt = posteriors.parameters["scale_diag"]
gpflow_local_kls = gauss_kl(q_mu, q_sqrt)
tfp_local_kls = tf.reduce_sum(lv._local_kls(posteriors))
np.testing.assert_allclose(tfp_local_kls, gpflow_local_kls, rtol=1e-10)
class ArrayMatcher:
def __init__(self, expected):
self.expected = expected
def __eq__(self, actual):
return np.allclose(actual, self.expected, equal_nan=True)
@pytest.mark.parametrize("w_dim", [1, 5])
def test_latent_variable_layer_losses(mocker, w_dim):
num_data, x_dim, y_dim = 43, 3, 1
prior_shape = (w_dim,)
posteriors_shape = (num_data, w_dim)
prior = tfp.distributions.MultivariateNormalDiag(
loc=np.random.randn(*prior_shape),
scale_diag=np.random.randn(*prior_shape) ** 2,
)
posteriors = tfp.distributions.MultivariateNormalDiag(
loc=np.random.randn(*posteriors_shape),
scale_diag=np.random.randn(*posteriors_shape) ** 2,
)
encoder = mocker.Mock(return_value=(posteriors.loc, posteriors.scale.diag))
lv = LatentVariableLayer(encoder=encoder, prior=prior)
inputs = np.full((num_data, x_dim), np.nan)
targets = np.full((num_data, y_dim), np.nan)
observations = [inputs, targets]
encoder_inputs = np.concatenate(observations, axis=-1)
_ = lv(inputs)
encoder.assert_not_called()
assert lv.losses == [0.0]
_ = lv(inputs, observations=observations, training=True)
# assert_called_once_with uses == for comparison which fails on arrays
encoder.assert_called_once_with(ArrayMatcher(encoder_inputs), training=True)
expected_loss = [tf.reduce_mean(posteriors.kl_divergence(prior))]
np.testing.assert_equal(lv.losses, expected_loss) # also checks shapes match
@pytest.mark.parametrize("w_dim", [1, 5])
@pytest.mark.parametrize("seed2", [None, 42])
def test_latent_variable_layer_samples(mocker, test_data, w_dim, seed2):
seed = 123
inputs, targets = test_data
num_data, x_dim = inputs.shape
prior_shape = (w_dim,)
posteriors_shape = (num_data, w_dim)
prior = tfp.distributions.MultivariateNormalDiag(
loc=np.random.randn(*prior_shape),
scale_diag=np.random.randn(*prior_shape) ** 2,
)
posteriors = tfp.distributions.MultivariateNormalDiag(
loc= | np.random.randn(*posteriors_shape) | numpy.random.randn |
'''
<NAME>
set up :2020-1-9
intergrate img and label into one file
-- fiducial1024_v1
'''
import argparse
import sys, os
import pickle
import random
import collections
import json
import numpy as np
import scipy.io as io
import scipy.misc as m
import matplotlib.pyplot as plt
import glob
import math
import time
import threading
import multiprocessing as mp
from multiprocessing import Pool
import re
import cv2
# sys.path.append('/lustre/home/gwxie/hope/project/dewarp/datasets/') # /lustre/home/gwxie/program/project/unwarp/perturbed_imgaes/GAN
import utils
def getDatasets(dir):
return os.listdir(dir)
class perturbed(utils.BasePerturbed):
def __init__(self, path, bg_path, save_path, save_suffix):
self.path = path
self.bg_path = bg_path
self.save_path = save_path
self.save_suffix = save_suffix
def save_img(self, m, n, fold_curve='fold', repeat_time=4, fiducial_points = 16, relativeShift_position='relativeShift_v2'):
origin_img = cv2.imread(self.path, flags=cv2.IMREAD_COLOR)
save_img_shape = [512*2, 480*2] # 320
# reduce_value = np.random.choice([2**4, 2**5, 2**6, 2**7, 2**8], p=[0.01, 0.1, 0.4, 0.39, 0.1])
reduce_value = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.02, 0.18, 0.2, 0.3, 0.1, 0.1, 0.08, 0.02])
# reduce_value = np.random.choice([8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.01, 0.02, 0.2, 0.4, 0.19, 0.18])
# reduce_value = np.random.choice([16, 24, 32, 40, 48, 64], p=[0.01, 0.1, 0.2, 0.4, 0.2, 0.09])
base_img_shrink = save_img_shape[0] - reduce_value
# enlarge_img_shrink = [1024, 768]
# enlarge_img_shrink = [896, 672] # 420
enlarge_img_shrink = [512*4, 480*4] # 420
# enlarge_img_shrink = [896*2, 768*2] # 420
# enlarge_img_shrink = [896, 768] # 420
# enlarge_img_shrink = [768, 576] # 420
# enlarge_img_shrink = [640, 480] # 420
''''''
im_lr = origin_img.shape[0]
im_ud = origin_img.shape[1]
reduce_value_v2 = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 28*2, 32*2, 48*2], p=[0.02, 0.18, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1])
# reduce_value_v2 = np.random.choice([16, 24, 28, 32, 48, 64], p=[0.01, 0.1, 0.2, 0.3, 0.25, 0.14])
if im_lr > im_ud:
im_ud = min(int(im_ud / im_lr * base_img_shrink), save_img_shape[1] - reduce_value_v2)
im_lr = save_img_shape[0] - reduce_value
else:
base_img_shrink = save_img_shape[1] - reduce_value
im_lr = min(int(im_lr / im_ud * base_img_shrink), save_img_shape[0] - reduce_value_v2)
im_ud = base_img_shrink
if round(im_lr / im_ud, 2) < 0.5 or round(im_ud / im_lr, 2) < 0.5:
repeat_time = min(repeat_time, 8)
edge_padding = 3
im_lr -= im_lr % (fiducial_points-1) - (2*edge_padding) # im_lr % (fiducial_points-1) - 1
im_ud -= im_ud % (fiducial_points-1) - (2*edge_padding) # im_ud % (fiducial_points-1) - 1
im_hight = np.linspace(edge_padding, im_lr - edge_padding, fiducial_points, dtype=np.int64)
im_wide = np.linspace(edge_padding, im_ud - edge_padding, fiducial_points, dtype=np.int64)
# im_lr -= im_lr % (fiducial_points-1) - (1+2*edge_padding) # im_lr % (fiducial_points-1) - 1
# im_ud -= im_ud % (fiducial_points-1) - (1+2*edge_padding) # im_ud % (fiducial_points-1) - 1
# im_hight = np.linspace(edge_padding, im_lr - (1+edge_padding), fiducial_points, dtype=np.int64)
# im_wide = np.linspace(edge_padding, im_ud - (1+edge_padding), fiducial_points, dtype=np.int64)
im_x, im_y = np.meshgrid(im_hight, im_wide)
segment_x = (im_lr) // (fiducial_points-1)
segment_y = (im_ud) // (fiducial_points-1)
# plt.plot(im_x, im_y,
# color='limegreen',
# marker='.',
# linestyle='')
# plt.grid(True)
# plt.show()
self.origin_img = cv2.resize(origin_img, (im_ud, im_lr), interpolation=cv2.INTER_CUBIC)
perturbed_bg_ = getDatasets(self.bg_path)
perturbed_bg_img_ = self.bg_path+random.choice(perturbed_bg_)
perturbed_bg_img = cv2.imread(perturbed_bg_img_, flags=cv2.IMREAD_COLOR)
mesh_shape = self.origin_img.shape[:2]
self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 256, dtype=np.float32)#np.zeros_like(perturbed_bg_img)
# self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 0, dtype=np.int16)#np.zeros_like(perturbed_bg_img)
self.new_shape = self.synthesis_perturbed_img.shape[:2]
perturbed_bg_img = cv2.resize(perturbed_bg_img, (save_img_shape[1], save_img_shape[0]), cv2.INPAINT_TELEA)
origin_pixel_position = np.argwhere(np.zeros(mesh_shape, dtype=np.uint32) == 0).reshape(mesh_shape[0], mesh_shape[1], 2)
pixel_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(self.new_shape[0], self.new_shape[1], 2)
self.perturbed_xy_ = np.zeros((self.new_shape[0], self.new_shape[1], 2))
# self.perturbed_xy_ = pixel_position.copy().astype(np.float32)
# fiducial_points_grid = origin_pixel_position[im_x, im_y]
self.synthesis_perturbed_label = np.zeros((self.new_shape[0], self.new_shape[1], 2))
x_min, y_min, x_max, y_max = self.adjust_position_v2(0, 0, mesh_shape[0], mesh_shape[1], save_img_shape)
origin_pixel_position += [x_min, y_min]
x_min, y_min, x_max, y_max = self.adjust_position(0, 0, mesh_shape[0], mesh_shape[1])
x_shift = random.randint(-enlarge_img_shrink[0]//16, enlarge_img_shrink[0]//16)
y_shift = random.randint(-enlarge_img_shrink[1]//16, enlarge_img_shrink[1]//16)
x_min += x_shift
x_max += x_shift
y_min += y_shift
y_max += y_shift
'''im_x,y'''
im_x += x_min
im_y += y_min
self.synthesis_perturbed_img[x_min:x_max, y_min:y_max] = self.origin_img
self.synthesis_perturbed_label[x_min:x_max, y_min:y_max] = origin_pixel_position
synthesis_perturbed_img_map = self.synthesis_perturbed_img.copy()
synthesis_perturbed_label_map = self.synthesis_perturbed_label.copy()
foreORbackground_label = np.full((mesh_shape), 1, dtype=np.int16)
foreORbackground_label_map = np.full((self.new_shape), 0, dtype=np.int16)
foreORbackground_label_map[x_min:x_max, y_min:y_max] = foreORbackground_label
# synthesis_perturbed_img_map = self.pad(self.synthesis_perturbed_img.copy(), x_min, y_min, x_max, y_max)
# synthesis_perturbed_label_map = self.pad(synthesis_perturbed_label_map, x_min, y_min, x_max, y_max)
'''*****************************************************************'''
is_normalizationFun_mixture = self.is_perform(0.2, 0.8)
# if not is_normalizationFun_mixture:
normalizationFun_0_1 = False
# normalizationFun_0_1 = self.is_perform(0.5, 0.5)
if fold_curve == 'fold':
fold_curve_random = True
# is_normalizationFun_mixture = False
normalizationFun_0_1 = self.is_perform(0.2, 0.8)
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
fold_curve_random = self.is_perform(0.1, 0.9) # False # self.is_perform(0.01, 0.99)
alpha_perturbed = random.randint(80, 160) / 100
# is_normalizationFun_mixture = False # self.is_perform(0.01, 0.99)
synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 256)
# synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 0, dtype=np.int16)
synthesis_perturbed_label = np.zeros_like(self.synthesis_perturbed_label)
alpha_perturbed_change = self.is_perform(0.5, 0.5)
p_pp_choice = self.is_perform(0.8, 0.2) if fold_curve == 'fold' else self.is_perform(0.1, 0.9)
for repeat_i in range(repeat_time):
if alpha_perturbed_change:
if fold_curve == 'fold':
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
alpha_perturbed = random.randint(80, 160) / 100
''''''
linspace_x = [0, (self.new_shape[0] - im_lr) // 2 - 1,
self.new_shape[0] - (self.new_shape[0] - im_lr) // 2 - 1, self.new_shape[0] - 1]
linspace_y = [0, (self.new_shape[1] - im_ud) // 2 - 1,
self.new_shape[1] - (self.new_shape[1] - im_ud) // 2 - 1, self.new_shape[1] - 1]
linspace_x_seq = [1, 2, 3]
linspace_y_seq = [1, 2, 3]
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_p = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
if ((r_x == 1 or r_x == 3) and (r_y == 1 or r_y == 3)) and p_pp_choice:
linspace_x_seq.remove(r_x)
linspace_y_seq.remove(r_y)
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_pp = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
# perturbed_p, perturbed_pp = np.array(
# [random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10]) \
# , np.array([random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10])
# perturbed_p, perturbed_pp = np.array(
# [random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10]) \
# , np.array([random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10])
''''''
perturbed_vp = perturbed_pp - perturbed_p
perturbed_vp_norm = np.linalg.norm(perturbed_vp)
perturbed_distance_vertex_and_line = np.dot((perturbed_p - pixel_position), perturbed_vp) / perturbed_vp_norm
''''''
# perturbed_v = np.array([random.randint(-3000, 3000) / 100, random.randint(-3000, 3000) / 100])
# perturbed_v = np.array([random.randint(-4000, 4000) / 100, random.randint(-4000, 4000) / 100])
if fold_curve == 'fold' and self.is_perform(0.6, 0.4): # self.is_perform(0.3, 0.7):
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
perturbed_v = np.array([random.randint(-10000, 10000) / 100, random.randint(-10000, 10000) / 100])
# perturbed_v = np.array([random.randint(-11000, 11000) / 100, random.randint(-11000, 11000) / 100])
else:
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
# perturbed_v = np.array([random.randint(-16000, 16000) / 100, random.randint(-16000, 16000) / 100])
perturbed_v = np.array([random.randint(-8000, 8000) / 100, random.randint(-8000, 8000) / 100])
# perturbed_v = np.array([random.randint(-3500, 3500) / 100, random.randint(-3500, 3500) / 100])
# perturbed_v = np.array([random.randint(-600, 600) / 10, random.randint(-600, 600) / 10])
''''''
if fold_curve == 'fold':
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
''''''
if fold_curve_random:
# omega_perturbed = (alpha_perturbed+0.2) / (perturbed_d + alpha_perturbed)
# omega_perturbed = alpha_perturbed**perturbed_d
omega_perturbed = alpha_perturbed / (perturbed_d + alpha_perturbed)
else:
omega_perturbed = 1 - perturbed_d ** alpha_perturbed
'''shadow'''
if self.is_perform(0.6, 0.4):
synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] = np.minimum(np.maximum(synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] - np.int16(np.round(omega_perturbed[x_min:x_max, y_min:y_max].repeat(3).reshape(x_max-x_min, y_max-y_min, 3) * abs(np.linalg.norm(perturbed_v//2))*np.array([0.4-random.random()*0.1, 0.4-random.random()*0.1, 0.4-random.random()*0.1]))), 0), 255)
''''''
if relativeShift_position in ['position', 'relativeShift_v2']:
self.perturbed_xy_ += np.array([omega_perturbed * perturbed_v[0], omega_perturbed * perturbed_v[1]]).transpose(1, 2, 0)
else:
print('relativeShift_position error')
exit()
'''
flat_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(
self.new_shape[0] * self.new_shape[1], 2)
vtx, wts = self.interp_weights(self.perturbed_xy_.reshape(self.new_shape[0] * self.new_shape[1], 2), flat_position)
wts_sum = np.abs(wts).sum(-1)
# flat_img.reshape(flat_shape[0] * flat_shape[1], 3)[:] = interpolate(pixel, vtx, wts)
wts = wts[wts_sum <= 1, :]
vtx = vtx[wts_sum <= 1, :]
synthesis_perturbed_img.reshape(self.new_shape[0] * self.new_shape[1], 3)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_img_map.reshape(self.new_shape[0] * self.new_shape[1], 3), vtx, wts)
synthesis_perturbed_label.reshape(self.new_shape[0] * self.new_shape[1], 2)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_label_map.reshape(self.new_shape[0] * self.new_shape[1], 2), vtx, wts)
foreORbackground_label = np.zeros(self.new_shape)
foreORbackground_label.reshape(self.new_shape[0] * self.new_shape[1], 1)[wts_sum <= 1, :] = self.interpolate(foreORbackground_label_map.reshape(self.new_shape[0] * self.new_shape[1], 1), vtx, wts)
foreORbackground_label[foreORbackground_label < 0.99] = 0
foreORbackground_label[foreORbackground_label >= 0.99] = 1
# synthesis_perturbed_img = np.around(synthesis_perturbed_img).astype(np.uint8)
synthesis_perturbed_label[:, :, 0] *= foreORbackground_label
synthesis_perturbed_label[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 0] *= foreORbackground_label
synthesis_perturbed_img[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 2] *= foreORbackground_label
self.synthesis_perturbed_img = synthesis_perturbed_img
self.synthesis_perturbed_label = synthesis_perturbed_label
'''
'''perspective'''
perspective_shreshold = random.randint(26, 36)*10 # 280
x_min_per, y_min_per, x_max_per, y_max_per = self.adjust_position(perspective_shreshold, perspective_shreshold, self.new_shape[0]-perspective_shreshold, self.new_shape[1]-perspective_shreshold)
pts1 = np.float32([[x_min_per, y_min_per], [x_max_per, y_min_per], [x_min_per, y_max_per], [x_max_per, y_max_per]])
e_1_ = x_max_per - x_min_per
e_2_ = y_max_per - y_min_per
e_3_ = e_2_
e_4_ = e_1_
perspective_shreshold_h = e_1_*0.02
perspective_shreshold_w = e_2_*0.02
a_min_, a_max_ = 70, 110
# if self.is_perform(1, 0):
if fold_curve == 'curve' and self.is_perform(0.5, 0.5):
if self.is_perform(0.5, 0.5):
while True:
pts2 = np.around(
np.float32([[x_min_per - (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_min_per + (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold]])) # right
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
else:
while True:
pts2 = np.around(
np.float32([[x_min_per + (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_min_per - (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold]]))
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
else:
while True:
pts2 = np.around(np.float32([[x_min_per+(random.random()-0.5)*perspective_shreshold, y_min_per+(random.random()-0.5)*perspective_shreshold],
[x_max_per+(random.random()-0.5)*perspective_shreshold, y_min_per+(random.random()-0.5)*perspective_shreshold],
[x_min_per+(random.random()-0.5)*perspective_shreshold, y_max_per+(random.random()-0.5)*perspective_shreshold],
[x_max_per+(random.random()-0.5)*perspective_shreshold, y_max_per+(random.random()-0.5)*perspective_shreshold]]))
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = | np.linalg.norm(pts2[0]-pts2[2]) | numpy.linalg.norm |
"""
Collection of tests asserting things that should be true for
any index subclass. Makes use of the `indices` fixture defined
in pandas/tests/indexes/conftest.py.
"""
import re
import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
from pandas.core.dtypes.common import is_period_dtype, needs_i8_conversion
import pandas as pd
from pandas import (
CategoricalIndex,
DatetimeIndex,
MultiIndex,
PeriodIndex,
RangeIndex,
TimedeltaIndex,
)
import pandas._testing as tm
class TestCommon:
def test_droplevel(self, index):
# GH 21115
if isinstance(index, MultiIndex):
# Tested separately in test_multi.py
return
assert index.droplevel([]).equals(index)
for level in index.name, [index.name]:
if isinstance(index.name, tuple) and level is index.name:
# GH 21121 : droplevel with tuple name
continue
with pytest.raises(ValueError):
index.droplevel(level)
for level in "wrong", ["wrong"]:
with pytest.raises(
KeyError,
match=r"'Requested level \(wrong\) does not match index name \(None\)'",
):
index.droplevel(level)
def test_constructor_non_hashable_name(self, index):
# GH 20527
if isinstance(index, MultiIndex):
pytest.skip("multiindex handled in test_multi.py")
message = "Index.name must be a hashable type"
renamed = [["1"]]
# With .rename()
with pytest.raises(TypeError, match=message):
index.rename(name=renamed)
# With .set_names()
with pytest.raises(TypeError, match=message):
index.set_names(names=renamed)
def test_constructor_unwraps_index(self, index):
if isinstance(index, pd.MultiIndex):
raise pytest.skip("MultiIndex has no ._data")
a = index
b = type(a)(a)
tm.assert_equal(a._data, b._data)
@pytest.mark.parametrize("itm", [101, "no_int"])
# FutureWarning from non-tuple sequence of nd indexing
@pytest.mark.filterwarnings("ignore::FutureWarning")
def test_getitem_error(self, index, itm):
with pytest.raises(IndexError):
index[itm]
@pytest.mark.parametrize(
"fname, sname, expected_name",
[
("A", "A", "A"),
("A", "B", None),
("A", None, None),
(None, "B", None),
(None, None, None),
],
)
def test_corner_union(self, index, fname, sname, expected_name):
# GH 9943 9862
# Test unions with various name combinations
# Do not test MultiIndex or repeats
if isinstance(index, MultiIndex) or not index.is_unique:
pytest.skip("Not for MultiIndex or repeated indices")
# Test copy.union(copy)
first = index.copy().set_names(fname)
second = index.copy().set_names(sname)
union = first.union(second)
expected = index.copy().set_names(expected_name)
tm.assert_index_equal(union, expected)
# Test copy.union(empty)
first = index.copy().set_names(fname)
second = index.drop(index).set_names(sname)
union = first.union(second)
expected = index.copy().set_names(expected_name)
tm.assert_index_equal(union, expected)
# Test empty.union(copy)
first = index.drop(index).set_names(fname)
second = index.copy().set_names(sname)
union = first.union(second)
expected = index.copy().set_names(expected_name)
tm.assert_index_equal(union, expected)
# Test empty.union(empty)
first = index.drop(index).set_names(fname)
second = index.drop(index).set_names(sname)
union = first.union(second)
expected = index.drop(index).set_names(expected_name)
tm.assert_index_equal(union, expected)
@pytest.mark.parametrize(
"fname, sname, expected_name",
[
("A", "A", "A"),
("A", "B", None),
("A", None, None),
(None, "B", None),
(None, None, None),
],
)
def test_union_unequal(self, index, fname, sname, expected_name):
if isinstance(index, MultiIndex) or not index.is_unique:
pytest.skip("Not for MultiIndex or repeated indices")
# test copy.union(subset) - need sort for unicode and string
first = index.copy().set_names(fname)
second = index[1:].set_names(sname)
union = first.union(second).sort_values()
expected = index.set_names(expected_name).sort_values()
tm.assert_index_equal(union, expected)
@pytest.mark.parametrize(
"fname, sname, expected_name",
[
("A", "A", "A"),
("A", "B", None),
("A", None, None),
(None, "B", None),
(None, None, None),
],
)
def test_corner_intersect(self, index, fname, sname, expected_name):
# GH35847
# Test intersections with various name combinations
if isinstance(index, MultiIndex) or not index.is_unique:
pytest.skip("Not for MultiIndex or repeated indices")
# Test copy.intersection(copy)
first = index.copy().set_names(fname)
second = index.copy().set_names(sname)
intersect = first.intersection(second)
expected = index.copy().set_names(expected_name)
tm.assert_index_equal(intersect, expected)
# Test copy.intersection(empty)
first = index.copy().set_names(fname)
second = index.drop(index).set_names(sname)
intersect = first.intersection(second)
expected = index.drop(index).set_names(expected_name)
tm.assert_index_equal(intersect, expected)
# Test empty.intersection(copy)
first = index.drop(index).set_names(fname)
second = index.copy().set_names(sname)
intersect = first.intersection(second)
expected = index.drop(index).set_names(expected_name)
tm.assert_index_equal(intersect, expected)
# Test empty.intersection(empty)
first = index.drop(index).set_names(fname)
second = index.drop(index).set_names(sname)
intersect = first.intersection(second)
expected = index.drop(index).set_names(expected_name)
tm.assert_index_equal(intersect, expected)
@pytest.mark.parametrize(
"fname, sname, expected_name",
[
("A", "A", "A"),
("A", "B", None),
("A", None, None),
(None, "B", None),
(None, None, None),
],
)
def test_intersect_unequal(self, index, fname, sname, expected_name):
if isinstance(index, MultiIndex) or not index.is_unique:
pytest.skip("Not for MultiIndex or repeated indices")
# test copy.intersection(subset) - need sort for unicode and string
first = index.copy().set_names(fname)
second = index[1:].set_names(sname)
intersect = first.intersection(second).sort_values()
expected = index[1:].set_names(expected_name).sort_values()
tm.assert_index_equal(intersect, expected)
def test_to_flat_index(self, index):
# 22866
if isinstance(index, MultiIndex):
pytest.skip("Separate expectation for MultiIndex")
result = index.to_flat_index()
tm.assert_index_equal(result, index)
def test_set_name_methods(self, index):
new_name = "This is the new name for this index"
# don't tests a MultiIndex here (as its tested separated)
if isinstance(index, MultiIndex):
pytest.skip("Skip check for MultiIndex")
original_name = index.name
new_ind = index.set_names([new_name])
assert new_ind.name == new_name
assert index.name == original_name
res = index.rename(new_name, inplace=True)
# should return None
assert res is None
assert index.name == new_name
assert index.names == [new_name]
# FIXME: dont leave commented-out
# with pytest.raises(TypeError, match="list-like"):
# # should still fail even if it would be the right length
# ind.set_names("a")
with pytest.raises(ValueError, match="Level must be None"):
index.set_names("a", level=0)
# rename in place just leaves tuples and other containers alone
name = ("A", "B")
index.rename(name, inplace=True)
assert index.name == name
assert index.names == [name]
def test_copy_and_deepcopy(self, index):
from copy import copy, deepcopy
if isinstance(index, MultiIndex):
pytest.skip("Skip check for MultiIndex")
for func in (copy, deepcopy):
idx_copy = func(index)
assert idx_copy is not index
assert idx_copy.equals(index)
new_copy = index.copy(deep=True, name="banana")
assert new_copy.name == "banana"
def test_unique(self, index):
# don't test a MultiIndex here (as its tested separated)
# don't test a CategoricalIndex because categories change (GH 18291)
if isinstance(index, (MultiIndex, CategoricalIndex)):
pytest.skip("Skip check for MultiIndex/CategoricalIndex")
# GH 17896
expected = index.drop_duplicates()
for level in 0, index.name, None:
result = index.unique(level=level)
tm.assert_index_equal(result, expected)
msg = "Too many levels: Index has only 1 level, not 4"
with pytest.raises(IndexError, match=msg):
index.unique(level=3)
msg = (
fr"Requested level \(wrong\) does not match index name "
fr"\({re.escape(index.name.__repr__())}\)"
)
with pytest.raises(KeyError, match=msg):
index.unique(level="wrong")
def test_get_unique_index(self, index):
# MultiIndex tested separately
if not len(index) or isinstance(index, MultiIndex):
pytest.skip("Skip check for empty Index and MultiIndex")
idx = index[[0] * 5]
idx_unique = index[[0]]
# We test against `idx_unique`, so first we make sure it's unique
# and doesn't contain nans.
assert idx_unique.is_unique is True
try:
assert idx_unique.hasnans is False
except NotImplementedError:
pass
for dropna in [False, True]:
result = idx._get_unique_index(dropna=dropna)
tm.assert_index_equal(result, idx_unique)
# nans:
if not index._can_hold_na:
pytest.skip("Skip na-check if index cannot hold na")
if is_period_dtype(index.dtype):
vals = index[[0] * 5]._data
vals[0] = pd.NaT
elif needs_i8_conversion(index.dtype):
vals = index.asi8[[0] * 5]
vals[0] = iNaT
else:
vals = index.values[[0] * 5]
vals[0] = np.nan
vals_unique = vals[:2]
if index.dtype.kind in ["m", "M"]:
# i.e. needs_i8_conversion but not period_dtype, as above
vals = type(index._data)._simple_new(vals, dtype=index.dtype)
vals_unique = type(index._data)._simple_new(vals_unique, dtype=index.dtype)
idx_nan = index._shallow_copy(vals)
idx_unique_nan = index._shallow_copy(vals_unique)
assert idx_unique_nan.is_unique is True
assert idx_nan.dtype == index.dtype
assert idx_unique_nan.dtype == index.dtype
for dropna, expected in zip([False, True], [idx_unique_nan, idx_unique]):
for i in [idx_nan, idx_unique_nan]:
result = i._get_unique_index(dropna=dropna)
tm.assert_index_equal(result, expected)
def test_mutability(self, index):
if not len(index):
pytest.skip("Skip check for empty Index")
msg = "Index does not support mutable operations"
with pytest.raises(TypeError, match=msg):
index[0] = index[0]
def test_view(self, index):
assert index.view().name == index.name
def test_searchsorted_monotonic(self, index):
# GH17271
# not implemented for tuple searches in MultiIndex
# or Intervals searches in IntervalIndex
if isinstance(index, (MultiIndex, pd.IntervalIndex)):
pytest.skip("Skip check for MultiIndex/IntervalIndex")
# nothing to test if the index is empty
if index.empty:
pytest.skip("Skip check for empty Index")
value = index[0]
# determine the expected results (handle dupes for 'right')
expected_left, expected_right = 0, (index == value).argmin()
if expected_right == 0:
# all values are the same, expected_right should be length
expected_right = len(index)
# test _searchsorted_monotonic in all cases
# test searchsorted only for increasing
if index.is_monotonic_increasing:
ssm_left = index._searchsorted_monotonic(value, side="left")
assert expected_left == ssm_left
ssm_right = index._searchsorted_monotonic(value, side="right")
assert expected_right == ssm_right
ss_left = index.searchsorted(value, side="left")
assert expected_left == ss_left
ss_right = index.searchsorted(value, side="right")
assert expected_right == ss_right
elif index.is_monotonic_decreasing:
ssm_left = index._searchsorted_monotonic(value, side="left")
assert expected_left == ssm_left
ssm_right = index._searchsorted_monotonic(value, side="right")
assert expected_right == ssm_right
else:
# non-monotonic should raise.
with pytest.raises(ValueError):
index._searchsorted_monotonic(value, side="left")
def test_pickle(self, index):
original_name, index.name = index.name, "foo"
unpickled = tm.round_trip_pickle(index)
assert index.equals(unpickled)
index.name = original_name
def test_drop_duplicates(self, index, keep):
if isinstance(index, MultiIndex):
pytest.skip("MultiIndex is tested separately")
if isinstance(index, RangeIndex):
pytest.skip(
"RangeIndex is tested in test_drop_duplicates_no_duplicates "
"as it cannot hold duplicates"
)
if len(index) == 0:
pytest.skip(
"empty index is tested in test_drop_duplicates_no_duplicates "
"as it cannot hold duplicates"
)
# make unique index
holder = type(index)
unique_values = list(set(index))
unique_idx = holder(unique_values)
# make duplicated index
n = len(unique_idx)
duplicated_selection = np.random.choice(n, int(n * 1.5))
idx = holder(unique_idx.values[duplicated_selection])
# Series.duplicated is tested separately
expected_duplicated = (
pd.Series(duplicated_selection).duplicated(keep=keep).values
)
tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected_duplicated)
# Series.drop_duplicates is tested separately
expected_dropped = holder(pd.Series(idx).drop_duplicates(keep=keep))
tm.assert_index_equal(idx.drop_duplicates(keep=keep), expected_dropped)
def test_drop_duplicates_no_duplicates(self, index):
if isinstance(index, MultiIndex):
pytest.skip("MultiIndex is tested separately")
# make unique index
if isinstance(index, RangeIndex):
# RangeIndex cannot have duplicates
unique_idx = index
else:
holder = type(index)
unique_values = list(set(index))
unique_idx = holder(unique_values)
# check on unique index
expected_duplicated = np.array([False] * len(unique_idx), dtype="bool")
tm.assert_numpy_array_equal(unique_idx.duplicated(), expected_duplicated)
result_dropped = unique_idx.drop_duplicates()
tm.assert_index_equal(result_dropped, unique_idx)
# validate shallow copy
assert result_dropped is not unique_idx
def test_drop_duplicates_inplace(self, index):
msg = r"drop_duplicates\(\) got an unexpected keyword argument"
with pytest.raises(TypeError, match=msg):
index.drop_duplicates(inplace=True)
def test_has_duplicates(self, index):
holder = type(index)
if not len(index) or isinstance(index, (MultiIndex, RangeIndex)):
# MultiIndex tested separately in:
# tests/indexes/multi/test_unique_and_duplicates.
# RangeIndex is unique by definition.
pytest.skip("Skip check for empty Index, MultiIndex, and RangeIndex")
idx = holder([index[0]] * 5)
assert idx.is_unique is False
assert idx.has_duplicates is True
@pytest.mark.parametrize(
"dtype",
["int64", "uint64", "float64", "category", "datetime64[ns]", "timedelta64[ns]"],
)
def test_astype_preserves_name(self, index, dtype):
# https://github.com/pandas-dev/pandas/issues/32013
if isinstance(index, MultiIndex):
index.names = ["idx" + str(i) for i in range(index.nlevels)]
else:
index.name = "idx"
try:
# Some of these conversions cannot succeed so we use a try / except
result = index.astype(dtype)
except (ValueError, TypeError, NotImplementedError, SystemError):
return
if isinstance(index, MultiIndex):
assert result.names == index.names
else:
assert result.name == index.name
def test_ravel_deprecation(self, index):
# GH#19956 ravel returning ndarray is deprecated
with tm.assert_produces_warning(FutureWarning):
index.ravel()
@pytest.mark.parametrize("na_position", [None, "middle"])
def test_sort_values_invalid_na_position(index_with_missing, na_position):
if isinstance(index_with_missing, (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
# datetime-like indices will get na_position kwarg as part of
# synchronizing duplicate-sorting behavior, because we currently expect
# them, other indices, and Series to sort differently (xref 35922)
pytest.xfail("sort_values does not support na_position kwarg")
elif isinstance(index_with_missing, (CategoricalIndex, MultiIndex)):
pytest.xfail("missing value sorting order not defined for index type")
if na_position not in ["first", "last"]:
with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"):
index_with_missing.sort_values(na_position=na_position)
@pytest.mark.parametrize("na_position", ["first", "last"])
def test_sort_values_with_missing(index_with_missing, na_position):
# GH 35584. Test that sort_values works with missing values,
# sort non-missing and place missing according to na_position
if isinstance(index_with_missing, (DatetimeIndex, PeriodIndex, TimedeltaIndex)):
# datetime-like indices will get na_position kwarg as part of
# synchronizing duplicate-sorting behavior, because we currently expect
# them, other indices, and Series to sort differently (xref 35922)
pytest.xfail("sort_values does not support na_position kwarg")
elif isinstance(index_with_missing, (CategoricalIndex, MultiIndex)):
pytest.xfail("missing value sorting order not defined for index type")
missing_count = np.sum(index_with_missing.isna())
not_na_vals = index_with_missing[index_with_missing.notna()].values
sorted_values = np.sort(not_na_vals)
if na_position == "first":
sorted_values = np.concatenate([[None] * missing_count, sorted_values])
else:
sorted_values = | np.concatenate([sorted_values, [None] * missing_count]) | numpy.concatenate |
"""
Greedy Word Swap with Word Importance Ranking
===================================================
When WIR method is set to ``unk``, this is a reimplementation of the search
method from the paper: Is BERT Really Robust?
A Strong Baseline for Natural Language Attack on Text Classification and
Entailment by Jin et. al, 2019. See https://arxiv.org/abs/1907.11932 and
https://github.com/jind11/TextFooler.
"""
import numpy as np
import torch
from torch.nn.functional import softmax
from textattack.goal_function_results import GoalFunctionResultStatus
from textattack.search_methods import SearchMethod
from textattack.shared.validators import (
transformation_consists_of_word_swaps_and_deletions,
)
class GreedyWordSwapWIR(SearchMethod):
"""An attack that greedily chooses from a list of possible perturbations in
order of index, after ranking indices by importance.
Args:
wir_method: method for ranking most important words
"""
def __init__(self, wir_method="unk"):
self.wir_method = wir_method
def _get_index_order(self, initial_text):
"""Returns word indices of ``initial_text`` in descending order of
importance."""
len_text = len(initial_text.words)
if self.wir_method == "unk":
leave_one_texts = [
initial_text.replace_word_at_index(i, "[UNK]") for i in range(len_text)
]
leave_one_results, search_over = self.get_goal_results(leave_one_texts)
index_scores = np.array([result.score for result in leave_one_results])
elif self.wir_method == "weighted-saliency":
# first, compute word saliency
leave_one_texts = [
initial_text.replace_word_at_index(i, "[UNK]") for i in range(len_text)
]
leave_one_results, search_over = self.get_goal_results(leave_one_texts)
saliency_scores = np.array([result.score for result in leave_one_results])
softmax_saliency_scores = softmax(
torch.Tensor(saliency_scores), dim=0
).numpy()
# compute the largest change in score we can find by swapping each word
delta_ps = []
for idx in range(len_text):
transformed_text_candidates = self.get_transformations(
initial_text,
original_text=initial_text,
indices_to_modify=[idx],
)
if not transformed_text_candidates:
# no valid synonym substitutions for this word
delta_ps.append(0.0)
continue
swap_results, _ = self.get_goal_results(transformed_text_candidates)
score_change = [result.score for result in swap_results]
max_score_change = np.max(score_change)
delta_ps.append(max_score_change)
index_scores = softmax_saliency_scores * | np.array(delta_ps) | numpy.array |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[1].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
print(f'DFA fluctuation with 11 knots: {np.round(np.var(time_series - imfs_51[3, :]), 3)}')
for knot in knots_11:
axs[2].plot(knot * | np.ones(101) | numpy.ones |
"""Routines for numerical differentiation."""
from __future__ import division
import numpy as np
from numpy.linalg import norm
from scipy.sparse.linalg import LinearOperator
from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find
from ._group_columns import group_dense, group_sparse
EPS = np.finfo(np.float64).eps
def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub):
"""Adjust final difference scheme to the presence of bounds.
Parameters
----------
x0 : ndarray, shape (n,)
Point at which we wish to estimate derivative.
h : ndarray, shape (n,)
Desired finite difference steps.
num_steps : int
Number of `h` steps in one direction required to implement finite
difference scheme. For example, 2 means that we need to evaluate
f(x0 + 2 * h) or f(x0 - 2 * h)
scheme : {'1-sided', '2-sided'}
Whether steps in one or both directions are required. In other
words '1-sided' applies to forward and backward schemes, '2-sided'
applies to center schemes.
lb : ndarray, shape (n,)
Lower bounds on independent variables.
ub : ndarray, shape (n,)
Upper bounds on independent variables.
Returns
-------
h_adjusted : ndarray, shape (n,)
Adjusted step sizes. Step size decreases only if a sign flip or
switching to one-sided scheme doesn't allow to take a full step.
use_one_sided : ndarray of bool, shape (n,)
Whether to switch to one-sided scheme. Informative only for
``scheme='2-sided'``.
"""
if scheme == '1-sided':
use_one_sided = np.ones_like(h, dtype=bool)
elif scheme == '2-sided':
h = np.abs(h)
use_one_sided = np.zeros_like(h, dtype=bool)
else:
raise ValueError("`scheme` must be '1-sided' or '2-sided'.")
if np.all((lb == -np.inf) & (ub == np.inf)):
return h, use_one_sided
h_total = h * num_steps
h_adjusted = h.copy()
lower_dist = x0 - lb
upper_dist = ub - x0
if scheme == '1-sided':
x = x0 + h_total
violated = (x < lb) | (x > ub)
fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist)
h_adjusted[violated & fitting] *= -1
forward = (upper_dist >= lower_dist) & ~fitting
h_adjusted[forward] = upper_dist[forward] / num_steps
backward = (upper_dist < lower_dist) & ~fitting
h_adjusted[backward] = -lower_dist[backward] / num_steps
elif scheme == '2-sided':
central = (lower_dist >= h_total) & (upper_dist >= h_total)
forward = (upper_dist >= lower_dist) & ~central
h_adjusted[forward] = np.minimum(
h[forward], 0.5 * upper_dist[forward] / num_steps)
use_one_sided[forward] = True
backward = (upper_dist < lower_dist) & ~central
h_adjusted[backward] = -np.minimum(
h[backward], 0.5 * lower_dist[backward] / num_steps)
use_one_sided[backward] = True
min_dist = np.minimum(upper_dist, lower_dist) / num_steps
adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist))
h_adjusted[adjusted_central] = min_dist[adjusted_central]
use_one_sided[adjusted_central] = False
return h_adjusted, use_one_sided
relative_step = {"2-point": EPS**0.5,
"3-point": EPS**(1/3),
"cs": EPS**0.5}
def _compute_absolute_step(rel_step, x0, method):
if rel_step is None:
rel_step = relative_step[method]
sign_x0 = (x0 >= 0).astype(float) * 2 - 1
return rel_step * sign_x0 * np.maximum(1.0, np.abs(x0))
def _prepare_bounds(bounds, x0):
lb, ub = [np.asarray(b, dtype=float) for b in bounds]
if lb.ndim == 0:
lb = np.resize(lb, x0.shape)
if ub.ndim == 0:
ub = np.resize(ub, x0.shape)
return lb, ub
def group_columns(A, order=0):
"""Group columns of a 2-D matrix for sparse finite differencing [1]_.
Two columns are in the same group if in each row at least one of them
has zero. A greedy sequential algorithm is used to construct groups.
Parameters
----------
A : array_like or sparse matrix, shape (m, n)
Matrix of which to group columns.
order : int, iterable of int with shape (n,) or None
Permutation array which defines the order of columns enumeration.
If int or None, a random permutation is used with `order` used as
a random seed. Default is 0, that is use a random permutation but
guarantee repeatability.
Returns
-------
groups : ndarray of int, shape (n,)
Contains values from 0 to n_groups-1, where n_groups is the number
of found groups. Each value ``groups[i]`` is an index of a group to
which ith column assigned. The procedure was helpful only if
n_groups is significantly less than n.
References
----------
.. [1] <NAME>, <NAME>, and <NAME>, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13 (1974), pp. 117-120.
"""
if issparse(A):
A = csc_matrix(A)
else:
A = np.atleast_2d(A)
A = (A != 0).astype(np.int32)
if A.ndim != 2:
raise ValueError("`A` must be 2-dimensional.")
m, n = A.shape
if order is None or np.isscalar(order):
rng = np.random.RandomState(order)
order = rng.permutation(n)
else:
order = np.asarray(order)
if order.shape != (n,):
raise ValueError("`order` has incorrect shape.")
A = A[:, order]
if issparse(A):
groups = group_sparse(m, n, A.indices, A.indptr)
else:
groups = group_dense(m, n, A)
groups[order] = groups.copy()
return groups
def approx_derivative(fun, x0, method='3-point', rel_step=None, f0=None,
bounds=(-np.inf, np.inf), sparsity=None,
as_linear_operator=False, args=(), kwargs={}):
"""Compute finite difference approximation of the derivatives of a
vector-valued function.
If a function maps from R^n to R^m, its derivatives form m-by-n matrix
called the Jacobian, where an element (i, j) is a partial derivative of
f[i] with respect to x[j].
Parameters
----------
fun : callable
Function of which to estimate the derivatives. The argument x
passed to this function is ndarray of shape (n,) (never a scalar
even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
x0 : array_like of shape (n,) or float
Point at which to estimate the derivatives. Float will be converted
to a 1-D array.
method : {'3-point', '2-point', 'cs'}, optional
Finite difference method to use:
- '2-point' - use the first order accuracy forward or backward
difference.
- '3-point' - use central difference in interior points and the
second order accuracy forward or backward difference
near the boundary.
- 'cs' - use a complex-step finite difference scheme. This assumes
that the user function is real-valued and can be
analytically continued to the complex plane. Otherwise,
produces bogus results.
rel_step : None or array_like, optional
Relative step size to use. The absolute step size is computed as
``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to
fit into the bounds. For ``method='3-point'`` the sign of `h` is
ignored. If None (default) then step is selected automatically,
see Notes.
f0 : None or array_like, optional
If not None it is assumed to be equal to ``fun(x0)``, in this case
the ``fun(x0)`` is not called. Default is None.
bounds : tuple of array_like, optional
Lower and upper bounds on independent variables. Defaults to no bounds.
Each bound must match the size of `x0` or be a scalar, in the latter
case the bound will be the same for all variables. Use it to limit the
range of function evaluation. Bounds checking is not implemented
when `as_linear_operator` is True.
sparsity : {None, array_like, sparse matrix, 2-tuple}, optional
Defines a sparsity structure of the Jacobian matrix. If the Jacobian
matrix is known to have only few non-zero elements in each row, then
it's possible to estimate its several columns by a single function
evaluation [3]_. To perform such economic computations two ingredients
are required:
* structure : array_like or sparse matrix of shape (m, n). A zero
element means that a corresponding element of the Jacobian
identically equals to zero.
* groups : array_like of shape (n,). A column grouping for a given
sparsity structure, use `group_columns` to obtain it.
A single array or a sparse matrix is interpreted as a sparsity
structure, and groups are computed inside the function. A tuple is
interpreted as (structure, groups). If None (default), a standard
dense differencing will be used.
Note, that sparse differencing makes sense only for large Jacobian
matrices where each row contains few non-zero elements.
as_linear_operator : bool, optional
When True the function returns an `scipy.sparse.linalg.LinearOperator`.
Otherwise it returns a dense array or a sparse matrix depending on
`sparsity`. The linear operator provides an efficient way of computing
``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow
direct access to individual elements of the matrix. By default
`as_linear_operator` is False.
args, kwargs : tuple and dict, optional
Additional arguments passed to `fun`. Both empty by default.
The calling signature is ``fun(x, *args, **kwargs)``.
Returns
-------
J : {ndarray, sparse matrix, LinearOperator}
Finite difference approximation of the Jacobian matrix.
If `as_linear_operator` is True returns a LinearOperator
with shape (m, n). Otherwise it returns a dense array or sparse
matrix depending on how `sparsity` is defined. If `sparsity`
is None then a ndarray with shape (m, n) is returned. If
`sparsity` is not None returns a csr_matrix with shape (m, n).
For sparse matrices and linear operators it is always returned as
a 2-D structure, for ndarrays, if m=1 it is returned
as a 1-D gradient array with shape (n,).
See Also
--------
check_derivative : Check correctness of a function computing derivatives.
Notes
-----
If `rel_step` is not provided, it assigned to ``EPS**(1/s)``, where EPS is
machine epsilon for float64 numbers, s=2 for '2-point' method and s=3 for
'3-point' method. Such relative step approximately minimizes a sum of
truncation and round-off errors, see [1]_.
A finite difference scheme for '3-point' method is selected automatically.
The well-known central difference scheme is used for points sufficiently
far from the boundary, and 3-point forward or backward scheme is used for
points near the boundary. Both schemes have the second-order accuracy in
terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point
forward and backward difference schemes.
For dense differencing when m=1 Jacobian is returned with a shape (n,),
on the other hand when n=1 Jacobian is returned with a shape (m, 1).
Our motivation is the following: a) It handles a case of gradient
computation (m=1) in a conventional way. b) It clearly separates these two
different cases. b) In all cases np.atleast_2d can be called to get 2-D
Jacobian with correct dimensions.
References
----------
.. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific
Computing. 3rd edition", sec. 5.7.
.. [2] <NAME>, <NAME>, and <NAME>, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13 (1974), pp. 117-120.
.. [3] <NAME>, "Generation of Finite Difference Formulas on
Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988.
Examples
--------
>>> import numpy as np
>>> from scipy.optimize import approx_derivative
>>>
>>> def f(x, c1, c2):
... return np.array([x[0] * np.sin(c1 * x[1]),
... x[0] * np.cos(c2 * x[1])])
...
>>> x0 = np.array([1.0, 0.5 * np.pi])
>>> approx_derivative(f, x0, args=(1, 2))
array([[ 1., 0.],
[-1., 0.]])
Bounds can be used to limit the region of function evaluation.
In the example below we compute left and right derivative at point 1.0.
>>> def g(x):
... return x**2 if x >= 1 else x
...
>>> x0 = 1.0
>>> approx_derivative(g, x0, bounds=(-np.inf, 1.0))
array([ 1.])
>>> approx_derivative(g, x0, bounds=(1.0, np.inf))
array([ 2.])
"""
if method not in ['2-point', '3-point', 'cs']:
raise ValueError("Unknown method '%s'. " % method)
x0 = np.atleast_1d(x0)
if x0.ndim > 1:
raise ValueError("`x0` must have at most 1 dimension.")
lb, ub = _prepare_bounds(bounds, x0)
if lb.shape != x0.shape or ub.shape != x0.shape:
raise ValueError("Inconsistent shapes between bounds and `x0`.")
if as_linear_operator and not (np.all(np.isinf(lb))
and np.all(np.isinf(ub))):
raise ValueError("Bounds not supported when "
"`as_linear_operator` is True.")
def fun_wrapped(x):
f = np.atleast_1d(fun(x, *args, **kwargs))
if f.ndim > 1:
raise RuntimeError("`fun` return value has "
"more than 1 dimension.")
return f
if f0 is None:
f0 = fun_wrapped(x0)
else:
f0 = np.atleast_1d(f0)
if f0.ndim > 1:
raise ValueError("`f0` passed has more than 1 dimension.")
if np.any((x0 < lb) | (x0 > ub)):
raise ValueError("`x0` violates bound constraints.")
if as_linear_operator:
if rel_step is None:
rel_step = relative_step[method]
return _linear_operator_difference(fun_wrapped, x0,
f0, rel_step, method)
else:
h = _compute_absolute_step(rel_step, x0, method)
if method == '2-point':
h, use_one_sided = _adjust_scheme_to_bounds(
x0, h, 1, '1-sided', lb, ub)
elif method == '3-point':
h, use_one_sided = _adjust_scheme_to_bounds(
x0, h, 1, '2-sided', lb, ub)
elif method == 'cs':
use_one_sided = False
if sparsity is None:
return _dense_difference(fun_wrapped, x0, f0, h,
use_one_sided, method)
else:
if not issparse(sparsity) and len(sparsity) == 2:
structure, groups = sparsity
else:
structure = sparsity
groups = group_columns(sparsity)
if issparse(structure):
structure = csc_matrix(structure)
else:
structure = np.atleast_2d(structure)
groups = np.atleast_1d(groups)
return _sparse_difference(fun_wrapped, x0, f0, h,
use_one_sided, structure,
groups, method)
def _linear_operator_difference(fun, x0, f0, h, method):
m = f0.size
n = x0.size
if method == '2-point':
def matvec(p):
if np.array_equal(p, np.zeros_like(p)):
return np.zeros(m)
dx = h / norm(p)
x = x0 + dx*p
df = fun(x) - f0
return df / dx
elif method == '3-point':
def matvec(p):
if np.array_equal(p, np.zeros_like(p)):
return np.zeros(m)
dx = 2*h / | norm(p) | numpy.linalg.norm |
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
class TwoLayerNet(object):
"""
A two-layer fully-connected neural network. The net has an input dimension
of N, a hidden layer dimension of H, and performs classification over C
classes.
We train the network with a softmax loss function and L2 regularization on
the weight matrices. The network uses a ReLU nonlinearity after the first
fully connected layer.
In other words, the network has the following architecture:
input - fully connected layer - ReLU - fully connected layer - softmax
The outputs of the second fully-connected layer are the scores for each
class.
"""
def __init__(self, input_size, hidden_size, output_size, std=1e-4):
"""
Initialize the model. Weights are initialized to small random values
and biases are initialized to zero. Weights and biases are stored in
the variable self.params, which is a dictionary with the following keys
W1: First layer weights; has shape (D, H)
b1: First layer biases; has shape (H,)
W2: Second layer weights; has shape (H, C)
b2: Second layer biases; has shape (C,)
Inputs:
- input_size: The dimension D of the input data.
- hidden_size: The number of neurons H in the hidden layer.
- output_size: The number of classes C.
"""
self.params = {}
self.params['W1'] = std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def loss(self, X, y=None, reg=0.0):
"""
Compute the loss and gradients for a two layer fully connected neural
network.
Inputs:
- X: Input data of shape (N, D). Each X[i] is a training sample.
- y: Vector of training labels. y[i] is the label for X[i], and each
y[i] is an integer in the range 0 <= y[i] < C. This parameter is
optional; if it is not passed then we only return scores, and if it
is passed then we instead return the loss and gradients.
- reg: Regularization strength.
Returns:
If y is None, return a matrix scores of shape (N, C) where scores[i, c]
is the score for class c on input X[i].
If y is not None, instead return a tuple of:
- loss: Loss (data loss and regularization loss) for this batch of
training samples.
- grads: Dictionary mapping parameter names to gradients of those
parameters with respect to the loss function; has the same keys as
self.params.
"""
# Unpack variables from the params dictionary
W1, b1 = self.params['W1'], self.params['b1']
W2, b2 = self.params['W2'], self.params['b2']
N, D = X.shape
# Compute the forward pass
scores = None
#######################################################################
# TODO: Perform the forward pass, computing the class scores for the #
# input. Store the result in the scores variable, which should be an #
# array of shape (N, C). #
#######################################################################
scores1 = X.dot(W1) + b1 # FC1
X2 = np.maximum(0, scores1) # ReLU FC1
scores = X2.dot(W2) + b2 # FC2
#######################################################################
# END OF YOUR CODE #
#######################################################################
# If the targets are not given then jump out, we're done
if y is None:
return scores
scores -= np.max(scores) # Fix Number instability
scores_exp = np.exp(scores)
probs = scores_exp / np.sum(scores_exp, axis=1, keepdims=True)
# Compute the loss
loss = None
#######################################################################
# TODO: Finish the forward pass, and compute the loss. This should #
# include both the data loss and L2 regularization for W1 and W2. #
# Store the result in the variable loss, which should be a scalar. Use#
# the Softmax classifier loss. #
#######################################################################
correct_probs = -np.log(probs[np.arange(N), y])
# L_i = -log(e^correct_score/sum(e^scores))) = -log(correct_probs)
loss = np.sum(correct_probs)
loss /= N
# L2 regularization WRT W1 and W2
loss += reg * (np.sum(W1 * W1) + np.sum(W2 * W2))
#######################################################################
# END OF YOUR CODE #
#######################################################################
# Backward pass: compute gradients
grads = {}
#############################################################################
# TODO: Compute the backward pass, computing the derivatives of the weights #
# and biases. Store the results in the grads dictionary. For example, #
# grads['W1'] should store the gradient on W1, and be a matrix of same size #
#############################################################################
# gradient of loss_i WRT scores_k
# dL_i/ds_k = probs_k-1(y_i == k)
# this means the gradient is the score for "other" classes and score-1
# for the target class
d_scores = probs.copy()
d_scores[np.arange(N), y] -= 1
d_scores /= N
# W2 were multiplied with X2, by chain rule and multiplication
# derivative, WRT W2 we need to multiply downstream derivative by X2
d_W2 = X2.T.dot(d_scores)
# b2 was added, so it's d is 1 but we must multiply it with chain rule
# (downstream), in this case d_scores
d_b2 = np.sum(d_scores, axis=0)
# W1 is upstream of X2, so we continue this way
d_X2 = d_scores.dot(W2.T)
# ReLU derivative is 1 for > 0, else 0
d_scores1 = d_X2 * (scores1 > 0)
d_W1 = X.T.dot(d_scores1)
# b1 gradient
d_b1 = d_scores1.sum(axis=0)
# regularization gradient (reg*W2^2)
d_W2 += reg * 2 * W2
d_W1 += reg * 2 * W1
grads['W1'] = d_W1
grads['b1'] = d_b1
grads['W2'] = d_W2
grads['b2'] = d_b2
#######################################################################
# END OF YOUR CODE #
#######################################################################
return loss, grads
def train(self, X, y, X_val, y_val,
learning_rate=1e-3, learning_rate_decay=0.95,
reg=5e-6, num_iters=100,
batch_size=200, verbose=False):
"""
Train this neural network using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) giving training data.
- y: A numpy array f shape (N,) giving training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- X_val: A numpy array of shape (N_val, D) giving validation data.
- y_val: A numpy array of shape (N_val,) giving validation labels.
- learning_rate: Scalar giving learning rate for optimization.
- learning_rate_decay: Scalar giving factor used to decay the learning
rate after each epoch.
- reg: Scalar giving regularization strength.
- num_iters: Number of steps to take when optimizing.
- batch_size: Number of training examples to use per step.
- verbose: boolean; if true print progress during optimization.
"""
num_train = X.shape[0]
iterations_per_epoch = max(num_train / batch_size, 1)
# Use SGD to optimize the parameters in self.model
loss_history = []
train_acc_history = []
val_acc_history = []
for it in range(num_iters):
X_batch = None
y_batch = None
###################################################################
# TODO: Create a random minibatch of training data and labels, #
# storing them in X_batch and y_batch respectively. #
###################################################################
# random indexes to sample training data/labels
sample_idx = | np.random.choice(num_train, batch_size, replace=True) | numpy.random.choice |
import numpy as np
import cv2
import os
import json
import glob
from PIL import Image, ImageDraw
plate_diameter = 25 #cm
plate_depth = 1.5 #cm
plate_thickness = 0.2 #cm
def Max(x, y):
if (x >= y):
return x
else:
return y
def polygons_to_mask(img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = Image.fromarray(mask)
xy = list(map(tuple, polygons))
ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def mask2box(mask):
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
left_top_r = np.min(rows)
left_top_c = np.min(clos)
right_bottom_r = np.max(rows)
right_bottom_c = | np.max(clos) | numpy.max |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + | np.cos(5 * time) | numpy.cos |
# coding: utf-8
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Test the Logarithmic Units and Quantities
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
from ...extern import six
from ...extern.six.moves import zip
import pickle
import itertools
import pytest
import numpy as np
from numpy.testing.utils import assert_allclose
from ...tests.helper import assert_quantity_allclose
from ... import units as u, constants as c
lu_units = [u.dex, u.mag, u.decibel]
lu_subclasses = [u.DexUnit, u.MagUnit, u.DecibelUnit]
lq_subclasses = [u.Dex, u.Magnitude, u.Decibel]
pu_sample = (u.dimensionless_unscaled, u.m, u.g/u.s**2, u.Jy)
class TestLogUnitCreation(object):
def test_logarithmic_units(self):
"""Check logarithmic units are set up correctly."""
assert u.dB.to(u.dex) == 0.1
assert u.dex.to(u.mag) == -2.5
assert u.mag.to(u.dB) == -4
@pytest.mark.parametrize('lu_unit, lu_cls', zip(lu_units, lu_subclasses))
def test_callable_units(self, lu_unit, lu_cls):
assert isinstance(lu_unit, u.UnitBase)
assert callable(lu_unit)
assert lu_unit._function_unit_class is lu_cls
@pytest.mark.parametrize('lu_unit', lu_units)
def test_equality_to_normal_unit_for_dimensionless(self, lu_unit):
lu = lu_unit()
assert lu == lu._default_function_unit # eg, MagUnit() == u.mag
assert lu._default_function_unit == lu # and u.mag == MagUnit()
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_call_units(self, lu_unit, physical_unit):
"""Create a LogUnit subclass using the callable unit and physical unit,
and do basic check that output is right."""
lu1 = lu_unit(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
def test_call_invalid_unit(self):
with pytest.raises(TypeError):
u.mag([])
with pytest.raises(ValueError):
u.mag(u.mag())
@pytest.mark.parametrize('lu_cls, physical_unit', itertools.product(
lu_subclasses + [u.LogUnit], pu_sample))
def test_subclass_creation(self, lu_cls, physical_unit):
"""Create a LogUnit subclass object for given physical unit,
and do basic check that output is right."""
lu1 = lu_cls(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
lu2 = lu_cls(physical_unit,
function_unit=2*lu1._default_function_unit)
assert lu2.physical_unit == physical_unit
assert lu2.function_unit == u.Unit(2*lu2._default_function_unit)
with pytest.raises(ValueError):
lu_cls(physical_unit, u.m)
def test_predefined_magnitudes():
assert_quantity_allclose((-21.1*u.STmag).physical,
1.*u.erg/u.cm**2/u.s/u.AA)
assert_quantity_allclose((-48.6*u.ABmag).physical,
1.*u.erg/u.cm**2/u.s/u.Hz)
assert_quantity_allclose((0*u.M_bol).physical, c.L_bol0)
assert_quantity_allclose((0*u.m_bol).physical,
c.L_bol0/(4.*np.pi*(10.*c.pc)**2))
def test_predefined_reinitialisation():
assert u.mag('ST') == u.STmag
assert u.mag('AB') == u.ABmag
assert u.mag('Bol') == u.M_bol
assert u.mag('bol') == u.m_bol
def test_predefined_string_roundtrip():
"""Ensure roundtripping; see #5015"""
with u.magnitude_zero_points.enable():
assert u.Unit(u.STmag.to_string()) == u.STmag
assert u.Unit(u.ABmag.to_string()) == u.ABmag
assert u.Unit(u.M_bol.to_string()) == u.M_bol
assert u.Unit(u.m_bol.to_string()) == u.m_bol
def test_inequality():
"""Check __ne__ works (regresssion for #5342)."""
lu1 = u.mag(u.Jy)
lu2 = u.dex(u.Jy)
lu3 = u.mag(u.Jy**2)
lu4 = lu3 - lu1
assert lu1 != lu2
assert lu1 != lu3
assert lu1 == lu4
class TestLogUnitStrings(object):
def test_str(self):
"""Do some spot checks that str, repr, etc. work as expected."""
lu1 = u.mag(u.Jy)
assert str(lu1) == 'mag(Jy)'
assert repr(lu1) == 'Unit("mag(Jy)")'
assert lu1.to_string('generic') == 'mag(Jy)'
with pytest.raises(ValueError):
lu1.to_string('fits')
lu2 = u.dex()
assert str(lu2) == 'dex'
assert repr(lu2) == 'Unit("dex(1)")'
assert lu2.to_string() == 'dex(1)'
lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag)
assert str(lu3) == '2 mag(Jy)'
assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
assert lu3.to_string() == '2 mag(Jy)'
lu4 = u.mag(u.ct)
assert lu4.to_string('generic') == 'mag(ct)'
assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
'\\mathrm{ct} \\right)}$')
assert lu4._repr_latex_() == lu4.to_string('latex')
class TestLogUnitConversion(object):
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_physical_unit_conversion(self, lu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to their non-log counterparts."""
lu1 = lu_unit(physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(physical_unit, 0.) == 1.
assert physical_unit.is_equivalent(lu1)
assert physical_unit.to(lu1, 1.) == 0.
pu = u.Unit(8.*physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(pu, 0.) == 0.125
assert pu.is_equivalent(lu1)
assert_allclose(pu.to(lu1, 0.125), 0., atol=1.e-15)
# Check we round-trip.
value = np.linspace(0., 10., 6)
assert_allclose(pu.to(lu1, lu1.to(pu, value)), value, atol=1.e-15)
# And that we're not just returning True all the time.
pu2 = u.g
assert not lu1.is_equivalent(pu2)
with pytest.raises(u.UnitsError):
lu1.to(pu2)
assert not pu2.is_equivalent(lu1)
with pytest.raises(u.UnitsError):
pu2.to(lu1)
@pytest.mark.parametrize('lu_unit', lu_units)
def test_container_unit_conversion(self, lu_unit):
"""Check that conversion to logarithmic units (u.mag, u.dB, u.dex)
is only possible when the physical unit is dimensionless."""
values = np.linspace(0., 10., 6)
lu1 = lu_unit(u.dimensionless_unscaled)
assert lu1.is_equivalent(lu1.function_unit)
assert_allclose(lu1.to(lu1.function_unit, values), values)
lu2 = lu_unit(u.Jy)
assert not lu2.is_equivalent(lu2.function_unit)
with pytest.raises(u.UnitsError):
lu2.to(lu2.function_unit, values)
@pytest.mark.parametrize(
'flu_unit, tlu_unit, physical_unit',
itertools.product(lu_units, lu_units, pu_sample))
def test_subclass_conversion(self, flu_unit, tlu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to each other if they correspond to equivalent physical units."""
values = np.linspace(0., 10., 6)
flu = flu_unit(physical_unit)
tlu = tlu_unit(physical_unit)
assert flu.is_equivalent(tlu)
assert_allclose(flu.to(tlu), flu.function_unit.to(tlu.function_unit))
assert_allclose(flu.to(tlu, values),
values * flu.function_unit.to(tlu.function_unit))
tlu2 = tlu_unit(u.Unit(100.*physical_unit))
assert flu.is_equivalent(tlu2)
# Check that we round-trip.
assert_allclose(flu.to(tlu2, tlu2.to(flu, values)), values, atol=1.e-15)
tlu3 = tlu_unit(physical_unit.to_system(u.si)[0])
assert flu.is_equivalent(tlu3)
assert_allclose(flu.to(tlu3, tlu3.to(flu, values)), values, atol=1.e-15)
tlu4 = tlu_unit(u.g)
assert not flu.is_equivalent(tlu4)
with pytest.raises(u.UnitsError):
flu.to(tlu4, values)
def test_unit_decomposition(self):
lu = u.mag(u.Jy)
assert lu.decompose() == u.mag(u.Jy.decompose())
assert lu.decompose().physical_unit.bases == [u.kg, u.s]
assert lu.si == u.mag(u.Jy.si)
assert lu.si.physical_unit.bases == [u.kg, u.s]
assert lu.cgs == u.mag(u.Jy.cgs)
assert lu.cgs.physical_unit.bases == [u.g, u.s]
def test_unit_multiple_possible_equivalencies(self):
lu = u.mag(u.Jy)
assert lu.is_equivalent(pu_sample)
class TestLogUnitArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other units is only
possible when the physical unit is dimensionless, and that this
turns the unit into a normal one."""
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 * u.m
with pytest.raises(u.UnitsError):
u.m * lu1
with pytest.raises(u.UnitsError):
lu1 / lu1
for unit in (u.dimensionless_unscaled, u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lu1 / unit
lu2 = u.mag(u.dimensionless_unscaled)
with pytest.raises(u.UnitsError):
lu2 * lu1
with pytest.raises(u.UnitsError):
lu2 / lu1
# But dimensionless_unscaled can be cancelled.
assert lu2 / lu2 == u.dimensionless_unscaled
# With dimensionless, normal units are OK, but we return a plain unit.
tf = lu2 * u.m
tr = u.m * lu2
for t in (tf, tr):
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lu2.physical_unit)
# Now we essentially have a LogUnit with a prefactor of 100,
# so should be equivalent again.
t = tf / u.cm
with u.set_enabled_equivalencies(u.logarithmic()):
assert t.is_equivalent(lu2.function_unit)
assert_allclose(t.to(u.dimensionless_unscaled, np.arange(3.)/100.),
lu2.to(lu2.physical_unit, np.arange(3.)))
# If we effectively remove lu1, a normal unit should be returned.
t2 = tf / lu2
assert not isinstance(t2, type(lu2))
assert t2 == u.m
t3 = tf / lu2.function_unit
assert not isinstance(t3, type(lu2))
assert t3 == u.m
# For completeness, also ensure non-sensical operations fail
with pytest.raises(TypeError):
lu1 * object()
with pytest.raises(TypeError):
slice(None) * lu1
with pytest.raises(TypeError):
lu1 / []
with pytest.raises(TypeError):
1 / lu1
@pytest.mark.parametrize('power', (2, 0.5, 1, 0))
def test_raise_to_power(self, power):
"""Check that raising LogUnits to some power is only possible when the
physical unit is dimensionless, and that conversion is turned off when
the resulting logarithmic unit (such as mag**2) is incompatible."""
lu1 = u.mag(u.Jy)
if power == 0:
assert lu1 ** power == u.dimensionless_unscaled
elif power == 1:
assert lu1 ** power == lu1
else:
with pytest.raises(u.UnitsError):
lu1 ** power
# With dimensionless, though, it works, but returns a normal unit.
lu2 = u.mag(u.dimensionless_unscaled)
t = lu2**power
if power == 0:
assert t == u.dimensionless_unscaled
elif power == 1:
assert t == lu2
else:
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit**power
# also check we roundtrip
t2 = t**(1./power)
assert t2 == lu2.function_unit
with u.set_enabled_equivalencies(u.logarithmic()):
assert_allclose(t2.to(u.dimensionless_unscaled, np.arange(3.)),
lu2.to(lu2.physical_unit, np.arange(3.)))
@pytest.mark.parametrize('other', pu_sample)
def test_addition_subtraction_to_normal_units_fails(self, other):
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 + other
with pytest.raises(u.UnitsError):
lu1 - other
with pytest.raises(u.UnitsError):
other - lu1
def test_addition_subtraction_to_non_units_fails(self):
lu1 = u.mag(u.Jy)
with pytest.raises(TypeError):
lu1 + 1.
with pytest.raises(TypeError):
lu1 - [1., 2., 3.]
@pytest.mark.parametrize(
'other', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag)))
def test_addition_subtraction(self, other):
"""Check physical units are changed appropriately"""
lu1 = u.mag(u.Jy)
other_pu = getattr(other, 'physical_unit', u.dimensionless_unscaled)
lu_sf = lu1 + other
assert lu_sf.is_equivalent(lu1.physical_unit * other_pu)
lu_sr = other + lu1
assert lu_sr.is_equivalent(lu1.physical_unit * other_pu)
lu_df = lu1 - other
assert lu_df.is_equivalent(lu1.physical_unit / other_pu)
lu_dr = other - lu1
assert lu_dr.is_equivalent(other_pu / lu1.physical_unit)
def test_complicated_addition_subtraction(self):
"""for fun, a more complicated example of addition and subtraction"""
dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2))
lu_dm = u.mag(dm0)
lu_absST = u.STmag - lu_dm
assert lu_absST.is_equivalent(u.erg/u.s/u.AA)
def test_neg_pos(self):
lu1 = u.mag(u.Jy)
neg_lu = -lu1
assert neg_lu != lu1
assert neg_lu.physical_unit == u.Jy**-1
assert -neg_lu == lu1
pos_lu = +lu1
assert pos_lu is not lu1
assert pos_lu == lu1
def test_pickle():
lu1 = u.dex(u.cm/u.s**2)
s = pickle.dumps(lu1)
lu2 = pickle.loads(s)
assert lu1 == lu2
def test_hashable():
lu1 = u.dB(u.mW)
lu2 = u.dB(u.m)
lu3 = u.dB(u.mW)
assert hash(lu1) != hash(lu2)
assert hash(lu1) == hash(lu3)
luset = {lu1, lu2, lu3}
assert len(luset) == 2
class TestLogQuantityCreation(object):
@pytest.mark.parametrize('lq, lu', zip(lq_subclasses + [u.LogQuantity],
lu_subclasses + [u.LogUnit]))
def test_logarithmic_quantities(self, lq, lu):
"""Check logarithmic quantities are all set up correctly"""
assert lq._unit_class == lu
assert type(lu()._quantity_class(1.)) is lq
@pytest.mark.parametrize('lq_cls, physical_unit',
itertools.product(lq_subclasses, pu_sample))
def test_subclass_creation(self, lq_cls, physical_unit):
"""Create LogQuantity subclass objects for some physical units,
and basic check on transformations"""
value = np.arange(1., 10.)
log_q = lq_cls(value * physical_unit)
assert log_q.unit.physical_unit == physical_unit
assert log_q.unit.function_unit == log_q.unit._default_function_unit
assert_allclose(log_q.physical.value, value)
with pytest.raises(ValueError):
lq_cls(value, physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_different_units(self, unit):
q = u.Magnitude(1.23, unit)
assert q.unit.function_unit == getattr(unit, 'function_unit', unit)
assert q.unit.physical_unit is getattr(unit, 'physical_unit',
u.dimensionless_unscaled)
@pytest.mark.parametrize('value, unit', (
(1.*u.mag(u.Jy), None),
(1.*u.dex(u.Jy), None),
(1.*u.mag(u.W/u.m**2/u.Hz), u.mag(u.Jy)),
(1.*u.dex(u.W/u.m**2/u.Hz), u.mag(u.Jy))))
def test_function_values(self, value, unit):
lq = u.Magnitude(value, unit)
assert lq == value
assert lq.unit.function_unit == u.mag
assert lq.unit.physical_unit == getattr(unit, 'physical_unit',
value.unit.physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag(), u.mag(u.Jy), u.mag(u.m), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_indirect_creation(self, unit):
q1 = 2.5 * unit
assert isinstance(q1, u.Magnitude)
assert q1.value == 2.5
assert q1.unit == unit
pv = 100. * unit.physical_unit
q2 = unit * pv
assert q2.unit == unit
assert q2.unit.physical_unit == pv.unit
assert q2.to_value(unit.physical_unit) == 100.
assert (q2._function_view / u.mag).to_value(1) == -5.
q3 = unit / 0.4
assert q3 == q1
def test_from_view(self):
# Cannot view a physical quantity as a function quantity, since the
# values would change.
q = [100., 1000.] * u.cm/u.s**2
with pytest.raises(TypeError):
q.view(u.Dex)
# But fine if we have the right magnitude.
q = [2., 3.] * u.dex
lq = q.view(u.Dex)
assert isinstance(lq, u.Dex)
assert lq.unit.physical_unit == u.dimensionless_unscaled
assert np.all(q == lq)
def test_using_quantity_class(self):
"""Check that we can use Quantity if we have subok=True"""
# following issue #5851
lu = u.dex(u.AA)
with pytest.raises(u.UnitTypeError):
u.Quantity(1., lu)
q = u.Quantity(1., lu, subok=True)
assert type(q) is lu._quantity_class
def test_conversion_to_and_from_physical_quantities():
"""Ensures we can convert from regular quantities."""
mst = [10., 12., 14.] * u.STmag
flux_lambda = mst.physical
mst_roundtrip = flux_lambda.to(u.STmag)
# check we return a logquantity; see #5178.
assert isinstance(mst_roundtrip, u.Magnitude)
assert mst_roundtrip.unit == mst.unit
assert_allclose(mst_roundtrip.value, mst.value)
wave = [4956.8, 4959.55, 4962.3] * u.AA
flux_nu = mst.to(u.Jy, equivalencies=u.spectral_density(wave))
mst_roundtrip2 = flux_nu.to(u.STmag, u.spectral_density(wave))
assert isinstance(mst_roundtrip2, u.Magnitude)
assert mst_roundtrip2.unit == mst.unit
assert_allclose(mst_roundtrip2.value, mst.value)
def test_quantity_decomposition():
lq = 10.*u.mag(u.Jy)
assert lq.decompose() == lq
assert lq.decompose().unit.physical_unit.bases == [u.kg, u.s]
assert lq.si == lq
assert lq.si.unit.physical_unit.bases == [u.kg, u.s]
assert lq.cgs == lq
assert lq.cgs.unit.physical_unit.bases == [u.g, u.s]
class TestLogQuantityViews(object):
def setup(self):
self.lq = u.Magnitude(np.arange(10.) * u.Jy)
self.lq2 = u.Magnitude(np.arange(5.))
def test_value_view(self):
lq_value = self.lq.value
assert type(lq_value) is np.ndarray
lq_value[2] = -1.
assert np.all(self.lq.value == lq_value)
def test_function_view(self):
lq_fv = self.lq._function_view
assert type(lq_fv) is u.Quantity
assert lq_fv.unit is self.lq.unit.function_unit
lq_fv[3] = -2. * lq_fv.unit
assert np.all(self.lq.value == lq_fv.value)
def test_quantity_view(self):
# Cannot view as Quantity, since the unit cannot be represented.
with pytest.raises(TypeError):
self.lq.view(u.Quantity)
# But a dimensionless one is fine.
q2 = self.lq2.view(u.Quantity)
assert q2.unit is u.mag
assert np.all(q2.value == self.lq2.value)
lq3 = q2.view(u.Magnitude)
assert type(lq3.unit) is u.MagUnit
assert lq3.unit.physical_unit == u.dimensionless_unscaled
assert np.all(lq3 == self.lq2)
class TestLogQuantitySlicing(object):
def test_item_get_and_set(self):
lq1 = u.Magnitude(np.arange(1., 11.)*u.Jy)
assert lq1[9] == u.Magnitude(10.*u.Jy)
lq1[2] = 100.*u.Jy
assert lq1[2] == u.Magnitude(100.*u.Jy)
with pytest.raises(u.UnitsError):
lq1[2] = 100.*u.m
with pytest.raises(u.UnitsError):
lq1[2] = 100.*u.mag
with pytest.raises(u.UnitsError):
lq1[2] = u.Magnitude(100.*u.m)
assert lq1[2] == u.Magnitude(100.*u.Jy)
def test_slice_get_and_set(self):
lq1 = u.Magnitude(np.arange(1., 10.)*u.Jy)
lq1[2:4] = 100.*u.Jy
assert np.all(lq1[2:4] == u.Magnitude(100.*u.Jy))
with pytest.raises(u.UnitsError):
lq1[2:4] = 100.*u.m
with pytest.raises(u.UnitsError):
lq1[2:4] = 100.*u.mag
with pytest.raises(u.UnitsError):
lq1[2:4] = u.Magnitude(100.*u.m)
assert np.all(lq1[2] == u.Magnitude(100.*u.Jy))
class TestLogQuantityArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other quantities is only
possible when the physical unit is dimensionless, and that this turns
the result into a normal quantity."""
lq = u.Magnitude(np.arange(1., 11.)*u.Jy)
with pytest.raises(u.UnitsError):
lq * (1.*u.m)
with pytest.raises(u.UnitsError):
(1.*u.m) * lq
with pytest.raises(u.UnitsError):
lq / lq
for unit in (u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lq / unit
lq2 = u.Magnitude(np.arange(1, 11.))
with pytest.raises(u.UnitsError):
lq2 * lq
with pytest.raises(u.UnitsError):
lq2 / lq
with pytest.raises(u.UnitsError):
lq / lq2
# but dimensionless_unscaled can be cancelled
r = lq2 / u.Magnitude(2.)
assert r.unit == u.dimensionless_unscaled
assert np.all(r.value == lq2.value/2.)
# with dimensionless, normal units OK, but return normal quantities
tf = lq2 * u.m
tr = u.m * lq2
for t in (tf, tr):
assert not isinstance(t, type(lq2))
assert t.unit == lq2.unit.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lq2.unit.physical_unit)
t = tf / (50.*u.cm)
# now we essentially have the same quantity but with a prefactor of 2
assert t.unit.is_equivalent(lq2.unit.function_unit)
assert_allclose(t.to(lq2.unit.function_unit), lq2._function_view*2)
@pytest.mark.parametrize('power', (2, 0.5, 1, 0))
def test_raise_to_power(self, power):
"""Check that raising LogQuantities to some power is only possible when
the physical unit is dimensionless, and that conversion is turned off
when the resulting logarithmic unit (say, mag**2) is incompatible."""
lq = u.Magnitude(np.arange(1., 4.)*u.Jy)
if power == 0:
assert np.all(lq ** power == 1.)
elif power == 1:
assert np.all(lq ** power == lq)
else:
with pytest.raises(u.UnitsError):
lq ** power
# with dimensionless, it works, but falls back to normal quantity
# (except for power=1)
lq2 = u.Magnitude(np.arange(10.))
t = lq2**power
if power == 0:
assert t.unit is u.dimensionless_unscaled
assert np.all(t.value == 1.)
elif power == 1:
assert np.all(t == lq2)
else:
assert not isinstance(t, type(lq2))
assert t.unit == lq2.unit.function_unit ** power
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(u.dimensionless_unscaled)
def test_error_on_lq_as_power(self):
lq = u.Magnitude(np.arange(1., 4.)*u.Jy)
with pytest.raises(TypeError):
lq ** lq
@pytest.mark.parametrize('other', pu_sample)
def test_addition_subtraction_to_normal_units_fails(self, other):
lq = u.Magnitude(np.arange(1., 10.)*u.Jy)
q = 1.23 * other
with pytest.raises(u.UnitsError):
lq + q
with pytest.raises(u.UnitsError):
lq - q
with pytest.raises(u.UnitsError):
q - lq
@pytest.mark.parametrize(
'other', (1.23 * u.mag, 2.34 * u.mag(),
u.Magnitude(3.45 * u.Jy), u.Magnitude(4.56 * u.m),
5.67 * u.Unit(2*u.mag), u.Magnitude(6.78, 2.*u.mag)))
def test_addition_subtraction(self, other):
"""Check that addition/subtraction with quantities with magnitude or
MagUnit units works, and that it changes the physical units
appropriately."""
lq = u.Magnitude(np.arange(1., 10.)*u.Jy)
other_physical = other.to(getattr(other.unit, 'physical_unit',
u.dimensionless_unscaled),
equivalencies=u.logarithmic())
lq_sf = lq + other
assert_allclose(lq_sf.physical, lq.physical * other_physical)
lq_sr = other + lq
assert_allclose(lq_sr.physical, lq.physical * other_physical)
lq_df = lq - other
assert_allclose(lq_df.physical, lq.physical / other_physical)
lq_dr = other - lq
assert_allclose(lq_dr.physical, other_physical / lq.physical)
@pytest.mark.parametrize('other', pu_sample)
def test_inplace_addition_subtraction_unit_checks(self, other):
lu1 = u.mag(u.Jy)
lq1 = u.Magnitude(np.arange(1., 10.), lu1)
with pytest.raises(u.UnitsError):
lq1 += other
assert np.all(lq1.value == np.arange(1., 10.))
assert lq1.unit == lu1
with pytest.raises(u.UnitsError):
lq1 -= other
assert np.all(lq1.value == np.arange(1., 10.))
assert lq1.unit == lu1
@pytest.mark.parametrize(
'other', (1.23 * u.mag, 2.34 * u.mag(),
u.Magnitude(3.45 * u.Jy), u.Magnitude(4.56 * u.m),
5.67 * u.Unit(2*u.mag), u.Magnitude(6.78, 2.*u.mag)))
def test_inplace_addition_subtraction(self, other):
"""Check that inplace addition/subtraction with quantities with
magnitude or MagUnit units works, and that it changes the physical
units appropriately."""
lq = u.Magnitude(np.arange(1., 10.)*u.Jy)
other_physical = other.to(getattr(other.unit, 'physical_unit',
u.dimensionless_unscaled),
equivalencies=u.logarithmic())
lq_sf = lq.copy()
lq_sf += other
assert_allclose(lq_sf.physical, lq.physical * other_physical)
lq_df = lq.copy()
lq_df -= other
assert_allclose(lq_df.physical, lq.physical / other_physical)
def test_complicated_addition_subtraction(self):
"""For fun, a more complicated example of addition and subtraction."""
dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2))
DMmag = u.mag(dm0)
m_st = 10. * u.STmag
dm = 5. * DMmag
M_st = m_st - dm
assert M_st.unit.is_equivalent(u.erg/u.s/u.AA)
assert np.abs(M_st.physical /
(m_st.physical*4.*np.pi*(100.*u.pc)**2) - 1.) < 1.e-15
class TestLogQuantityComparisons(object):
def test_comparison_to_non_quantities_fails(self):
lq = u.Magnitude(np.arange(1., 10.)*u.Jy)
# On python2, ordering operations always succeed, given essentially
# meaningless results.
if not six.PY2:
with pytest.raises(TypeError):
lq > 'a'
assert not (lq == 'a')
assert lq != 'a'
def test_comparison(self):
lq1 = u.Magnitude(np.arange(1., 4.)*u.Jy)
lq2 = u.Magnitude(2.*u.Jy)
assert np.all((lq1 > lq2) == np.array([True, False, False]))
assert np.all((lq1 == lq2) == | np.array([False, True, False]) | numpy.array |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import matplotlib.pyplot as plt
import CurveFit
import shutil
#find all DIRECTORIES containing non-hidden files ending in FILENAME
def getDataDirectories(DIRECTORY, FILENAME="valLoss.txt"):
directories=[]
for directory in os.scandir(DIRECTORY):
for item in os.scandir(directory):
if item.name.endswith(FILENAME) and not item.name.startswith("."):
directories.append(directory.path)
return directories
#get all non-hidden data files in DIRECTORY with extension EXT
def getDataFiles(DIRECTORY, EXT='txt'):
datafiles=[]
for item in os.scandir(DIRECTORY):
if item.name.endswith("."+EXT) and not item.name.startswith("."):
datafiles.append(item.path)
return datafiles
#checking if loss ever doesn't decrease for numEpochs epochs in a row.
def stopsDecreasing(loss, epoch, numEpochs):
minLoss=np.inf
epochMin=0
for i in range(0,loss.size):
if loss[i] < minLoss:
minLoss=loss[i]
epochMin=epoch[i]
elif (epoch[i]-epochMin) >= numEpochs:
return i, minLoss
return i, minLoss
#dirpath is where the accuracy and loss files are stored. want to move the files into the same format expected by grabNNData.
def createFolders(SEARCHDIR, SAVEDIR):
for item in os.scandir(SEARCHDIR):
name=str(item.name)
files=name.split('-')
SAVEFULLDIR=SAVEDIR+str(files[0])
if not os.path.exists(SAVEFULLDIR):
try:
os.makedirs(SAVEFULLDIR)
except FileExistsError:
#directory already exists--must have been created between the if statement & our attempt at making directory
pass
shutil.move(item.path, SAVEFULLDIR+"/"+str(files[1]))
#a function to read in information (e.g. accuracy, loss) stored at FILENAME
def grabNNData(FILENAME, header='infer', sep=' '):
data = pd.read_csv(FILENAME, sep, header=header)
if ('epochs' in data.columns) and ('trainLoss' in data.columns) and ('valLoss' in data.columns) and ('valAcc' in data.columns) and ('batch_size' in data.columns) and ('learning_rate' in data.columns):
sortedData=data.sort_values(by="epochs", axis=0, ascending=True)
epoch=np.array(sortedData['epochs'])
trainLoss=np.array(sortedData['trainLoss'])
valLoss=np.array(sortedData['valLoss'])
valAcc=np.array(sortedData['valAcc'])
batch_size= | np.array(sortedData['batch_size']) | numpy.array |
#!/usr/bin/env python
# encoding: utf-8 -*-
"""
This module contains unit tests of the rmgpy.reaction module.
"""
import numpy
import unittest
from external.wip import work_in_progress
from rmgpy.species import Species, TransitionState
from rmgpy.reaction import Reaction
from rmgpy.statmech.translation import Translation, IdealGasTranslation
from rmgpy.statmech.rotation import Rotation, LinearRotor, NonlinearRotor, KRotor, SphericalTopRotor
from rmgpy.statmech.vibration import Vibration, HarmonicOscillator
from rmgpy.statmech.torsion import Torsion, HinderedRotor
from rmgpy.statmech.conformer import Conformer
from rmgpy.kinetics import Arrhenius
from rmgpy.thermo import Wilhoit
import rmgpy.constants as constants
################################################################################
class PseudoSpecies:
"""
Can be used in place of a :class:`rmg.species.Species` for isomorphism checks.
PseudoSpecies('a') is isomorphic with PseudoSpecies('A')
but nothing else.
"""
def __init__(self, label):
self.label = label
def __repr__(self):
return "PseudoSpecies('{0}')".format(self.label)
def __str__(self):
return self.label
def isIsomorphic(self, other):
return self.label.lower() == other.label.lower()
class TestReactionIsomorphism(unittest.TestCase):
"""
Contains unit tests of the isomorphism testing of the Reaction class.
"""
def makeReaction(self,reaction_string):
""""
Make a Reaction (containing PseudoSpecies) of from a string like 'Ab=CD'
"""
reactants, products = reaction_string.split('=')
reactants = [PseudoSpecies(i) for i in reactants]
products = [PseudoSpecies(i) for i in products]
return Reaction(reactants=reactants, products=products)
def test1to1(self):
r1 = self.makeReaction('A=B')
self.assertTrue(r1.isIsomorphic(self.makeReaction('a=B')))
self.assertTrue(r1.isIsomorphic(self.makeReaction('b=A')))
self.assertFalse(r1.isIsomorphic(self.makeReaction('B=a'),eitherDirection=False))
self.assertFalse(r1.isIsomorphic(self.makeReaction('A=C')))
self.assertFalse(r1.isIsomorphic(self.makeReaction('A=BB')))
def test1to2(self):
r1 = self.makeReaction('A=BC')
self.assertTrue(r1.isIsomorphic(self.makeReaction('a=Bc')))
self.assertTrue(r1.isIsomorphic(self.makeReaction('cb=a')))
self.assertTrue(r1.isIsomorphic(self.makeReaction('a=cb'),eitherDirection=False))
self.assertFalse(r1.isIsomorphic(self.makeReaction('bc=a'),eitherDirection=False))
self.assertFalse(r1.isIsomorphic(self.makeReaction('a=c')))
self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=c')))
def test2to2(self):
r1 = self.makeReaction('AB=CD')
self.assertTrue(r1.isIsomorphic(self.makeReaction('ab=cd')))
self.assertTrue(r1.isIsomorphic(self.makeReaction('ab=dc'),eitherDirection=False))
self.assertTrue(r1.isIsomorphic(self.makeReaction('dc=ba')))
self.assertFalse(r1.isIsomorphic(self.makeReaction('cd=ab'),eitherDirection=False))
self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=ab')))
self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=cde')))
def test2to3(self):
r1 = self.makeReaction('AB=CDE')
self.assertTrue(r1.isIsomorphic(self.makeReaction('ab=cde')))
self.assertTrue(r1.isIsomorphic(self.makeReaction('ba=edc'),eitherDirection=False))
self.assertTrue(r1.isIsomorphic(self.makeReaction('dec=ba')))
self.assertFalse(r1.isIsomorphic(self.makeReaction('cde=ab'),eitherDirection=False))
self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=abc')))
self.assertFalse(r1.isIsomorphic(self.makeReaction('abe=cde')))
class TestReaction(unittest.TestCase):
"""
Contains unit tests of the Reaction class.
"""
def setUp(self):
"""
A method that is called prior to each unit test in this class.
"""
ethylene = Species(
label = 'C2H4',
conformer = Conformer(
E0 = (44.7127, 'kJ/mol'),
modes = [
IdealGasTranslation(
mass = (28.0313, 'amu'),
),
NonlinearRotor(
inertia = (
[3.41526, 16.6498, 20.065],
'amu*angstrom^2',
),
symmetry = 4,
),
HarmonicOscillator(
frequencies = (
[828.397, 970.652, 977.223, 1052.93, 1233.55, 1367.56, 1465.09, 1672.25, 3098.46, 3111.7, 3165.79, 3193.54],
'cm^-1',
),
),
],
spinMultiplicity = 1,
opticalIsomers = 1,
),
)
hydrogen = Species(
label = 'H',
conformer = Conformer(
E0 = (211.794, 'kJ/mol'),
modes = [
IdealGasTranslation(
mass = (1.00783, 'amu'),
),
],
spinMultiplicity = 2,
opticalIsomers = 1,
),
)
ethyl = Species(
label = 'C2H5',
conformer = Conformer(
E0 = (111.603, 'kJ/mol'),
modes = [
IdealGasTranslation(
mass = (29.0391, 'amu'),
),
NonlinearRotor(
inertia = (
[4.8709, 22.2353, 23.9925],
'amu*angstrom^2',
),
symmetry = 1,
),
HarmonicOscillator(
frequencies = (
[482.224, 791.876, 974.355, 1051.48, 1183.21, 1361.36, 1448.65, 1455.07, 1465.48, 2688.22, 2954.51, 3033.39, 3101.54, 3204.73],
'cm^-1',
),
),
HinderedRotor(
inertia = (1.11481, 'amu*angstrom^2'),
symmetry = 6,
barrier = (0.244029, 'kJ/mol'),
semiclassical = None,
),
],
spinMultiplicity = 2,
opticalIsomers = 1,
),
)
TS = TransitionState(
label = 'TS',
conformer = Conformer(
E0 = (266.694, 'kJ/mol'),
modes = [
IdealGasTranslation(
mass = (29.0391, 'amu'),
),
NonlinearRotor(
inertia = (
[6.78512, 22.1437, 22.2114],
'amu*angstrom^2',
),
symmetry = 1,
),
HarmonicOscillator(
frequencies = (
[412.75, 415.206, 821.495, 924.44, 982.714, 1024.16, 1224.21, 1326.36, 1455.06, 1600.35, 3101.46, 3110.55, 3175.34, 3201.88],
'cm^-1',
),
),
],
spinMultiplicity = 2,
opticalIsomers = 1,
),
frequency = (-750.232, 'cm^-1'),
)
self.reaction = Reaction(
reactants = [hydrogen, ethylene],
products = [ethyl],
kinetics = Arrhenius(
A = (501366000.0, 'cm^3/(mol*s)'),
n = 1.637,
Ea = (4.32508, 'kJ/mol'),
T0 = (1, 'K'),
Tmin = (300, 'K'),
Tmax = (2500, 'K'),
),
transitionState = TS,
)
# CC(=O)O[O]
acetylperoxy = Species(
label='acetylperoxy',
thermo=Wilhoit(Cp0=(4.0*constants.R,"J/(mol*K)"), CpInf=(21.0*constants.R,"J/(mol*K)"), a0=-3.95, a1=9.26, a2=-15.6, a3=8.55, B=(500.0,"K"), H0=(-6.151e+04,"J/mol"), S0=(-790.2,"J/(mol*K)")),
)
# C[C]=O
acetyl = Species(
label='acetyl',
thermo=Wilhoit(Cp0=(4.0*constants.R,"J/(mol*K)"), CpInf=(15.5*constants.R,"J/(mol*K)"), a0=0.2541, a1=-0.4712, a2=-4.434, a3=2.25, B=(500.0,"K"), H0=(-1.439e+05,"J/mol"), S0=(-524.6,"J/(mol*K)")),
)
# [O][O]
oxygen = Species(
label='oxygen',
thermo=Wilhoit(Cp0=(3.5*constants.R,"J/(mol*K)"), CpInf=(4.5*constants.R,"J/(mol*K)"), a0=-0.9324, a1=26.18, a2=-70.47, a3=44.12, B=(500.0,"K"), H0=(1.453e+04,"J/mol"), S0=(-12.19,"J/(mol*K)")),
)
self.reaction2 = Reaction(
reactants=[acetyl, oxygen],
products=[acetylperoxy],
kinetics = Arrhenius(
A = (2.65e12, 'cm^3/(mol*s)'),
n = 0.0,
Ea = (0.0, 'kJ/mol'),
T0 = (1, 'K'),
Tmin = (300, 'K'),
Tmax = (2000, 'K'),
),
)
def testIsIsomerization(self):
"""
Test the Reaction.isIsomerization() method.
"""
isomerization = Reaction(reactants=[Species()], products=[Species()])
association = Reaction(reactants=[Species(),Species()], products=[Species()])
dissociation = Reaction(reactants=[Species()], products=[Species(),Species()])
bimolecular = Reaction(reactants=[Species(),Species()], products=[Species(),Species()])
self.assertTrue(isomerization.isIsomerization())
self.assertFalse(association.isIsomerization())
self.assertFalse(dissociation.isIsomerization())
self.assertFalse(bimolecular.isIsomerization())
def testIsAssociation(self):
"""
Test the Reaction.isAssociation() method.
"""
isomerization = Reaction(reactants=[Species()], products=[Species()])
association = Reaction(reactants=[Species(),Species()], products=[Species()])
dissociation = Reaction(reactants=[Species()], products=[Species(),Species()])
bimolecular = Reaction(reactants=[Species(),Species()], products=[Species(),Species()])
self.assertFalse(isomerization.isAssociation())
self.assertTrue(association.isAssociation())
self.assertFalse(dissociation.isAssociation())
self.assertFalse(bimolecular.isAssociation())
def testIsDissociation(self):
"""
Test the Reaction.isDissociation() method.
"""
isomerization = Reaction(reactants=[Species()], products=[Species()])
association = Reaction(reactants=[Species(),Species()], products=[Species()])
dissociation = Reaction(reactants=[Species()], products=[Species(),Species()])
bimolecular = Reaction(reactants=[Species(),Species()], products=[Species(),Species()])
self.assertFalse(isomerization.isDissociation())
self.assertFalse(association.isDissociation())
self.assertTrue(dissociation.isDissociation())
self.assertFalse(bimolecular.isDissociation())
def testHasTemplate(self):
"""
Test the Reaction.hasTemplate() method.
"""
reactants = self.reaction.reactants[:]
products = self.reaction.products[:]
self.assertTrue(self.reaction.hasTemplate(reactants, products))
self.assertTrue(self.reaction.hasTemplate(products, reactants))
self.assertFalse(self.reaction2.hasTemplate(reactants, products))
self.assertFalse(self.reaction2.hasTemplate(products, reactants))
reactants.reverse()
products.reverse()
self.assertTrue(self.reaction.hasTemplate(reactants, products))
self.assertTrue(self.reaction.hasTemplate(products, reactants))
self.assertFalse(self.reaction2.hasTemplate(reactants, products))
self.assertFalse(self.reaction2.hasTemplate(products, reactants))
reactants = self.reaction2.reactants[:]
products = self.reaction2.products[:]
self.assertFalse(self.reaction.hasTemplate(reactants, products))
self.assertFalse(self.reaction.hasTemplate(products, reactants))
self.assertTrue(self.reaction2.hasTemplate(reactants, products))
self.assertTrue(self.reaction2.hasTemplate(products, reactants))
reactants.reverse()
products.reverse()
self.assertFalse(self.reaction.hasTemplate(reactants, products))
self.assertFalse(self.reaction.hasTemplate(products, reactants))
self.assertTrue(self.reaction2.hasTemplate(reactants, products))
self.assertTrue(self.reaction2.hasTemplate(products, reactants))
def testEnthalpyOfReaction(self):
"""
Test the Reaction.getEnthalpyOfReaction() method.
"""
Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64)
Hlist0 = [float(v) for v in ['-146007', '-145886', '-144195', '-141973', '-139633', '-137341', '-135155', '-133093', '-131150', '-129316']]
Hlist = self.reaction2.getEnthalpiesOfReaction(Tlist)
for i in range(len(Tlist)):
self.assertAlmostEqual(Hlist[i] / 1000., Hlist0[i] / 1000., 2)
def testEntropyOfReaction(self):
"""
Test the Reaction.getEntropyOfReaction() method.
"""
Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64)
Slist0 = [float(v) for v in ['-156.793', '-156.872', '-153.504', '-150.317', '-147.707', '-145.616', '-143.93', '-142.552', '-141.407', '-140.441']]
Slist = self.reaction2.getEntropiesOfReaction(Tlist)
for i in range(len(Tlist)):
self.assertAlmostEqual(Slist[i], Slist0[i], 2)
def testFreeEnergyOfReaction(self):
"""
Test the Reaction.getFreeEnergyOfReaction() method.
"""
Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64)
Glist0 = [float(v) for v in ['-114648', '-83137.2', '-52092.4', '-21719.3', '8073.53', '37398.1', '66346.8', '94990.6', '123383', '151565']]
Glist = self.reaction2.getFreeEnergiesOfReaction(Tlist)
for i in range(len(Tlist)):
self.assertAlmostEqual(Glist[i] / 1000., Glist0[i] / 1000., 2)
def testEquilibriumConstantKa(self):
"""
Test the Reaction.getEquilibriumConstant() method.
"""
Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64)
Kalist0 = [float(v) for v in ['8.75951e+29', '7.1843e+10', '34272.7', '26.1877', '0.378696', '0.0235579', '0.00334673', '0.000792389', '0.000262777', '0.000110053']]
Kalist = self.reaction2.getEquilibriumConstants(Tlist, type='Ka')
for i in range(len(Tlist)):
self.assertAlmostEqual(Kalist[i] / Kalist0[i], 1.0, 4)
def testEquilibriumConstantKc(self):
"""
Test the Reaction.getEquilibriumConstant() method.
"""
Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64)
Kclist0 = [float(v) for v in ['1.45661e+28', '2.38935e+09', '1709.76', '1.74189', '0.0314866', '0.00235045', '0.000389568', '0.000105413', '3.93273e-05', '1.83006e-05']]
Kclist = self.reaction2.getEquilibriumConstants(Tlist, type='Kc')
for i in range(len(Tlist)):
self.assertAlmostEqual(Kclist[i] / Kclist0[i], 1.0, 4)
def testEquilibriumConstantKp(self):
"""
Test the Reaction.getEquilibriumConstant() method.
"""
Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64)
Kplist0 = [float(v) for v in ['8.75951e+24', '718430', '0.342727', '0.000261877', '3.78696e-06', '2.35579e-07', '3.34673e-08', '7.92389e-09', '2.62777e-09', '1.10053e-09']]
Kplist = self.reaction2.getEquilibriumConstants(Tlist, type='Kp')
for i in range(len(Tlist)):
self.assertAlmostEqual(Kplist[i] / Kplist0[i], 1.0, 4)
def testStoichiometricCoefficient(self):
"""
Test the Reaction.getStoichiometricCoefficient() method.
"""
for reactant in self.reaction.reactants:
self.assertEqual(self.reaction.getStoichiometricCoefficient(reactant), -1)
for product in self.reaction.products:
self.assertEqual(self.reaction.getStoichiometricCoefficient(product), 1)
for reactant in self.reaction2.reactants:
self.assertEqual(self.reaction.getStoichiometricCoefficient(reactant), 0)
for product in self.reaction2.products:
self.assertEqual(self.reaction.getStoichiometricCoefficient(product), 0)
def testRateCoefficient(self):
"""
Test the Reaction.getRateCoefficient() method.
"""
Tlist = | numpy.arange(200.0, 2001.0, 200.0, numpy.float64) | numpy.arange |
# pvtrace is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# pvtrace is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
from external.transformations import translation_matrix, rotation_matrix
import external.transformations as tf
from Trace import Photon
from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm
from Materials import Spectrum
def random_spherecial_vector():
# This method of calculating isotropic vectors is taken from GNU Scientific Library
LOOP = True
while LOOP:
x = -1. + 2. * np.random.uniform()
y = -1. + 2. * np.random.uniform()
s = x**2 + y**2
if s <= 1.0:
LOOP = False
z = -1. + 2. * s
a = 2 * np.sqrt(1 - s)
x = a * x
y = a * y
return np.array([x,y,z])
class SimpleSource(object):
"""A light source that will generate photons of a single colour, direction and position."""
def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, use_random_polarisation=False):
super(SimpleSource, self).__init__()
self.position = position
self.direction = direction
self.wavelength = wavelength
self.use_random_polarisation = use_random_polarisation
self.throw = 0
self.source_id = "SimpleSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.position = np.array(self.position)
photon.direction = np.array(self.direction)
photon.active = True
photon.wavelength = self.wavelength
# If use_polarisation is set generate a random polarisation vector of the photon
if self.use_random_polarisation:
# Randomise rotation angle around xy-plane, the transform from +z to the direction of the photon
vec = random_spherecial_vector()
vec[2] = 0.
vec = norm(vec)
R = rotation_matrix_from_vector_alignment(self.direction, [0,0,1])
photon.polarisation = transform_direction(vec, R)
else:
photon.polarisation = None
photon.id = self.throw
self.throw = self.throw + 1
return photon
class Laser(object):
"""A light source that will generate photons of a single colour, direction and position."""
def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, polarisation=None):
super(Laser, self).__init__()
self.position = np.array(position)
self.direction = np.array(direction)
self.wavelength = wavelength
assert polarisation != None, "Polarisation of the Laser is not set."
self.polarisation = np.array(polarisation)
self.throw = 0
self.source_id = "LaserSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.position = | np.array(self.position) | numpy.array |
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
searcher.fit(X, y, spam= | np.ones(10) | numpy.ones |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = | np.linspace(0, 2 * np.pi, 1001) | numpy.linspace |
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
@ignore_warnings
def test_grid_search_no_score():
# Test grid-search on classifier that has no score function.
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
clf_no_score = LinearSVCNoScore(random_state=0)
grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
grid_search.fit(X, y)
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
scoring='accuracy')
# smoketest grid search
grid_search_no_score.fit(X, y)
# check that best params are equal
assert grid_search_no_score.best_params_ == grid_search.best_params_
# check that we can call score and that it gives the correct result
assert grid_search.score(X, y) == grid_search_no_score.score(X, y)
# giving no scoring function raises an error
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
[[1]])
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc'
).fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert score_auc < 1.0
assert score_accuracy < 1.0
assert score_auc != score_accuracy
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
def test_grid_search_groups():
# Check if ValueError (when groups is None) propagates to GridSearchCV
# And also check if groups is correctly passed to the cv object
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 3, 15)
clf = LinearSVC(random_state=0)
grid = {'C': [1]}
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2),
GroupKFold(n_splits=3), GroupShuffleSplit()]
for cv in group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
gs.fit, X, y)
gs.fit(X, y, groups=groups)
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
for cv in non_group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
# Should not raise an error
gs.fit(X, y)
def test_classes__property():
# Test that classes_ property matches best_estimator_.classes_
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
Cs = [.1, 1, 10]
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
grid_search.fit(X, y)
assert_array_equal(grid_search.best_estimator_.classes_,
grid_search.classes_)
# Test that regressors do not have a classes_ attribute
grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute before it's fit
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute without a refit
grid_search = GridSearchCV(LinearSVC(random_state=0),
{'C': Cs}, refit=False)
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
def test_trivial_cv_results_attr():
# Test search over a "grid" with only one point.
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1]}, cv=3)
grid_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1, cv=3)
random_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
def test_no_refit():
# Test that GSCV can be used for model selection alone without refitting
clf = MockClassifier()
for scoring in [None, ['accuracy', 'precision']]:
grid_search = GridSearchCV(
clf, {'foo_param': [1, 2, 3]}, refit=False, cv=3
)
grid_search.fit(X, y)
assert not hasattr(grid_search, "best_estimator_") and \
hasattr(grid_search, "best_index_") and \
hasattr(grid_search, "best_params_")
# Make sure the functions predict/transform etc raise meaningful
# error messages
for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
'transform', 'inverse_transform'):
assert_raise_message(NotFittedError,
('refit=False. %s is available only after '
'refitting on the best parameters'
% fn_name), getattr(grid_search, fn_name), X)
# Test that an invalid refit param raises appropriate error messages
for refit in ["", 5, True, 'recall', 'accuracy']:
assert_raise_message(ValueError, "For multi-metric scoring, the "
"parameter refit must be set to a scorer key",
GridSearchCV(clf, {}, refit=refit,
scoring={'acc': 'accuracy',
'prec': 'precision'}
).fit,
X, y)
def test_grid_search_error():
# Test that grid search will capture errors on data with different length
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, X_[:180], y_)
def test_grid_search_one_grid_point():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
clf = SVC(gamma='auto')
cv = GridSearchCV(clf, param_dict)
cv.fit(X_, y_)
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
clf.fit(X_, y_)
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
def test_grid_search_when_param_grid_includes_range():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = None
grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}, cv=3)
grid_search.fit(X, y)
assert grid_search.best_estimator_.foo_param == 2
def test_grid_search_bad_param_grid():
param_dict = {"C": 1}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'int'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": []}
clf = SVC()
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a non-empty sequence.",
GridSearchCV, clf, param_dict)
param_dict = {"C": "1,2,3"}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'str'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": np.ones((3, 2))}
clf = SVC()
assert_raises(ValueError, GridSearchCV, clf, param_dict)
def test_grid_search_sparse():
# Test that grid search works with both dense and sparse matrices
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180].tocoo(), y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert np.mean(y_pred == y_pred2) >= .9
assert C == C2
def test_grid_search_sparse_scoring():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred2)
assert C == C2
# Smoke test the score
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
# cv.score(X_[:180], y[:180]))
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
F1Loss = make_scorer(f1_loss, greater_is_better=False)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
cv.fit(X_[:180], y_[:180])
y_pred3 = cv.predict(X_[180:])
C3 = cv.best_estimator_.C
assert C == C3
assert_array_equal(y_pred, y_pred3)
def test_grid_search_precomputed_kernel():
# Test that grid search works when the input features are given in the
# form of a precomputed kernel matrix
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
# compute the training kernel matrix corresponding to the linear kernel
K_train = np.dot(X_[:180], X_[:180].T)
y_train = y_[:180]
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(K_train, y_train)
assert cv.best_score_ >= 0
# compute the test kernel matrix
K_test = np.dot(X_[180:], X_[:180].T)
y_test = y_[180:]
y_pred = cv.predict(K_test)
assert np.mean(y_pred == y_test) >= 0
# test error is raised when the precomputed kernel is not array-like
# or sparse
assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
def test_grid_search_precomputed_kernel_error_nonsquare():
# Test that grid search returns an error with a non-square precomputed
# training kernel matrix
K_train = np.zeros((10, 20))
y_train = np.ones((10, ))
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, K_train, y_train)
class BrokenClassifier(BaseEstimator):
"""Broken classifier that cannot be fit twice"""
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y):
assert not hasattr(self, 'has_been_fit_')
self.has_been_fit_ = True
def predict(self, X):
return np.zeros(X.shape[0])
@ignore_warnings
def test_refit():
# Regression test for bug in refitting
# Simulates re-fitting a broken estimator; this used to break with
# sparse SVMs.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
scoring="precision", refit=True)
clf.fit(X, y)
def test_refit_callable():
"""
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=True)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results['mean_test_score'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_refit_callable_invalid_type():
"""
Test implementation catches the errors when 'best_index_' returns an
invalid result.
"""
def refit_callable_invalid_type(cv_results):
"""
A dummy function tests when returned 'best_index_' is not integer.
"""
return None
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_invalid_type)
with pytest.raises(TypeError,
match='best_index_ returned is not an integer'):
clf.fit(X, y)
@pytest.mark.parametrize('out_bound_value', [-1, 2])
@pytest.mark.parametrize('search_cv', [RandomizedSearchCV, GridSearchCV])
def test_refit_callable_out_bound(out_bound_value, search_cv):
"""
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
"""
def refit_callable_out_bound(cv_results):
"""
A dummy function tests when returned 'best_index_' is out of bounds.
"""
return out_bound_value
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = search_cv(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_out_bound)
with pytest.raises(IndexError, match='best_index_ index out of range'):
clf.fit(X, y)
def test_refit_callable_multi_metric():
"""
Test refit=callable in multiple metric evaluation setting
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_prec`.
"""
assert 'mean_test_prec' in cv_results
return cv_results['mean_test_prec'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
scoring = {'Accuracy': make_scorer(accuracy_score), 'prec': 'precision'}
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring=scoring, refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_gridsearch_nd():
# Pass X as list in GridSearchCV
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
check_X = lambda x: x.shape[1:] == (5, 3, 2)
check_y = lambda x: x.shape[1:] == (7, 11)
clf = CheckingClassifier(
check_X=check_X, check_y=check_y, methods_to_check=["fit"],
)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_4d, y_3d).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_X_as_list():
# Pass X as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_X=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X.tolist(), y).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_y_as_list():
# Pass y as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_y=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X, y.tolist()).score(X, y)
assert hasattr(grid_search, "cv_results_")
@ignore_warnings
def test_pandas_input():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((DataFrame, Series))
except ImportError:
pass
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
for InputFeatureType, TargetType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y)
def check_df(x):
return isinstance(x, InputFeatureType)
def check_series(x):
return isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
grid_search.predict(X_df)
assert hasattr(grid_search, "cv_results_")
def test_unsupervised_grid_search():
# test grid-search with unsupervised estimator
X, y = make_blobs(n_samples=50, random_state=0)
km = KMeans(random_state=0, init="random", n_init=1)
# Multi-metric evaluation unsupervised
scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring=scoring, refit=refit)
grid_search.fit(X, y)
# Both ARI and FMS can find the right number :)
assert grid_search.best_params_["n_clusters"] == 3
# Single metric evaluation unsupervised
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring='fowlkes_mallows_score')
grid_search.fit(X, y)
assert grid_search.best_params_["n_clusters"] == 3
# Now without a score, and without y
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
grid_search.fit(X)
assert grid_search.best_params_["n_clusters"] == 4
def test_gridsearch_no_predict():
# test grid-search with an estimator without predict.
# slight duplication of a test from KDE
def custom_scoring(estimator, X):
return 42 if estimator.bandwidth == .1 else 0
X, _ = make_blobs(cluster_std=.1, random_state=1,
centers=[[0, 1], [1, 0], [0, 0]])
search = GridSearchCV(KernelDensity(),
param_grid=dict(bandwidth=[.01, .1, 1]),
scoring=custom_scoring)
search.fit(X)
assert search.best_params_['bandwidth'] == .1
assert search.best_score_ == 42
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert len(samples) == 10
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
def check_cv_results_array_types(search, param_keys, score_keys):
# Check if the search `cv_results`'s array are of correct types
cv_results = search.cv_results_
assert all(isinstance(cv_results[param], np.ma.MaskedArray)
for param in param_keys)
assert all(cv_results[key].dtype == object for key in param_keys)
assert not any(isinstance(cv_results[key], np.ma.MaskedArray)
for key in score_keys)
assert all(cv_results[key].dtype == np.float64
for key in score_keys if not key.startswith('rank'))
scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']
for key in scorer_keys:
assert cv_results['rank_test_%s' % key].dtype == np.int32
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
# Test the search.cv_results_ contains all the required results
assert_array_equal(sorted(cv_results.keys()),
sorted(param_keys + score_keys + ('params',)))
assert all(cv_results[key].shape == (n_cand,)
for key in param_keys + score_keys)
def test_grid_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4,
random_state=42)
n_splits = 3
n_grid_points = 6
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_candidates = n_grid_points
search = GridSearchCV(SVC(), cv=n_splits, param_grid=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check if score and timing are reasonable
assert all(cv_results['rank_test_score'] >= 1)
assert (all(cv_results[k] >= 0) for k in score_keys
if k != 'rank_test_score')
assert (all(cv_results[k] <= 1) for k in score_keys
if 'time' not in k and
k != 'rank_test_score')
# Check cv_results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
# Check masking
cv_results = search.cv_results_
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
def test_random_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
params = [{'kernel': ['rbf'], 'C': expon(scale=10),
'gamma': expon(scale=0.1)},
{'kernel': ['poly'], 'degree': [2, 3]}]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_cand = n_search_iter
search = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
@pytest.mark.parametrize(
"SearchCV, specialized_params",
[(GridSearchCV, {'param_grid': {'C': [1, 10]}}),
(RandomizedSearchCV,
{'param_distributions': {'C': [1, 10]}, 'n_iter': 2})]
)
def test_search_default_iid(SearchCV, specialized_params):
# Test the IID parameter TODO: Clearly this test does something else???
# noise-free simple 2d-data
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
cluster_std=0.1, shuffle=False, n_samples=80)
# split dataset into two folds that are not iid
# first one contains data of all 4 blobs, second only from two.
mask = np.ones(X.shape[0], dtype=np.bool)
mask[np.where(y == 1)[0][::2]] = 0
mask[np.where(y == 2)[0][::2]] = 0
# this leads to perfect classification on one fold and a score of 1/3 on
# the other
# create "cv" for splits
cv = [[mask, ~mask], [~mask, mask]]
common_params = {'estimator': SVC(), 'cv': cv,
'return_train_score': True}
search = SearchCV(**common_params, **specialized_params)
search.fit(X, y)
test_cv_scores = np.array(
[search.cv_results_['split%d_test_score' % s][0]
for s in range(search.n_splits_)]
)
test_mean = search.cv_results_['mean_test_score'][0]
test_std = search.cv_results_['std_test_score'][0]
train_cv_scores = np.array(
[search.cv_results_['split%d_train_score' % s][0]
for s in range(search.n_splits_)]
)
train_mean = search.cv_results_['mean_train_score'][0]
train_std = search.cv_results_['std_train_score'][0]
assert search.cv_results_['param_C'][0] == 1
# scores are the same as above
assert_allclose(test_cv_scores, [1, 1. / 3.])
assert_allclose(train_cv_scores, [1, 1])
# Unweighted mean/std is used
assert test_mean == pytest.approx(np.mean(test_cv_scores))
assert test_std == pytest.approx(np.std(test_cv_scores))
# For the train scores, we do not take a weighted mean irrespective of
# i.i.d. or not
assert train_mean == pytest.approx(1)
assert train_std == pytest.approx(0)
def test_grid_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
grid_searches = []
for scoring in ({'accuracy': make_scorer(accuracy_score),
'recall': make_scorer(recall_score)},
'accuracy', 'recall'):
grid_search = GridSearchCV(SVC(), cv=n_splits,
param_grid=params,
scoring=scoring, refit=False)
grid_search.fit(X, y)
grid_searches.append(grid_search)
compare_cv_results_multimetric_with_single(*grid_searches)
def test_random_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
# Scipy 0.12's stats dists do not accept seed, hence we use param grid
params = dict(C=np.logspace(-4, 1, 3),
gamma=np.logspace(-5, 0, 3, base=0.1))
for refit in (True, False):
random_searches = []
for scoring in (('accuracy', 'recall'), 'accuracy', 'recall'):
# If True, for multi-metric pass refit='accuracy'
if refit:
probability = True
refit = 'accuracy' if isinstance(scoring, tuple) else refit
else:
probability = False
clf = SVC(probability=probability, random_state=42)
random_search = RandomizedSearchCV(clf, n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
scoring=scoring,
refit=refit, random_state=0)
random_search.fit(X, y)
random_searches.append(random_search)
compare_cv_results_multimetric_with_single(*random_searches)
compare_refit_methods_when_refit_with_acc(
random_searches[0], random_searches[1], refit)
def compare_cv_results_multimetric_with_single(
search_multi, search_acc, search_rec):
"""Compare multi-metric cv_results with the ensemble of multiple
single metric cv_results from single metric grid/random search"""
assert search_multi.multimetric_
assert_array_equal(sorted(search_multi.scorer_),
('accuracy', 'recall'))
cv_results_multi = search_multi.cv_results_
cv_results_acc_rec = {re.sub('_score$', '_accuracy', k): v
for k, v in search_acc.cv_results_.items()}
cv_results_acc_rec.update({re.sub('_score$', '_recall', k): v
for k, v in search_rec.cv_results_.items()})
# Check if score and timing are reasonable, also checks if the keys
# are present
assert all((np.all(cv_results_multi[k] <= 1) for k in (
'mean_score_time', 'std_score_time', 'mean_fit_time',
'std_fit_time')))
# Compare the keys, other than time keys, among multi-metric and
# single metric grid search results. np.testing.assert_equal performs a
# deep nested comparison of the two cv_results dicts
np.testing.assert_equal({k: v for k, v in cv_results_multi.items()
if not k.endswith('_time')},
{k: v for k, v in cv_results_acc_rec.items()
if not k.endswith('_time')})
def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
"""Compare refit multi-metric search methods with single metric methods"""
assert search_acc.refit == refit
if refit:
assert search_multi.refit == 'accuracy'
else:
assert not search_multi.refit
return # search cannot predict/score without refit
X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
for method in ('predict', 'predict_proba', 'predict_log_proba'):
assert_almost_equal(getattr(search_multi, method)(X),
getattr(search_acc, method)(X))
assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
for key in ('best_index_', 'best_score_', 'best_params_'):
assert getattr(search_multi, key) == getattr(search_acc, key)
def test_search_cv_results_rank_tie_breaking():
X, y = make_blobs(n_samples=50, random_state=42)
# The two C values are close enough to give similar models
# which would result in a tie of their mean cv-scores
param_grid = {'C': [1, 1.001, 0.001]}
grid_search = GridSearchCV(SVC(), param_grid=param_grid,
return_train_score=True)
random_search = RandomizedSearchCV(SVC(), n_iter=3,
param_distributions=param_grid,
return_train_score=True)
for search in (grid_search, random_search):
search.fit(X, y)
cv_results = search.cv_results_
# Check tie breaking strategy -
# Check that there is a tie in the mean scores between
# candidates 1 and 2 alone
assert_almost_equal(cv_results['mean_test_score'][0],
cv_results['mean_test_score'][1])
assert_almost_equal(cv_results['mean_train_score'][0],
cv_results['mean_train_score'][1])
assert not np.allclose(cv_results['mean_test_score'][1],
cv_results['mean_test_score'][2])
assert not np.allclose(cv_results['mean_train_score'][1],
cv_results['mean_train_score'][2])
# 'min' rank should be assigned to the tied candidates
assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3])
def test_search_cv_results_none_param():
X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1]
estimators = (DecisionTreeRegressor(), DecisionTreeClassifier())
est_parameters = {"random_state": [0, None]}
cv = KFold()
for est in estimators:
grid_search = GridSearchCV(est, est_parameters, cv=cv,
).fit(X, y)
assert_array_equal(grid_search.cv_results_['param_random_state'],
[0, None])
@ignore_warnings()
def test_search_cv_timing():
svc = LinearSVC(random_state=0)
X = [[1, ], [2, ], [3, ], [4, ]]
y = [0, 1, 1, 0]
gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0)
rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2)
for search in (gs, rs):
search.fit(X, y)
for key in ['mean_fit_time', 'std_fit_time']:
# NOTE The precision of time.time in windows is not high
# enough for the fit/score times to be non-zero for trivial X and y
assert np.all(search.cv_results_[key] >= 0)
assert np.all(search.cv_results_[key] < 1)
for key in ['mean_score_time', 'std_score_time']:
assert search.cv_results_[key][1] >= 0
assert search.cv_results_[key][0] == 0.0
assert np.all(search.cv_results_[key] < 1)
assert hasattr(search, "refit_time_")
assert isinstance(search.refit_time_, float)
assert search.refit_time_ >= 0
def test_grid_search_correct_score_results():
# test that correct scores are used
n_splits = 3
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
for score in ['f1', 'roc_auc']:
grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits)
cv_results = grid_search.fit(X, y).cv_results_
# Test scorer names
result_keys = list(cv_results.keys())
expected_keys = (("mean_test_score", "rank_test_score") +
tuple("split%d_test_score" % cv_i
for cv_i in range(n_splits)))
assert all(np.in1d(expected_keys, result_keys))
cv = StratifiedKFold(n_splits=n_splits)
n_splits = grid_search.n_splits_
for candidate_i, C in enumerate(Cs):
clf.set_params(C=C)
cv_scores = np.array(
list(grid_search.cv_results_['split%d_test_score'
% s][candidate_i]
for s in range(n_splits)))
for i, (train, test) in enumerate(cv.split(X, y)):
clf.fit(X[train], y[train])
if score == "f1":
correct_score = f1_score(y[test], clf.predict(X[test]))
elif score == "roc_auc":
dec = clf.decision_function(X[test])
correct_score = roc_auc_score(y[test], dec)
assert_almost_equal(correct_score, cv_scores[i])
# FIXME remove test_fit_grid_point as the function will be removed on 0.25
@ignore_warnings(category=FutureWarning)
def test_fit_grid_point():
X, y = make_classification(random_state=0)
cv = StratifiedKFold()
svc = LinearSVC(random_state=0)
scorer = make_scorer(accuracy_score)
for params in ({'C': 0.1}, {'C': 0.01}, {'C': 0.001}):
for train, test in cv.split(X, y):
this_scores, this_params, n_test_samples = fit_grid_point(
X, y, clone(svc), params, train, test,
scorer, verbose=False)
est = clone(svc).set_params(**params)
est.fit(X[train], y[train])
expected_score = scorer(est, X[test], y[test])
# Test the return values of fit_grid_point
assert_almost_equal(this_scores, expected_score)
assert params == this_params
assert n_test_samples == test.size
# Should raise an error upon multimetric scorer
assert_raise_message(ValueError, "For evaluating multiple scores, use "
"sklearn.model_selection.cross_validate instead.",
fit_grid_point, X, y, svc, params, train, test,
{'score': scorer}, verbose=True)
# FIXME remove test_fit_grid_point_deprecated as
# fit_grid_point will be removed on 0.25
def test_fit_grid_point_deprecated():
X, y = make_classification(random_state=0)
svc = LinearSVC(random_state=0)
scorer = make_scorer(accuracy_score)
msg = ("fit_grid_point is deprecated in version 0.23 "
"and will be removed in version 0.25")
params = {'C': 0.1}
train, test = next(StratifiedKFold().split(X, y))
with pytest.warns(FutureWarning, match=msg):
fit_grid_point(X, y, svc, params, train, test, scorer, verbose=False)
def test_pickle():
# Test that a fit search can be pickled
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, cv=3)
grid_search.fit(X, y)
grid_search_pickled = pickle.loads(pickle.dumps(grid_search))
assert_array_almost_equal(grid_search.predict(X),
grid_search_pickled.predict(X))
random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]},
refit=True, n_iter=3, cv=3)
random_search.fit(X, y)
random_search_pickled = pickle.loads(pickle.dumps(random_search))
assert_array_almost_equal(random_search.predict(X),
random_search_pickled.predict(X))
def test_grid_search_with_multioutput_data():
# Test search with multi-output estimator
X, y = make_multilabel_classification(return_indicator=True,
random_state=0)
est_parameters = {"max_depth": [1, 2, 3, 4]}
cv = KFold()
estimators = [DecisionTreeRegressor(random_state=0),
DecisionTreeClassifier(random_state=0)]
# Test with grid search cv
for est in estimators:
grid_search = GridSearchCV(est, est_parameters, cv=cv)
grid_search.fit(X, y)
res_params = grid_search.cv_results_['params']
for cand_i in range(len(res_params)):
est.set_params(**res_params[cand_i])
for i, (train, test) in enumerate(cv.split(X, y)):
est.fit(X[train], y[train])
correct_score = est.score(X[test], y[test])
assert_almost_equal(
correct_score,
grid_search.cv_results_['split%d_test_score' % i][cand_i])
# Test with a randomized search
for est in estimators:
random_search = RandomizedSearchCV(est, est_parameters,
cv=cv, n_iter=3)
random_search.fit(X, y)
res_params = random_search.cv_results_['params']
for cand_i in range(len(res_params)):
est.set_params(**res_params[cand_i])
for i, (train, test) in enumerate(cv.split(X, y)):
est.fit(X[train], y[train])
correct_score = est.score(X[test], y[test])
assert_almost_equal(
correct_score,
random_search.cv_results_['split%d_test_score'
% i][cand_i])
def test_predict_proba_disabled():
# Test predict_proba when disabled on estimator.
X = | np.arange(20) | numpy.arange |
import os
import numpy as np
import pandas as pd
from keras.utils import to_categorical
from sklearn.model_selection import KFold, train_test_split
def load_data(path):
train = pd.read_json(os.path.join(path, "./train.json"))
test = pd.read_json(os.path.join(path, "./test.json"))
return (train, test)
def preprocess(df,
means=(-22.159262, -24.953745, 40.021883465782651),
stds=(5.33146, 4.5463958, 4.0815391476694414)):
X_band_1 = np.array([ | np.array(band) | numpy.array |
import numpy as np
from keras.applications.inception_v3 import InceptionV3
from keras.initializers import RandomNormal
from keras.layers import (BatchNormalization, Conv2D, Conv2DTranspose, Conv3D,
Cropping2D, Dense, Flatten, GlobalAveragePooling2D,
Input, Lambda, MaxPooling2D, Reshape, UpSampling2D,
ZeroPadding2D, ZeroPadding3D, add, concatenate)
from keras.layers.advanced_activations import ELU, LeakyReLU
from keras.models import Model
# Parameterized 2D Block Model
def BlockModel2D(input_shape, filt_num=16, numBlocks=3):
"""Creates a Block CED model for segmentation problems
Args:
input shape: a list or tuple of [rows,cols,channels] of input images
filt_num: the number of filters in the first and last layers
This number is multipled linearly increased and decreased throughout the model
numBlocks: number of processing blocks. The larger the number the deeper the model
output_chan: number of output channels. Set if doing multi-class segmentation
regression: Whether to have a continuous output with linear activation
Returns:
An unintialized Keras model
Example useage: SegModel = BlockModel2D([256,256,1],filt_num=8)
Notes: Using rows/cols that are powers of 2 is recommended. Otherwise,
the rows/cols must be divisible by 2^numBlocks for skip connections
to match up properly
"""
use_bn = True
# check for input shape compatibility
rows, cols = input_shape[0:2]
assert rows % 2**numBlocks == 0, "Input rows and number of blocks are incompatible"
assert cols % 2**numBlocks == 0, "Input cols and number of blocks are incompatible"
# calculate size reduction
startsize = np.max(input_shape[0:2])
minsize = (startsize-np.sum(2**np.arange(1, numBlocks+1)))/2**numBlocks
assert minsize > 4, "Too small of input for this many blocks. Use fewer blocks or larger input"
# input layer
lay_input = Input(shape=input_shape, name='input_layer')
# contracting blocks
x = lay_input
skip_list = []
for rr in range(1, numBlocks+1):
x1 = Conv2D(filt_num*rr, (1, 1), padding='same',
name='Conv1_{}'.format(rr))(x)
if use_bn:
x1 = BatchNormalization()(x1)
x1 = ELU(name='elu_x1_{}'.format(rr))(x1)
x3 = Conv2D(filt_num*rr, (3, 3), padding='same',
name='Conv3_{}'.format(rr))(x)
if use_bn:
x3 = BatchNormalization()(x3)
x3 = ELU(name='elu_x3_{}'.format(rr))(x3)
x51 = Conv2D(filt_num*rr, (3, 3), padding='same',
name='Conv51_{}'.format(rr))(x)
if use_bn:
x51 = BatchNormalization()(x51)
x51 = ELU(name='elu_x51_{}'.format(rr))(x51)
x52 = Conv2D(filt_num*rr, (3, 3), padding='same',
name='Conv52_{}'.format(rr))(x51)
if use_bn:
x52 = BatchNormalization()(x52)
x52 = ELU(name='elu_x52_{}'.format(rr))(x52)
x = concatenate([x1, x3, x52], name='merge_{}'.format(rr))
x = Conv2D(filt_num*rr, (1, 1), padding='valid',
name='ConvAll_{}'.format(rr))(x)
if use_bn:
x = BatchNormalization()(x)
x = ELU(name='elu_all_{}'.format(rr))(x)
x = ZeroPadding2D(padding=(1, 1), name='PrePad_{}'.format(rr))(x)
x = Conv2D(filt_num*rr, (4, 4), padding='valid',
strides=(2, 2), name='DownSample_{}'.format(rr))(x)
if use_bn:
x = BatchNormalization()(x)
x = ELU(name='elu_downsample_{}'.format(rr))(x)
x = Conv2D(filt_num*rr, (3, 3), padding='same',
name='ConvClean_{}'.format(rr))(x)
if use_bn:
x = BatchNormalization()(x)
x = ELU(name='elu_clean_{}'.format(rr))(x)
skip_list.append(x)
# expanding blocks
expnums = list(range(1, numBlocks+1))
expnums.reverse()
for dd in expnums:
if dd < len(skip_list):
x = concatenate([skip_list[dd-1], x],
name='skip_connect_{}'.format(dd))
x1 = Conv2D(filt_num*dd, (1, 1), padding='same',
name='DeConv1_{}'.format(dd))(x)
if use_bn:
x1 = BatchNormalization()(x1)
x1 = ELU(name='elu_Dx1_{}'.format(dd))(x1)
x3 = Conv2D(filt_num*dd, (3, 3), padding='same',
name='DeConv3_{}'.format(dd))(x)
if use_bn:
x3 = BatchNormalization()(x3)
x3 = ELU(name='elu_Dx3_{}'.format(dd))(x3)
x51 = Conv2D(filt_num*dd, (3, 3), padding='same',
name='DeConv51_{}'.format(dd))(x)
if use_bn:
x51 = BatchNormalization()(x51)
x51 = ELU(name='elu_Dx51_{}'.format(dd))(x51)
x52 = Conv2D(filt_num*dd, (3, 3), padding='same',
name='DeConv52_{}'.format(dd))(x51)
if use_bn:
x52 = BatchNormalization()(x52)
x52 = ELU(name='elu_Dx52_{}'.format(dd))(x52)
x = concatenate([x1, x3, x52], name='Dmerge_{}'.format(dd))
x = Conv2D(filt_num*dd, (1, 1), padding='valid',
name='DeConvAll_{}'.format(dd))(x)
if use_bn:
x = BatchNormalization()(x)
x = ELU(name='elu_Dall_{}'.format(dd))(x)
x = UpSampling2D(size=(2, 2), name='UpSample_{}'.format(dd))(x)
x = Conv2D(filt_num*dd, (3, 3), padding='same',
name='DeConvClean1_{}'.format(dd))(x)
if use_bn:
x = BatchNormalization()(x)
x = ELU(name='elu_Dclean1_{}'.format(dd))(x)
x = Conv2D(filt_num*dd, (3, 3), padding='same',
name='DeConvClean2_{}'.format(dd))(x)
if use_bn:
x = BatchNormalization()(x)
x = ELU(name='elu_Dclean2_{}'.format(dd))(x)
# classifier
lay_out = Conv2D(1, (1, 1), activation='sigmoid', name='output_layer')(x)
return Model(lay_input, lay_out)
# Parameterized 2D Block Model
def BlockModel_Classifier(input_shape, filt_num=16, numBlocks=3):
"""Creates a Block model for pretraining on classification task
Args:
input shape: a list or tuple of [rows,cols,channels] of input images
filt_num: the number of filters in the first and last layers
This number is multipled linearly increased and decreased throughout the model
numBlocks: number of processing blocks. The larger the number the deeper the model
output_chan: number of output channels. Set if doing multi-class segmentation
regression: Whether to have a continuous output with linear activation
Returns:
An unintialized Keras model
Example useage: SegModel = BlockModel2D([256,256,1],filt_num=8)
Notes: Using rows/cols that are powers of 2 is recommended. Otherwise,
the rows/cols must be divisible by 2^numBlocks for skip connections
to match up properly
"""
use_bn = True
# check for input shape compatibility
rows, cols = input_shape[0:2]
assert rows % 2**numBlocks == 0, "Input rows and number of blocks are incompatible"
assert cols % 2**numBlocks == 0, "Input cols and number of blocks are incompatible"
# calculate size reduction
startsize = | np.max(input_shape[0:2]) | numpy.max |
# pylint: disable=protected-access
"""
Test the wrappers for the C API.
"""
import os
from contextlib import contextmanager
import numpy as np
import numpy.testing as npt
import pandas as pd
import pytest
import xarray as xr
from packaging.version import Version
from pygmt import Figure, clib
from pygmt.clib.conversion import dataarray_to_matrix
from pygmt.clib.session import FAMILIES, VIAS
from pygmt.exceptions import (
GMTCLibError,
GMTCLibNoSessionError,
GMTInvalidInput,
GMTVersionError,
)
from pygmt.helpers import GMTTempFile
TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
with clib.Session() as _lib:
gmt_version = Version(_lib.info["version"])
@contextmanager
def mock(session, func, returns=None, mock_func=None):
"""
Mock a GMT C API function to make it always return a given value.
Used to test that exceptions are raised when API functions fail by
producing a NULL pointer as output or non-zero status codes.
Needed because it's not easy to get some API functions to fail without
inducing a Segmentation Fault (which is a good thing because libgmt usually
only fails with errors).
"""
if mock_func is None:
def mock_api_function(*args): # pylint: disable=unused-argument
"""
A mock GMT API function that always returns a given value.
"""
return returns
mock_func = mock_api_function
get_libgmt_func = session.get_libgmt_func
def mock_get_libgmt_func(name, argtypes=None, restype=None):
"""
Return our mock function.
"""
if name == func:
return mock_func
return get_libgmt_func(name, argtypes, restype)
setattr(session, "get_libgmt_func", mock_get_libgmt_func)
yield
setattr(session, "get_libgmt_func", get_libgmt_func)
def test_getitem():
"""
Test that I can get correct constants from the C lib.
"""
ses = clib.Session()
assert ses["GMT_SESSION_EXTERNAL"] != -99999
assert ses["GMT_MODULE_CMD"] != -99999
assert ses["GMT_PAD_DEFAULT"] != -99999
assert ses["GMT_DOUBLE"] != -99999
with pytest.raises(GMTCLibError):
ses["A_WHOLE_LOT_OF_JUNK"] # pylint: disable=pointless-statement
def test_create_destroy_session():
"""
Test that create and destroy session are called without errors.
"""
# Create two session and make sure they are not pointing to the same memory
session1 = clib.Session()
session1.create(name="test_session1")
assert session1.session_pointer is not None
session2 = clib.Session()
session2.create(name="test_session2")
assert session2.session_pointer is not None
assert session2.session_pointer != session1.session_pointer
session1.destroy()
session2.destroy()
# Create and destroy a session twice
ses = clib.Session()
for __ in range(2):
with pytest.raises(GMTCLibNoSessionError):
ses.session_pointer # pylint: disable=pointless-statement
ses.create("session1")
assert ses.session_pointer is not None
ses.destroy()
with pytest.raises(GMTCLibNoSessionError):
ses.session_pointer # pylint: disable=pointless-statement
def test_create_session_fails():
"""
Check that an exception is raised when failing to create a session.
"""
ses = clib.Session()
with mock(ses, "GMT_Create_Session", returns=None):
with pytest.raises(GMTCLibError):
ses.create("test-session-name")
# Should fail if trying to create a session before destroying the old one.
ses.create("test1")
with pytest.raises(GMTCLibError):
ses.create("test2")
def test_destroy_session_fails():
"""
Fail to destroy session when given bad input.
"""
ses = clib.Session()
with pytest.raises(GMTCLibNoSessionError):
ses.destroy()
ses.create("test-session")
with mock(ses, "GMT_Destroy_Session", returns=1):
with pytest.raises(GMTCLibError):
ses.destroy()
ses.destroy()
def test_call_module():
"""
Run a command to see if call_module works.
"""
data_fname = os.path.join(TEST_DATA_DIR, "points.txt")
out_fname = "test_call_module.txt"
with clib.Session() as lib:
with GMTTempFile() as out_fname:
lib.call_module("info", "{} -C ->{}".format(data_fname, out_fname.name))
assert os.path.exists(out_fname.name)
output = out_fname.read().strip()
assert output == "11.5309 61.7074 -2.9289 7.8648 0.1412 0.9338"
def test_call_module_invalid_arguments():
"""
Fails for invalid module arguments.
"""
with clib.Session() as lib:
with pytest.raises(GMTCLibError):
lib.call_module("info", "bogus-data.bla")
def test_call_module_invalid_name():
"""
Fails when given bad input.
"""
with clib.Session() as lib:
with pytest.raises(GMTCLibError):
lib.call_module("meh", "")
def test_call_module_error_message():
"""
Check is the GMT error message was captured.
"""
with clib.Session() as lib:
try:
lib.call_module("info", "bogus-data.bla")
except GMTCLibError as error:
assert "Module 'info' failed with status code" in str(error)
assert "gmtinfo [ERROR]: Cannot find file bogus-data.bla" in str(error)
def test_method_no_session():
"""
Fails when not in a session.
"""
# Create an instance of Session without "with" so no session is created.
lib = clib.Session()
with pytest.raises(GMTCLibNoSessionError):
lib.call_module("gmtdefaults", "")
with pytest.raises(GMTCLibNoSessionError):
lib.session_pointer # pylint: disable=pointless-statement
def test_parse_constant_single():
"""
Parsing a single family argument correctly.
"""
lib = clib.Session()
for family in FAMILIES:
parsed = lib._parse_constant(family, valid=FAMILIES)
assert parsed == lib[family]
def test_parse_constant_composite():
"""
Parsing a composite constant argument (separated by |) correctly.
"""
lib = clib.Session()
test_cases = ((family, via) for family in FAMILIES for via in VIAS)
for family, via in test_cases:
composite = "|".join([family, via])
expected = lib[family] + lib[via]
parsed = lib._parse_constant(composite, valid=FAMILIES, valid_modifiers=VIAS)
assert parsed == expected
def test_parse_constant_fails():
"""
Check if the function fails when given bad input.
"""
lib = clib.Session()
test_cases = [
"SOME_random_STRING",
"GMT_IS_DATASET|GMT_VIA_MATRIX|GMT_VIA_VECTOR",
"GMT_IS_DATASET|NOT_A_PROPER_VIA",
"NOT_A_PROPER_FAMILY|GMT_VIA_MATRIX",
"NOT_A_PROPER_FAMILY|ALSO_INVALID",
]
for test_case in test_cases:
with pytest.raises(GMTInvalidInput):
lib._parse_constant(test_case, valid=FAMILIES, valid_modifiers=VIAS)
# Should also fail if not given valid modifiers but is using them anyway.
# This should work...
lib._parse_constant(
"GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=VIAS
)
# But this shouldn't.
with pytest.raises(GMTInvalidInput):
lib._parse_constant(
"GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=None
)
def test_create_data_dataset():
"""
Run the function to make sure it doesn't fail badly.
"""
with clib.Session() as lib:
# Dataset from vectors
data_vector = lib.create_data(
family="GMT_IS_DATASET|GMT_VIA_VECTOR",
geometry="GMT_IS_POINT",
mode="GMT_CONTAINER_ONLY",
dim=[10, 20, 1, 0], # columns, rows, layers, dtype
)
# Dataset from matrices
data_matrix = lib.create_data(
family="GMT_IS_DATASET|GMT_VIA_MATRIX",
geometry="GMT_IS_POINT",
mode="GMT_CONTAINER_ONLY",
dim=[10, 20, 1, 0],
)
assert data_vector != data_matrix
def test_create_data_grid_dim():
"""
Create a grid ignoring range and inc.
"""
with clib.Session() as lib:
# Grids from matrices using dim
lib.create_data(
family="GMT_IS_GRID|GMT_VIA_MATRIX",
geometry="GMT_IS_SURFACE",
mode="GMT_CONTAINER_ONLY",
dim=[10, 20, 1, 0],
)
def test_create_data_grid_range():
"""
Create a grid specifying range and inc instead of dim.
"""
with clib.Session() as lib:
# Grids from matrices using range and int
lib.create_data(
family="GMT_IS_GRID|GMT_VIA_MATRIX",
geometry="GMT_IS_SURFACE",
mode="GMT_CONTAINER_ONLY",
ranges=[150.0, 250.0, -20.0, 20.0],
inc=[0.1, 0.2],
)
def test_create_data_fails():
"""
Check that create_data raises exceptions for invalid input and output.
"""
# Passing in invalid mode
with pytest.raises(GMTInvalidInput):
with clib.Session() as lib:
lib.create_data(
family="GMT_IS_DATASET",
geometry="GMT_IS_SURFACE",
mode="Not_a_valid_mode",
dim=[0, 0, 1, 0],
ranges=[150.0, 250.0, -20.0, 20.0],
inc=[0.1, 0.2],
)
# Passing in invalid geometry
with pytest.raises(GMTInvalidInput):
with clib.Session() as lib:
lib.create_data(
family="GMT_IS_GRID",
geometry="Not_a_valid_geometry",
mode="GMT_CONTAINER_ONLY",
dim=[0, 0, 1, 0],
ranges=[150.0, 250.0, -20.0, 20.0],
inc=[0.1, 0.2],
)
# If the data pointer returned is None (NULL pointer)
with pytest.raises(GMTCLibError):
with clib.Session() as lib:
with mock(lib, "GMT_Create_Data", returns=None):
lib.create_data(
family="GMT_IS_DATASET",
geometry="GMT_IS_SURFACE",
mode="GMT_CONTAINER_ONLY",
dim=[11, 10, 2, 0],
)
def test_virtual_file():
"""
Test passing in data via a virtual file with a Dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (5, 3)
for dtype in dtypes:
with clib.Session() as lib:
family = "GMT_IS_DATASET|GMT_VIA_MATRIX"
geometry = "GMT_IS_POINT"
dataset = lib.create_data(
family=family,
geometry=geometry,
mode="GMT_CONTAINER_ONLY",
dim=[shape[1], shape[0], 1, 0], # columns, rows, layers, dtype
)
data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
lib.put_matrix(dataset, matrix=data)
# Add the dataset to a virtual file and pass it along to gmt info
vfargs = (family, geometry, "GMT_IN|GMT_IS_REFERENCE", dataset)
with lib.open_virtual_file(*vfargs) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T]
)
expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds)
assert output == expected
def test_virtual_file_fails():
"""
Check that opening and closing virtual files raises an exception for non-
zero return codes.
"""
vfargs = (
"GMT_IS_DATASET|GMT_VIA_MATRIX",
"GMT_IS_POINT",
"GMT_IN|GMT_IS_REFERENCE",
None,
)
# Mock Open_VirtualFile to test the status check when entering the context.
# If the exception is raised, the code won't get to the closing of the
# virtual file.
with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=1):
with pytest.raises(GMTCLibError):
with lib.open_virtual_file(*vfargs):
print("Should not get to this code")
# Test the status check when closing the virtual file
# Mock the opening to return 0 (success) so that we don't open a file that
# we won't close later.
with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=0), mock(
lib, "GMT_Close_VirtualFile", returns=1
):
with pytest.raises(GMTCLibError):
with lib.open_virtual_file(*vfargs):
pass
print("Shouldn't get to this code either")
def test_virtual_file_bad_direction():
"""
Test passing an invalid direction argument.
"""
with clib.Session() as lib:
vfargs = (
"GMT_IS_DATASET|GMT_VIA_MATRIX",
"GMT_IS_POINT",
"GMT_IS_GRID", # The invalid direction argument
0,
)
with pytest.raises(GMTInvalidInput):
with lib.open_virtual_file(*vfargs):
print("This should have failed")
def test_virtualfile_from_vectors():
"""
Test the automation for transforming vectors to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
size = 10
for dtype in dtypes:
x = np.arange(size, dtype=dtype)
y = np.arange(size, size * 2, 1, dtype=dtype)
z = np.arange(size * 2, size * 3, 1, dtype=dtype)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(x, y, z) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(i.min(), i.max()) for i in (x, y, z)]
)
expected = "<vector memory>: N = {}\t{}\n".format(size, bounds)
assert output == expected
@pytest.mark.parametrize("dtype", [str, object])
def test_virtualfile_from_vectors_one_string_or_object_column(dtype):
"""
Test passing in one column with string or object dtype into virtual file
dataset.
"""
size = 5
x = np.arange(size, dtype=np.int32)
y = np.arange(size, size * 2, 1, dtype=np.int32)
strings = np.array(["a", "bc", "defg", "hijklmn", "opqrst"], dtype=dtype)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(x, y, strings) as vfile:
with GMTTempFile() as outfile:
lib.call_module("convert", f"{vfile} ->{outfile.name}")
output = outfile.read(keep_tabs=True)
expected = "".join(f"{i}\t{j}\t{k}\n" for i, j, k in zip(x, y, strings))
assert output == expected
@pytest.mark.parametrize("dtype", [str, object])
def test_virtualfile_from_vectors_two_string_or_object_columns(dtype):
"""
Test passing in two columns of string or object dtype into virtual file
dataset.
"""
size = 5
x = np.arange(size, dtype=np.int32)
y = np.arange(size, size * 2, 1, dtype=np.int32)
strings1 = np.array(["a", "bc", "def", "ghij", "klmno"], dtype=dtype)
strings2 = np.array(["pqrst", "uvwx", "yz!", "@#", "$"], dtype=dtype)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(x, y, strings1, strings2) as vfile:
with GMTTempFile() as outfile:
lib.call_module("convert", f"{vfile} ->{outfile.name}")
output = outfile.read(keep_tabs=True)
expected = "".join(
f"{h}\t{i}\t{j} {k}\n" for h, i, j, k in zip(x, y, strings1, strings2)
)
assert output == expected
def test_virtualfile_from_vectors_transpose():
"""
Test transforming matrix columns to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (7, 5)
for dtype in dtypes:
data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(*data.T) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} -C ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["{:.0f}\t{:.0f}".format(col.min(), col.max()) for col in data.T]
)
expected = "{}\n".format(bounds)
assert output == expected
def test_virtualfile_from_vectors_diff_size():
"""
Test the function fails for arrays of different sizes.
"""
x = np.arange(5)
y = np.arange(6)
with clib.Session() as lib:
with pytest.raises(GMTInvalidInput):
with lib.virtualfile_from_vectors(x, y):
print("This should have failed")
def test_virtualfile_from_matrix():
"""
Test transforming a matrix to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (7, 5)
for dtype in dtypes:
data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
with clib.Session() as lib:
with lib.virtualfile_from_matrix(data) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T]
)
expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds)
assert output == expected
def test_virtualfile_from_matrix_slice():
"""
Test transforming a slice of a larger array to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (10, 6)
for dtype in dtypes:
full_data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
rows = 5
cols = 3
data = full_data[:rows, :cols]
with clib.Session() as lib:
with lib.virtualfile_from_matrix(data) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T]
)
expected = "<matrix memory>: N = {}\t{}\n".format(rows, bounds)
assert output == expected
def test_virtualfile_from_vectors_pandas():
"""
Pass vectors to a dataset using pandas Series.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
size = 13
for dtype in dtypes:
data = pd.DataFrame(
data=dict(
x=np.arange(size, dtype=dtype),
y=np.arange(size, size * 2, 1, dtype=dtype),
z=np.arange(size * 2, size * 3, 1, dtype=dtype),
)
)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(data.x, data.y, data.z) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
[
"<{:.0f}/{:.0f}>".format(i.min(), i.max())
for i in (data.x, data.y, data.z)
]
)
expected = "<vector memory>: N = {}\t{}\n".format(size, bounds)
assert output == expected
def test_virtualfile_from_vectors_arraylike():
"""
Pass array-like vectors to a dataset.
"""
size = 13
x = list(range(0, size, 1))
y = tuple(range(size, size * 2, 1))
z = range(size * 2, size * 3, 1)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(x, y, z) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(min(i), max(i)) for i in (x, y, z)]
)
expected = "<vector memory>: N = {}\t{}\n".format(size, bounds)
assert output == expected
def test_extract_region_fails():
"""
Check that extract region fails if nothing has been plotted.
"""
Figure()
with pytest.raises(GMTCLibError):
with clib.Session() as lib:
lib.extract_region()
def test_extract_region_two_figures():
"""
Extract region should handle multiple figures existing at the same time.
"""
# Make two figures before calling extract_region to make sure that it's
# getting from the current figure, not the last figure.
fig1 = Figure()
region1 = np.array([0, 10, -20, -10])
fig1.coast(region=region1, projection="M6i", frame=True, land="black")
fig2 = Figure()
fig2.basemap(region="US.HI+r5", projection="M6i", frame=True)
# Activate the first figure and extract the region from it
# Use in a different session to avoid any memory problems.
with clib.Session() as lib:
lib.call_module("figure", "{} -".format(fig1._name))
with clib.Session() as lib:
wesn1 = lib.extract_region()
npt.assert_allclose(wesn1, region1)
# Now try it with the second one
with clib.Session() as lib:
lib.call_module("figure", "{} -".format(fig2._name))
with clib.Session() as lib:
wesn2 = lib.extract_region()
npt.assert_allclose(wesn2, | np.array([-165.0, -150.0, 15.0, 25.0]) | numpy.array |
# -*- encoding:utf-8 -*-
# @Time : 2021/1/3 15:15
# @Author : gfjiang
import os.path as osp
import mmcv
import numpy as np
import cvtools
import matplotlib.pyplot as plt
import cv2.cv2 as cv
from functools import partial
import torch
import math
from cvtools.utils.path import add_prefix_filename_suffix
from mmdet.ops import nms
from mmdet.apis import init_detector, inference_detector
def draw_features(module, input, output, work_dir='./'):
x = output.cpu().numpy()
out_channels = list(output.shape)[1]
height = int(math.sqrt(out_channels))
width = height
if list(output.shape)[2] < 128:
return
fig = plt.figure(figsize=(32, 32))
fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05)
for i in range(height * width):
plt.subplot(height, width, i + 1)
plt.axis('off')
img = x[0, i, :, :]
pmin = np.min(img)
pmax = np.max(img)
img = ((img - pmin) / (pmax - pmin + 0.000001))*255 # float在[0,1]之间,转换成0-255
img = img.astype(np.uint8) # 转成unit8
img = cv.applyColorMap(img, cv.COLORMAP_JET) # 生成heat map
img = img[:, :, ::-1] # 注意cv2(BGR)和matplotlib(RGB)通道是相反的
plt.imshow(img)
# print("{}/{}".format(i,width*height))
savename = get_image_name_for_hook(module, work_dir)
fig.savefig(savename, dpi=100)
fig.clf()
plt.close()
def get_image_name_for_hook(module, work_dir='./'):
"""
Generate image filename for hook function
Parameters:
-----------
module: module of neural network
"""
# os.makedirs(work_dir, exist_ok=True)
module_name = str(module)
base_name = module_name.split('(')[0]
index = 0
image_name = '.' # '.' is surely exist, to make first loop condition True
while osp.exists(image_name):
index += 1
image_name = osp.join(
work_dir, 'feats', '%s_%d.png' % (base_name, index))
return image_name
class AerialDetectionOBB(object):
def __init__(self, config, pth):
self.imgs = []
self.cfg = mmcv.Config.fromfile(config)
self.pth = pth
print('loading model {} ...'.format(pth))
self.model = init_detector(self.cfg, self.pth, device='cuda:0')
self.results = []
self.img_detected = []
# self.vis_feats((torch.nn.Conv2d, torch.nn.MaxPool2d))
def __call__(self,
imgs_or_path,
det_thrs=0.5,
vis=False,
vis_thr=0.5,
save_root=''):
if isinstance(imgs_or_path, str):
self.imgs += cvtools.get_files_list(imgs_or_path)
else:
self.imgs += imgs_or_path
prog_bar = mmcv.ProgressBar(len(self.imgs))
for _, img in enumerate(self.imgs):
self.detect(img, det_thrs=det_thrs, vis=vis,
vis_thr=vis_thr, save_root=save_root)
prog_bar.update()
def detect(self,
img,
det_thrs=0.5,
vis=False,
vis_thr=0.5,
save_root=''):
result = inference_detector(self.model, img)
# result = self.nms(result)
if isinstance(det_thrs, float):
det_thrs = [det_thrs] * len(result)
if vis:
to_file = osp.join(save_root, osp.basename(img))
to_file = add_prefix_filename_suffix(to_file, suffix='_obb')
self.vis(img, result, vis_thr=vis_thr, to_file=to_file)
result = [det[det[..., -1] > det_thr] for det, det_thr
in zip(result, det_thrs)]
if len(result) == 0:
print('detect: image {} has no object.'.format(img))
self.img_detected.append(img)
self.results.append(result)
return result
def nms(self, result, nms_th=0.3):
dets_num = [len(det_cls) for det_cls in result]
result = np.vstack(result)
_, ids = nms(result, nms_th)
total_num = 0
nms_result = []
for num in dets_num:
ids_cls = ids[np.where((total_num <= ids) & (ids < num))[0]]
nms_result.append(result[ids_cls])
total_num += num
return nms_result
def vis(self, img, bbox_result, vis_thr=0.5,
to_file='vis.jpg'):
bboxes = np.vstack(bbox_result)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
inds = | np.where(bboxes[:, -1] > vis_thr) | numpy.where |
import numpy as np
import pytest
import theano
import theano.tensor as tt
# Don't import test classes otherwise they get tested as part of the file
from tests import unittest_tools as utt
from tests.gpuarray.config import mode_with_gpu, mode_without_gpu, test_ctx_name
from tests.tensor.test_basic import (
TestAlloc,
TestComparison,
TestJoinAndSplit,
TestReshape,
)
from tests.tensor.utils import rand, safe_make_node
from theano.gpuarray.basic_ops import (
GpuAlloc,
GpuAllocEmpty,
GpuContiguous,
GpuEye,
GpuFromHost,
GpuJoin,
GpuReshape,
GpuSplit,
GpuToGpu,
GpuTri,
HostFromGpu,
gpu_contiguous,
gpu_join,
host_from_gpu,
)
from theano.gpuarray.elemwise import GpuDimShuffle, GpuElemwise
from theano.gpuarray.subtensor import GpuSubtensor
from theano.gpuarray.type import GpuArrayType, get_context, gpuarray_shared_constructor
from theano.tensor import TensorType
from theano.tensor.basic import alloc
pygpu = pytest.importorskip("pygpu")
gpuarray = pygpu.gpuarray
utt.seed_rng()
rng = np.random.RandomState(seed=utt.fetch_seed())
def inplace_func(
inputs,
outputs,
mode=None,
allow_input_downcast=False,
on_unused_input="raise",
name=None,
):
if mode is None:
mode = mode_with_gpu
return theano.function(
inputs,
outputs,
mode=mode,
allow_input_downcast=allow_input_downcast,
accept_inplace=True,
on_unused_input=on_unused_input,
name=name,
)
def fake_shared(value, name=None, strict=False, allow_downcast=None, **kwargs):
from theano.tensor.sharedvar import scalar_constructor, tensor_constructor
for c in (gpuarray_shared_constructor, tensor_constructor, scalar_constructor):
try:
return c(
value, name=name, strict=strict, allow_downcast=allow_downcast, **kwargs
)
except TypeError:
continue
def rand_gpuarray(*shape, **kwargs):
r = rng.rand(*shape) * 2 - 1
dtype = kwargs.pop("dtype", theano.config.floatX)
cls = kwargs.pop("cls", None)
if len(kwargs) != 0:
raise TypeError("Unexpected argument %s", list(kwargs.keys())[0])
return gpuarray.array(r, dtype=dtype, cls=cls, context=get_context(test_ctx_name))
def makeTester(
name,
op,
gpu_op,
cases,
checks=None,
mode_gpu=mode_with_gpu,
mode_nogpu=mode_without_gpu,
skip=False,
eps=1e-10,
):
if checks is None:
checks = {}
_op = op
_gpu_op = gpu_op
_cases = cases
_skip = skip
_checks = checks
class Checker(utt.OptimizationTestMixin):
op = staticmethod(_op)
gpu_op = staticmethod(_gpu_op)
cases = _cases
skip = _skip
checks = _checks
def setup_method(self):
eval(self.__class__.__module__ + "." + self.__class__.__name__)
def test_all(self):
if skip:
pytest.skip(skip)
for testname, inputs in cases.items():
for _ in range(len(inputs)):
if type(inputs[_]) is float:
inputs[_] = np.asarray(inputs[_], dtype=theano.config.floatX)
self.run_case(testname, inputs)
def run_case(self, testname, inputs):
inputs_ref = [theano.shared(inp) for inp in inputs]
inputs_tst = [theano.shared(inp) for inp in inputs]
try:
node_ref = safe_make_node(self.op, *inputs_ref)
node_tst = safe_make_node(self.op, *inputs_tst)
except Exception as exc:
err_msg = (
"Test %s::%s: Error occurred while making " "a node with inputs %s"
) % (self.gpu_op, testname, inputs)
exc.args += (err_msg,)
raise
try:
f_ref = inplace_func([], node_ref.outputs, mode=mode_nogpu)
f_tst = inplace_func([], node_tst.outputs, mode=mode_gpu)
except Exception as exc:
err_msg = (
"Test %s::%s: Error occurred while trying to " "make a Function"
) % (self.gpu_op, testname)
exc.args += (err_msg,)
raise
self.assertFunctionContains1(f_tst, self.gpu_op)
ref_e = None
try:
expecteds = f_ref()
except Exception as exc:
ref_e = exc
try:
variables = f_tst()
except Exception as exc:
if ref_e is None:
err_msg = (
"Test %s::%s: exception when calling the " "Function"
) % (self.gpu_op, testname)
exc.args += (err_msg,)
raise
else:
# if we raised an exception of the same type we're good.
if isinstance(exc, type(ref_e)):
return
else:
err_msg = (
"Test %s::%s: exception raised during test "
"call was not the same as the reference "
"call (got: %s, expected %s)"
% (self.gpu_op, testname, type(exc), type(ref_e))
)
exc.args += (err_msg,)
raise
for i, (variable, expected) in enumerate(zip(variables, expecteds)):
condition = (
variable.dtype != expected.dtype
or variable.shape != expected.shape
or not TensorType.values_eq_approx(variable, expected)
)
assert not condition, (
"Test %s::%s: Output %s gave the wrong "
"value. With inputs %s, expected %s "
"(dtype %s), got %s (dtype %s)."
% (
self.op,
testname,
i,
inputs,
expected,
expected.dtype,
variable,
variable.dtype,
)
)
for description, check in self.checks.items():
assert check(inputs, variables), (
"Test %s::%s: Failed check: %s " "(inputs were %s, ouputs were %s)"
) % (self.op, testname, description, inputs, variables)
Checker.__name__ = name
if hasattr(Checker, "__qualname__"):
Checker.__qualname__ = name
return Checker
def test_transfer_cpu_gpu():
a = tt.fmatrix("a")
g = GpuArrayType(dtype="float32", broadcastable=(False, False))("g")
av = np.asarray(rng.rand(5, 4), dtype="float32")
gv = gpuarray.array(av, context=get_context(test_ctx_name))
f = theano.function([a], GpuFromHost(test_ctx_name)(a))
fv = f(av)
assert GpuArrayType.values_eq(fv, gv)
f = theano.function([g], host_from_gpu(g))
fv = f(gv)
assert np.all(fv == av)
def test_transfer_gpu_gpu():
g = GpuArrayType(
dtype="float32", broadcastable=(False, False), context_name=test_ctx_name
)()
av = np.asarray(rng.rand(5, 4), dtype="float32")
gv = gpuarray.array(av, context=get_context(test_ctx_name))
mode = mode_with_gpu.excluding(
"cut_gpua_host_transfers", "local_cut_gpua_host_gpua"
)
f = theano.function([g], GpuToGpu(test_ctx_name)(g), mode=mode)
topo = f.maker.fgraph.toposort()
assert len(topo) == 1
assert isinstance(topo[0].op, GpuToGpu)
fv = f(gv)
assert GpuArrayType.values_eq(fv, gv)
def test_transfer_strided():
# This is just to ensure that it works in theano
# libgpuarray has a much more comprehensive suit of tests to
# ensure correctness
a = tt.fmatrix("a")
g = GpuArrayType(dtype="float32", broadcastable=(False, False))("g")
av = np.asarray(rng.rand(5, 8), dtype="float32")
gv = gpuarray.array(av, context=get_context(test_ctx_name))
av = av[:, ::2]
gv = gv[:, ::2]
f = theano.function([a], GpuFromHost(test_ctx_name)(a))
fv = f(av)
assert GpuArrayType.values_eq(fv, gv)
f = theano.function([g], host_from_gpu(g))
fv = f(gv)
assert np.all(fv == av)
def gpu_alloc_expected(x, *shp):
g = gpuarray.empty(shp, dtype=x.dtype, context=get_context(test_ctx_name))
g[:] = x
return g
TestGpuAlloc = makeTester(
name="GpuAllocTester",
# The +1 is there to allow the lift to the GPU.
op=lambda *args: alloc(*args) + 1,
gpu_op=GpuAlloc(test_ctx_name),
cases=dict(
correct01=(rand(), np.int32(7)),
# just gives a DeepCopyOp with possibly wrong results on the CPU
# correct01_bcast=(rand(1), np.int32(7)),
correct02=(rand(), np.int32(4), np.int32(7)),
correct12=(rand(7), np.int32(4), np.int32(7)),
correct13=(rand(7), np.int32(2), np.int32(4), np.int32(7)),
correct23=(rand(4, 7), np.int32(2), np.int32(4), np.int32(7)),
bad_shape12=(rand(7), np.int32(7), np.int32(5)),
),
)
class TestGPUAlloc(TestAlloc):
dtype = "float32"
mode = mode_with_gpu
shared = staticmethod(gpuarray_shared_constructor)
allocs = [GpuAlloc(test_ctx_name), GpuAlloc(test_ctx_name), tt.Alloc()]
def test_alloc_empty():
for dt in ["float32", "int8"]:
f = theano.function([], GpuAllocEmpty(dt, context_name=test_ctx_name)(2, 3))
assert len(f.maker.fgraph.apply_nodes) == 1
out = f()
assert out.shape == (2, 3)
assert out.dtype == dt
f = theano.function(
[],
[
GpuAllocEmpty("uint64", test_ctx_name)(3, 2),
GpuAllocEmpty("uint64", test_ctx_name)(3, 2),
],
)
out = f()
assert out[0].shape == (3, 2)
assert out[0].dtype == "uint64"
assert out[1].shape == (3, 2)
assert out[1].dtype == "uint64"
assert (
len(
[
node
for node in f.maker.fgraph.apply_nodes
if isinstance(node.op, GpuAllocEmpty)
]
)
== 1
)
def test_shape():
x = GpuArrayType(dtype="float32", broadcastable=[False, False, False])()
v = gpuarray.zeros((3, 4, 5), dtype="float32", context=get_context(test_ctx_name))
f = theano.function([x], x.shape)
topo = f.maker.fgraph.toposort()
assert np.all(f(v) == (3, 4, 5))
if theano.config.mode != "FAST_COMPILE":
assert len(topo) == 4
assert isinstance(topo[0].op, tt.opt.Shape_i)
assert isinstance(topo[1].op, tt.opt.Shape_i)
assert isinstance(topo[2].op, tt.opt.Shape_i)
assert isinstance(topo[3].op, tt.opt.MakeVector)
mode = mode_with_gpu.excluding("local_shape_to_shape_i")
f = theano.function([x], x.shape, mode=mode)
topo = f.maker.fgraph.toposort()
assert np.all(f(v) == (3, 4, 5))
assert len(topo) == 1
assert isinstance(topo[0].op, tt.Shape)
def test_gpu_contiguous():
a = tt.fmatrix("a")
i = tt.iscalar("i")
a_val = np.asarray(np.random.rand(4, 5), dtype="float32")
# The reshape is needed otherwise we make the subtensor on the CPU
# to transfer less data.
f = theano.function(
[a, i], gpu_contiguous(a.reshape((5, 4))[::i]), mode=mode_with_gpu
)
topo = f.maker.fgraph.toposort()
assert any([isinstance(node.op, GpuSubtensor) for node in topo])
assert any([isinstance(node.op, GpuContiguous) for node in topo])
assert f(a_val, 1).flags.c_contiguous
assert f(a_val, 2).flags.c_contiguous
assert f(a_val, 2).flags.c_contiguous
class TestGPUReshape(TestReshape):
def setup_method(self):
self.shared = gpuarray_shared_constructor
self.op = GpuReshape
self.mode = mode_with_gpu
self.ignore_topo = (
HostFromGpu,
GpuFromHost,
theano.compile.DeepCopyOp,
GpuDimShuffle,
GpuElemwise,
tt.opt.Shape_i,
tt.opt.MakeVector,
)
assert self.op == GpuReshape
class TestGPUComparison(TestComparison):
def setup_method(self):
utt.seed_rng()
self.mode = mode_with_gpu
self.shared = gpuarray_shared_constructor
self.dtypes = ["float64", "float32"]
class TestGPUJoinAndSplit(TestJoinAndSplit):
def setup_method(self):
self.mode = mode_with_gpu.excluding("constant_folding")
self.join_op = GpuJoin()
self.split_op_class = GpuSplit
# Use join instead of MakeVector since there is no MakeVector on GPU
self.make_vector_op = GpuJoin()
# this is to avoid errors with limited devices
self.floatX = "float32"
self.hide_error = theano.config.mode not in ["DebugMode", "DEBUG_MODE"]
def shared(x, **kwargs):
return gpuarray_shared_constructor(x, target=test_ctx_name, **kwargs)
self.shared = shared
def test_gpusplit_opt(self):
# Test that we move the node to the GPU
# Also test float16 computation at the same time.
rng = np.random.RandomState(seed=utt.fetch_seed())
m = self.shared(rng.rand(4, 6).astype("float16"))
o = tt.Split(2)(m, 0, [2, 2])
assert o[0].dtype == "float16"
f = theano.function([], o, mode=self.mode)
assert any(
[
isinstance(node.op, self.split_op_class)
for node in f.maker.fgraph.toposort()
]
)
o1, o2 = f()
assert np.allclose(o1, m.get_value(borrow=True)[:2])
assert np.allclose(o2, m.get_value(borrow=True)[2:])
def test_gpujoin_gpualloc():
a = tt.fmatrix("a")
a_val = np.asarray(np.random.rand(4, 5), dtype="float32")
b = tt.fmatrix("b")
b_val = np.asarray(np.random.rand(3, 5), dtype="float32")
f = theano.function(
[a, b], tt.join(0, tt.zeros_like(a), tt.ones_like(b)) + 4, mode=mode_without_gpu
)
f_gpu = theano.function(
[a, b], tt.join(0, tt.zeros_like(a), tt.ones_like(b)), mode=mode_with_gpu
)
f_gpu2 = theano.function(
[a, b], tt.join(0, tt.zeros_like(a), tt.ones_like(b)) + 4, mode=mode_with_gpu
)
assert sum([node.op == tt.alloc for node in f.maker.fgraph.toposort()]) == 2
assert sum([node.op == tt.join_ for node in f.maker.fgraph.toposort()]) == 1
assert (
sum([isinstance(node.op, GpuAlloc) for node in f_gpu.maker.fgraph.toposort()])
== 2
)
assert sum([node.op == gpu_join for node in f_gpu.maker.fgraph.toposort()]) == 1
assert (
sum([isinstance(node.op, GpuAlloc) for node in f_gpu2.maker.fgraph.toposort()])
== 2
)
assert sum([node.op == gpu_join for node in f_gpu2.maker.fgraph.toposort()]) == 1
assert np.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
def test_gpueye():
def check(dtype, N, M_=None, k=0):
# Theano does not accept None as a tensor.
# So we must use a real value.
M = M_
# Currently DebugMode does not support None as inputs even if this is
# allowed.
if M is None:
M = N
N_symb = tt.iscalar()
M_symb = tt.iscalar()
k_symb = tt.iscalar()
out = tt.eye(N_symb, M_symb, k_symb, dtype=dtype) + np.array(1).astype(dtype)
f = theano.function([N_symb, M_symb, k_symb], out, mode=mode_with_gpu)
result = np.asarray(f(N, M, k)) - np.array(1).astype(dtype)
assert np.allclose(result, np.eye(N, M_, k, dtype=dtype))
assert result.dtype == np.dtype(dtype)
assert any([isinstance(node.op, GpuEye) for node in f.maker.fgraph.toposort()])
for dtype in ["float32", "int32", "float16"]:
check(dtype, 3)
# M != N, k = 0
check(dtype, 3, 5)
check(dtype, 5, 3)
# N == M, k != 0
check(dtype, 3, 3, 1)
check(dtype, 3, 3, -1)
# N < M, k != 0
check(dtype, 3, 5, 1)
check(dtype, 3, 5, -1)
# N > M, k != 0
check(dtype, 5, 3, 1)
check(dtype, 5, 3, -1)
# k > M, -k > N, k > M, k > N
check(dtype, 5, 3, 3)
check(dtype, 3, 5, 3)
check(dtype, 5, 3, -3)
check(dtype, 3, 5, -3)
check(dtype, 5, 3, 6)
check(dtype, 3, 5, -6)
def test_hostfromgpu_shape_i():
# Test that the shape is lifted over hostfromgpu
m = mode_with_gpu.including(
"local_dot_to_dot22", "local_dot22_to_dot22scalar", "specialize"
)
a = tt.fmatrix("a")
ca = theano.gpuarray.type.GpuArrayType("float32", (False, False))()
av = np.asarray(np.random.rand(5, 4), dtype="float32")
cv = gpuarray.asarray(
np.random.rand(5, 4), dtype="float32", context=get_context(test_ctx_name)
)
f = theano.function([a], GpuFromHost(test_ctx_name)(a), mode=m)
assert any(isinstance(x.op, GpuFromHost) for x in f.maker.fgraph.toposort())
f = theano.function([a], GpuFromHost(test_ctx_name)(a).shape, mode=m)
topo = f.maker.fgraph.toposort()
assert isinstance(topo[0].op, tt.opt.Shape_i)
assert isinstance(topo[1].op, tt.opt.Shape_i)
assert isinstance(topo[2].op, tt.opt.MakeVector)
assert tuple(f(av)) == (5, 4)
f = theano.function([ca], host_from_gpu(ca), mode=m)
assert host_from_gpu in [x.op for x in f.maker.fgraph.toposort()]
f = theano.function([ca], host_from_gpu(ca).shape, mode=m)
topo = f.maker.fgraph.toposort()
assert isinstance(topo[0].op, theano.compile.Shape_i)
assert isinstance(topo[1].op, theano.compile.Shape_i)
assert isinstance(topo[2].op, tt.opt.MakeVector)
assert tuple(f(cv)) == (5, 4)
def test_Gpujoin_inplace():
# Test Gpujoin to work inplace.
#
# This function tests the case when several elements are passed to the
# Gpujoin function but all except one of them are empty. In this case
# Gpujoin should work inplace and the output should be the view of the
# non-empty element.
s = tt.lscalar()
data = np.array([3, 4, 5], dtype=theano.config.floatX)
x = gpuarray_shared_constructor(data, borrow=True)
z = tt.zeros((s,))
join = GpuJoin(view=0)
c = join(0, x, z)
f = theano.function([s], theano.Out(c, borrow=True))
if not isinstance(mode_with_gpu, theano.compile.DebugMode):
assert x.get_value(borrow=True, return_internal_type=True) is f(0)
assert np.allclose(f(0), [3, 4, 5])
def test_gpu_tril_triu():
def check_l(m, k=0):
m_symb = tt.matrix(dtype=m.dtype)
k_symb = tt.iscalar()
f = theano.function(
[m_symb, k_symb], tt.tril(m_symb, k_symb), mode=mode_with_gpu
)
result = f(m, k)
assert np.allclose(result, np.tril(m, k))
assert result.dtype == np.dtype(dtype)
assert any([isinstance(node.op, GpuTri) for node in f.maker.fgraph.toposort()])
def check_u(m, k=0):
m_symb = tt.matrix(dtype=m.dtype)
k_symb = tt.iscalar()
f = theano.function(
[m_symb, k_symb], tt.triu(m_symb, k_symb), mode=mode_with_gpu
)
result = f(m, k)
assert np.allclose(result, np.triu(m, k))
assert result.dtype == np.dtype(dtype)
assert any([isinstance(node.op, GpuTri) for node in f.maker.fgraph.toposort()])
utt.seed_rng()
test_rng = np.random.RandomState(seed=utt.fetch_seed())
for dtype in ["float64", "float32", "float16"]:
# try a big one
m = np.asarray(test_rng.rand(5000, 5000) * 2 - 1, dtype=dtype)
check_l(m, 0)
check_l(m, 1)
check_l(m, -1)
check_u(m, 0)
check_u(m, 1)
check_u(m, -1)
m = np.asarray(test_rng.rand(10, 10) * 2 - 1, dtype=dtype)
check_l(m, 0)
check_l(m, 1)
check_l(m, -1)
check_u(m, 0)
check_u(m, 1)
check_u(m, -1)
m = np.asarray(test_rng.rand(10, 5) * 2 - 1, dtype=dtype)
check_l(m, 0)
check_l(m, 1)
check_l(m, -1)
check_u(m, 0)
check_u(m, 1)
check_u(m, -1)
def test_gputri():
def check(dtype, N, M_=None, k=0):
# Theano does not accept None as a tensor.
# So we must use a real value.
M = M_
# Currently DebugMode does not support None as inputs even if this is
# allowed.
if M is None:
M = N
N_symb = tt.iscalar()
M_symb = tt.iscalar()
k_symb = tt.iscalar()
out = tt.tri(N_symb, M_symb, k_symb, dtype=dtype) + | np.array(1) | numpy.array |
import argparse
import json
import numpy as np
import pandas as pd
import os
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,f1_score
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import backend as K
from keras.utils.vis_utils import plot_model
from sklearn.externals import joblib
import time
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def get_embeddings(sentences_list,layer_json):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:return: Dictionary with key each sentence of the sentences_list and as value the embedding
'''
sentences = dict()#dict with key the index of each line of the sentences_list.txt and as value the sentence
embeddings = dict()##dict with key the index of each sentence and as value the its embedding
sentence_emb = dict()#key:sentence,value:its embedding
with open(sentences_list,'r') as file:
for index,line in enumerate(file):
sentences[index] = line.strip()
with open(layer_json, 'r',encoding='utf-8') as f:
for line in f:
embeddings[json.loads(line)['linex_index']] = np.asarray(json.loads(line)['features'])
for key,value in sentences.items():
sentence_emb[value] = embeddings[key]
return sentence_emb
def train_classifier(sentences_list,layer_json,dataset_csv,filename):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:param filename: The path of the pickle file that the model will be stored
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = np.asarray(label)
print(errors)
features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1)
features = np.column_stack([features, length]) # np.append(features,length,axis=1)
print(features.shape)
X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42)
log = LogisticRegression(random_state=0, solver='newton-cg', max_iter=1000, C=0.1)
log.fit(X_train, y_train)
#save the model
_ = joblib.dump(log, filename, compress=9)
predictions = log.predict(X_val)
print("###########################################")
print("Results using embeddings from the",layer_json,"file")
print(classification_report(y_val, predictions))
print("F1 score using Logistic Regression:",f1_score(y_val, predictions))
print("###########################################")
#train a DNN
f1_results = list()
for i in range(3):
model = Sequential()
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dense(128, activation='relu', trainable=True))
model.add(Dropout(0.30))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.25))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.35))
model.add(Dense(1, activation='sigmoid'))
# compile network
model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[f1])
# fit network
model.fit(X_train, y_train, epochs=100, batch_size=64)
loss, f_1 = model.evaluate(X_val, y_val, verbose=1)
print('\nTest F1: %f' % (f_1 * 100))
f1_results.append(f_1)
model = None
print("###########################################")
print("Results using embeddings from the", layer_json, "file")
# evaluate
print(np.mean(f1_results))
print("###########################################")
def parameter_tuning_LR(sentences_list,layer_json,dataset_csv):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = | np.asarray(label) | numpy.asarray |
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 28 12:10:11 2019
@author: Omer
"""
## File handler
## This file was initially intended purely to generate the matrices for the near earth code found in: https://public.ccsds.org/Pubs/131x1o2e2s.pdf
## The values from the above pdf were copied manually to a txt file, and it is the purpose of this file to parse it.
## The emphasis here is on correctness, I currently do not see a reason to generalise this file, since matrices will be saved in either json or some matrix friendly format.
import numpy as np
from scipy.linalg import circulant
#import matplotlib.pyplot as plt
import scipy.io
import common
import hashlib
import os
projectDir = os.environ.get('LDPC')
if projectDir == None:
import pathlib
projectDir = pathlib.Path(__file__).parent.absolute()
## <NAME>: added on 01/12/2020, need to make sure this doesn't break anything.
import sys
sys.path.insert(1, projectDir)
FILE_HANDLER_INT_DATA_TYPE = np.int32
GENERAL_CODE_MATRIX_DATA_TYPE = np.int32
NIBBLE_CONVERTER = np.array([8, 4, 2, 1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
def nibbleToHex(inputArray):
n = NIBBLE_CONVERTER.dot(inputArray)
if n == 10:
h = 'A'
elif n== 11:
h = 'B'
elif n== 12:
h = 'C'
elif n== 13:
h = 'D'
elif n== 14:
h = 'E'
elif n== 15:
h = 'F'
else:
h = str(n)
return h
def binaryArraytoHex(inputArray):
d1 = len(inputArray)
assert (d1 % 4 == 0)
outputArray = np.zeros(d1//4, dtype = str)
outputString = ''
for j in range(d1//4):
nibble = inputArray[4 * j : 4 * j + 4]
h = nibbleToHex(nibble)
outputArray[j] = h
outputString = outputString + h
return outputArray, outputString
def hexStringToBinaryArray(hexString):
outputBinary = np.array([], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
for i in hexString:
if i == '0':
nibble = np.array([0,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '1':
nibble = np.array([0,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '2':
nibble = np.array([0,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '3':
nibble = np.array([0,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '4':
nibble = np.array([0,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '5':
nibble = np.array([0,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '6':
nibble = np.array([0,1,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '7':
nibble = np.array([0,1,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '8':
nibble = np.array([1,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '9':
nibble = | np.array([1,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) | numpy.array |
import argparse
import json
import numpy as np
import pandas as pd
import os
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,f1_score
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import backend as K
from keras.utils.vis_utils import plot_model
from sklearn.externals import joblib
import time
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def get_embeddings(sentences_list,layer_json):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:return: Dictionary with key each sentence of the sentences_list and as value the embedding
'''
sentences = dict()#dict with key the index of each line of the sentences_list.txt and as value the sentence
embeddings = dict()##dict with key the index of each sentence and as value the its embedding
sentence_emb = dict()#key:sentence,value:its embedding
with open(sentences_list,'r') as file:
for index,line in enumerate(file):
sentences[index] = line.strip()
with open(layer_json, 'r',encoding='utf-8') as f:
for line in f:
embeddings[json.loads(line)['linex_index']] = np.asarray(json.loads(line)['features'])
for key,value in sentences.items():
sentence_emb[value] = embeddings[key]
return sentence_emb
def train_classifier(sentences_list,layer_json,dataset_csv,filename):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:param filename: The path of the pickle file that the model will be stored
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = np.asarray(label)
print(errors)
features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1)
features = np.column_stack([features, length]) # np.append(features,length,axis=1)
print(features.shape)
X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42)
log = LogisticRegression(random_state=0, solver='newton-cg', max_iter=1000, C=0.1)
log.fit(X_train, y_train)
#save the model
_ = joblib.dump(log, filename, compress=9)
predictions = log.predict(X_val)
print("###########################################")
print("Results using embeddings from the",layer_json,"file")
print(classification_report(y_val, predictions))
print("F1 score using Logistic Regression:",f1_score(y_val, predictions))
print("###########################################")
#train a DNN
f1_results = list()
for i in range(3):
model = Sequential()
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dense(128, activation='relu', trainable=True))
model.add(Dropout(0.30))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.25))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.35))
model.add(Dense(1, activation='sigmoid'))
# compile network
model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[f1])
# fit network
model.fit(X_train, y_train, epochs=100, batch_size=64)
loss, f_1 = model.evaluate(X_val, y_val, verbose=1)
print('\nTest F1: %f' % (f_1 * 100))
f1_results.append(f_1)
model = None
print("###########################################")
print("Results using embeddings from the", layer_json, "file")
# evaluate
print(np.mean(f1_results))
print("###########################################")
def parameter_tuning_LR(sentences_list,layer_json,dataset_csv):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = | np.asarray(previous_emb) | numpy.asarray |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * | np.ones_like(dash_max_min_2_x) | numpy.ones_like |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[1].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
print(f'DFA fluctuation with 11 knots: {np.round(np.var(time_series - imfs_51[3, :]), 3)}')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[2].set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$', r'$5\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[2].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[2].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
plt.savefig('jss_figures/DFA_different_trends.png')
plt.show()
# plot 6b
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences Zoomed Region', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[0].set_ylim(-5.5, 5.5)
axs[0].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].set_ylim(-5.5, 5.5)
axs[1].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([np.pi, (3 / 2) * np.pi])
axs[2].set_xticklabels([r'$\pi$', r'$\frac{3}{2}\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].set_ylim(-5.5, 5.5)
axs[2].set_xlim(0.95 * np.pi, 1.55 * np.pi)
plt.savefig('jss_figures/DFA_different_trends_zoomed.png')
plt.show()
hs_ouputs = hilbert_spectrum(time, imfs_51, hts_51, ifs_51, max_frequency=12, plot=False)
# plot 6c
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Simple Sinusoidal Time Seres with Added Noise', 50))
x_hs, y, z = hs_ouputs
z_min, z_max = 0, np.abs(z).max()
ax.pcolormesh(x_hs, y, np.abs(z), cmap='gist_rainbow', vmin=z_min, vmax=z_max)
ax.plot(x_hs[0, :], 8 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 8$', Linewidth=3)
ax.plot(x_hs[0, :], 4 * | np.ones_like(x_hs[0, :]) | numpy.ones_like |
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
@ignore_warnings
def test_grid_search_no_score():
# Test grid-search on classifier that has no score function.
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
clf_no_score = LinearSVCNoScore(random_state=0)
grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
grid_search.fit(X, y)
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
scoring='accuracy')
# smoketest grid search
grid_search_no_score.fit(X, y)
# check that best params are equal
assert grid_search_no_score.best_params_ == grid_search.best_params_
# check that we can call score and that it gives the correct result
assert grid_search.score(X, y) == grid_search_no_score.score(X, y)
# giving no scoring function raises an error
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
[[1]])
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc'
).fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert score_auc < 1.0
assert score_accuracy < 1.0
assert score_auc != score_accuracy
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
def test_grid_search_groups():
# Check if ValueError (when groups is None) propagates to GridSearchCV
# And also check if groups is correctly passed to the cv object
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 3, 15)
clf = LinearSVC(random_state=0)
grid = {'C': [1]}
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2),
GroupKFold(n_splits=3), GroupShuffleSplit()]
for cv in group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
gs.fit, X, y)
gs.fit(X, y, groups=groups)
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
for cv in non_group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
# Should not raise an error
gs.fit(X, y)
def test_classes__property():
# Test that classes_ property matches best_estimator_.classes_
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
Cs = [.1, 1, 10]
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
grid_search.fit(X, y)
assert_array_equal(grid_search.best_estimator_.classes_,
grid_search.classes_)
# Test that regressors do not have a classes_ attribute
grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute before it's fit
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute without a refit
grid_search = GridSearchCV(LinearSVC(random_state=0),
{'C': Cs}, refit=False)
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
def test_trivial_cv_results_attr():
# Test search over a "grid" with only one point.
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1]}, cv=3)
grid_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1, cv=3)
random_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
def test_no_refit():
# Test that GSCV can be used for model selection alone without refitting
clf = MockClassifier()
for scoring in [None, ['accuracy', 'precision']]:
grid_search = GridSearchCV(
clf, {'foo_param': [1, 2, 3]}, refit=False, cv=3
)
grid_search.fit(X, y)
assert not hasattr(grid_search, "best_estimator_") and \
hasattr(grid_search, "best_index_") and \
hasattr(grid_search, "best_params_")
# Make sure the functions predict/transform etc raise meaningful
# error messages
for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
'transform', 'inverse_transform'):
assert_raise_message(NotFittedError,
('refit=False. %s is available only after '
'refitting on the best parameters'
% fn_name), getattr(grid_search, fn_name), X)
# Test that an invalid refit param raises appropriate error messages
for refit in ["", 5, True, 'recall', 'accuracy']:
assert_raise_message(ValueError, "For multi-metric scoring, the "
"parameter refit must be set to a scorer key",
GridSearchCV(clf, {}, refit=refit,
scoring={'acc': 'accuracy',
'prec': 'precision'}
).fit,
X, y)
def test_grid_search_error():
# Test that grid search will capture errors on data with different length
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, X_[:180], y_)
def test_grid_search_one_grid_point():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
clf = SVC(gamma='auto')
cv = GridSearchCV(clf, param_dict)
cv.fit(X_, y_)
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
clf.fit(X_, y_)
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
def test_grid_search_when_param_grid_includes_range():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = None
grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}, cv=3)
grid_search.fit(X, y)
assert grid_search.best_estimator_.foo_param == 2
def test_grid_search_bad_param_grid():
param_dict = {"C": 1}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'int'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": []}
clf = SVC()
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a non-empty sequence.",
GridSearchCV, clf, param_dict)
param_dict = {"C": "1,2,3"}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'str'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": np.ones((3, 2))}
clf = SVC()
assert_raises(ValueError, GridSearchCV, clf, param_dict)
def test_grid_search_sparse():
# Test that grid search works with both dense and sparse matrices
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180].tocoo(), y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert np.mean(y_pred == y_pred2) >= .9
assert C == C2
def test_grid_search_sparse_scoring():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred2)
assert C == C2
# Smoke test the score
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
# cv.score(X_[:180], y[:180]))
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
F1Loss = make_scorer(f1_loss, greater_is_better=False)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
cv.fit(X_[:180], y_[:180])
y_pred3 = cv.predict(X_[180:])
C3 = cv.best_estimator_.C
assert C == C3
assert_array_equal(y_pred, y_pred3)
def test_grid_search_precomputed_kernel():
# Test that grid search works when the input features are given in the
# form of a precomputed kernel matrix
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
# compute the training kernel matrix corresponding to the linear kernel
K_train = np.dot(X_[:180], X_[:180].T)
y_train = y_[:180]
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(K_train, y_train)
assert cv.best_score_ >= 0
# compute the test kernel matrix
K_test = np.dot(X_[180:], X_[:180].T)
y_test = y_[180:]
y_pred = cv.predict(K_test)
assert np.mean(y_pred == y_test) >= 0
# test error is raised when the precomputed kernel is not array-like
# or sparse
assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
def test_grid_search_precomputed_kernel_error_nonsquare():
# Test that grid search returns an error with a non-square precomputed
# training kernel matrix
K_train = np.zeros((10, 20))
y_train = np.ones((10, ))
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, K_train, y_train)
class BrokenClassifier(BaseEstimator):
"""Broken classifier that cannot be fit twice"""
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y):
assert not hasattr(self, 'has_been_fit_')
self.has_been_fit_ = True
def predict(self, X):
return np.zeros(X.shape[0])
@ignore_warnings
def test_refit():
# Regression test for bug in refitting
# Simulates re-fitting a broken estimator; this used to break with
# sparse SVMs.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
scoring="precision", refit=True)
clf.fit(X, y)
def test_refit_callable():
"""
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=True)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results['mean_test_score'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_refit_callable_invalid_type():
"""
Test implementation catches the errors when 'best_index_' returns an
invalid result.
"""
def refit_callable_invalid_type(cv_results):
"""
A dummy function tests when returned 'best_index_' is not integer.
"""
return None
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_invalid_type)
with pytest.raises(TypeError,
match='best_index_ returned is not an integer'):
clf.fit(X, y)
@pytest.mark.parametrize('out_bound_value', [-1, 2])
@pytest.mark.parametrize('search_cv', [RandomizedSearchCV, GridSearchCV])
def test_refit_callable_out_bound(out_bound_value, search_cv):
"""
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
"""
def refit_callable_out_bound(cv_results):
"""
A dummy function tests when returned 'best_index_' is out of bounds.
"""
return out_bound_value
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = search_cv(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_out_bound)
with pytest.raises(IndexError, match='best_index_ index out of range'):
clf.fit(X, y)
def test_refit_callable_multi_metric():
"""
Test refit=callable in multiple metric evaluation setting
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_prec`.
"""
assert 'mean_test_prec' in cv_results
return cv_results['mean_test_prec'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
scoring = {'Accuracy': make_scorer(accuracy_score), 'prec': 'precision'}
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring=scoring, refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_gridsearch_nd():
# Pass X as list in GridSearchCV
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
check_X = lambda x: x.shape[1:] == (5, 3, 2)
check_y = lambda x: x.shape[1:] == (7, 11)
clf = CheckingClassifier(
check_X=check_X, check_y=check_y, methods_to_check=["fit"],
)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_4d, y_3d).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_X_as_list():
# Pass X as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_X=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X.tolist(), y).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_y_as_list():
# Pass y as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_y=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X, y.tolist()).score(X, y)
assert hasattr(grid_search, "cv_results_")
@ignore_warnings
def test_pandas_input():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((DataFrame, Series))
except ImportError:
pass
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
for InputFeatureType, TargetType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y)
def check_df(x):
return isinstance(x, InputFeatureType)
def check_series(x):
return isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
grid_search.predict(X_df)
assert hasattr(grid_search, "cv_results_")
def test_unsupervised_grid_search():
# test grid-search with unsupervised estimator
X, y = make_blobs(n_samples=50, random_state=0)
km = KMeans(random_state=0, init="random", n_init=1)
# Multi-metric evaluation unsupervised
scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring=scoring, refit=refit)
grid_search.fit(X, y)
# Both ARI and FMS can find the right number :)
assert grid_search.best_params_["n_clusters"] == 3
# Single metric evaluation unsupervised
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring='fowlkes_mallows_score')
grid_search.fit(X, y)
assert grid_search.best_params_["n_clusters"] == 3
# Now without a score, and without y
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
grid_search.fit(X)
assert grid_search.best_params_["n_clusters"] == 4
def test_gridsearch_no_predict():
# test grid-search with an estimator without predict.
# slight duplication of a test from KDE
def custom_scoring(estimator, X):
return 42 if estimator.bandwidth == .1 else 0
X, _ = make_blobs(cluster_std=.1, random_state=1,
centers=[[0, 1], [1, 0], [0, 0]])
search = GridSearchCV(KernelDensity(),
param_grid=dict(bandwidth=[.01, .1, 1]),
scoring=custom_scoring)
search.fit(X)
assert search.best_params_['bandwidth'] == .1
assert search.best_score_ == 42
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert len(samples) == 10
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
def check_cv_results_array_types(search, param_keys, score_keys):
# Check if the search `cv_results`'s array are of correct types
cv_results = search.cv_results_
assert all(isinstance(cv_results[param], np.ma.MaskedArray)
for param in param_keys)
assert all(cv_results[key].dtype == object for key in param_keys)
assert not any(isinstance(cv_results[key], np.ma.MaskedArray)
for key in score_keys)
assert all(cv_results[key].dtype == np.float64
for key in score_keys if not key.startswith('rank'))
scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']
for key in scorer_keys:
assert cv_results['rank_test_%s' % key].dtype == np.int32
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
# Test the search.cv_results_ contains all the required results
assert_array_equal(sorted(cv_results.keys()),
sorted(param_keys + score_keys + ('params',)))
assert all(cv_results[key].shape == (n_cand,)
for key in param_keys + score_keys)
def test_grid_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4,
random_state=42)
n_splits = 3
n_grid_points = 6
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_candidates = n_grid_points
search = GridSearchCV(SVC(), cv=n_splits, param_grid=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check if score and timing are reasonable
assert all(cv_results['rank_test_score'] >= 1)
assert (all(cv_results[k] >= 0) for k in score_keys
if k != 'rank_test_score')
assert (all(cv_results[k] <= 1) for k in score_keys
if 'time' not in k and
k != 'rank_test_score')
# Check cv_results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
# Check masking
cv_results = search.cv_results_
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
def test_random_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
params = [{'kernel': ['rbf'], 'C': expon(scale=10),
'gamma': expon(scale=0.1)},
{'kernel': ['poly'], 'degree': [2, 3]}]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_cand = n_search_iter
search = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
@pytest.mark.parametrize(
"SearchCV, specialized_params",
[(GridSearchCV, {'param_grid': {'C': [1, 10]}}),
(RandomizedSearchCV,
{'param_distributions': {'C': [1, 10]}, 'n_iter': 2})]
)
def test_search_default_iid(SearchCV, specialized_params):
# Test the IID parameter TODO: Clearly this test does something else???
# noise-free simple 2d-data
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
cluster_std=0.1, shuffle=False, n_samples=80)
# split dataset into two folds that are not iid
# first one contains data of all 4 blobs, second only from two.
mask = np.ones(X.shape[0], dtype=np.bool)
mask[np.where(y == 1)[0][::2]] = 0
mask[np.where(y == 2)[0][::2]] = 0
# this leads to perfect classification on one fold and a score of 1/3 on
# the other
# create "cv" for splits
cv = [[mask, ~mask], [~mask, mask]]
common_params = {'estimator': SVC(), 'cv': cv,
'return_train_score': True}
search = SearchCV(**common_params, **specialized_params)
search.fit(X, y)
test_cv_scores = np.array(
[search.cv_results_['split%d_test_score' % s][0]
for s in range(search.n_splits_)]
)
test_mean = search.cv_results_['mean_test_score'][0]
test_std = search.cv_results_['std_test_score'][0]
train_cv_scores = np.array(
[search.cv_results_['split%d_train_score' % s][0]
for s in range(search.n_splits_)]
)
train_mean = search.cv_results_['mean_train_score'][0]
train_std = search.cv_results_['std_train_score'][0]
assert search.cv_results_['param_C'][0] == 1
# scores are the same as above
assert_allclose(test_cv_scores, [1, 1. / 3.])
assert_allclose(train_cv_scores, [1, 1])
# Unweighted mean/std is used
assert test_mean == pytest.approx( | np.mean(test_cv_scores) | numpy.mean |
'''
-------------------------------------------------------------------------------------------------
This code accompanies the paper titled "Human injury-based safety decision of automated vehicles"
Author: <NAME>, <NAME>, <NAME>, <NAME>
Corresponding author: <NAME> (<EMAIL>)
-------------------------------------------------------------------------------------------------
'''
import torch
import numpy as np
from torch import nn
from torch.nn.utils import weight_norm
__author__ = "<NAME>"
def Collision_cond(veh_striking_list, V1_v, V2_v, delta_angle, veh_param):
''' Estimate the collision condition. '''
(veh_l, veh_w, veh_cgf, veh_cgs, veh_k, veh_m) = veh_param
delta_angle_2 = np.arccos(np.abs(np.cos(delta_angle)))
if -1e-6 < delta_angle_2 < 1e-6:
delta_angle_2 = 1e-6
delta_v1_list = []
delta_v2_list = []
# Estimate the collision condition (delat-v) according to the principal impact direction.
for veh_striking in veh_striking_list:
if veh_striking[0] == 1:
veh_ca = np.arctan(veh_cgf[0] / veh_cgs[0])
veh_a2 = np.abs(veh_cgs[1] - veh_striking[3])
veh_RDS = np.abs(V1_v * np.cos(delta_angle) - V2_v)
veh_a1 = np.abs( | np.sqrt(veh_cgf[0] ** 2 + veh_cgs[0] ** 2) | numpy.sqrt |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * | np.ones_like(length_distance_2) | numpy.ones_like |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = | np.linspace(time[-1] - width, time[-1] + width, 101) | numpy.linspace |
import numpy as np
from typing import Tuple, Union, Optional
from autoarray.structures.arrays.two_d import array_2d_util
from autoarray.geometry import geometry_util
from autoarray import numba_util
from autoarray.mask import mask_2d_util
@numba_util.jit()
def grid_2d_centre_from(grid_2d_slim: np.ndarray) -> Tuple[float, float]:
"""
Returns the centre of a grid from a 1D grid.
Parameters
----------
grid_2d_slim
The 1D grid of values which are mapped to a 2D array.
Returns
-------
(float, float)
The (y,x) central coordinates of the grid.
"""
centre_y = (np.max(grid_2d_slim[:, 0]) + np.min(grid_2d_slim[:, 0])) / 2.0
centre_x = (np.max(grid_2d_slim[:, 1]) + np.min(grid_2d_slim[:, 1])) / 2.0
return centre_y, centre_x
@numba_util.jit()
def grid_2d_slim_via_mask_from(
mask_2d: np.ndarray,
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into
a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates a the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned on an array of shape (total_unmasked_pixels*sub_size**2, 2). y coordinates are
stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked coordinates are therefore
removed and not included in the slimmed grid.
Grid2D are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0.
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
mask_2d
A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated
sub-grid.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A slimmed sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_unmasked_pixels*sub_size**2, 2).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_slim = grid_2d_slim_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0))
"""
total_sub_pixels = mask_2d_util.total_sub_pixels_2d_from(mask_2d, sub_size)
grid_slim = np.zeros(shape=(total_sub_pixels, 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=mask_2d.shape, pixel_scales=pixel_scales, origin=origin
)
sub_index = 0
y_sub_half = pixel_scales[0] / 2
y_sub_step = pixel_scales[0] / (sub_size)
x_sub_half = pixel_scales[1] / 2
x_sub_step = pixel_scales[1] / (sub_size)
for y in range(mask_2d.shape[0]):
for x in range(mask_2d.shape[1]):
if not mask_2d[y, x]:
y_scaled = (y - centres_scaled[0]) * pixel_scales[0]
x_scaled = (x - centres_scaled[1]) * pixel_scales[1]
for y1 in range(sub_size):
for x1 in range(sub_size):
grid_slim[sub_index, 0] = -(
y_scaled - y_sub_half + y1 * y_sub_step + (y_sub_step / 2.0)
)
grid_slim[sub_index, 1] = (
x_scaled - x_sub_half + x1 * x_sub_step + (x_sub_step / 2.0)
)
sub_index += 1
return grid_slim
def grid_2d_via_mask_from(
mask_2d: np.ndarray,
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a
finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size).
y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked pixels are
given values (0.0, 0.0).
Grids are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0.
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
mask_2d
A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated
sub-grid.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_2d = grid_2d_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0))
"""
grid_2d_slim = grid_2d_slim_via_mask_from(
mask_2d=mask_2d, pixel_scales=pixel_scales, sub_size=sub_size, origin=origin
)
return grid_2d_native_from(
grid_2d_slim=grid_2d_slim, mask_2d=mask_2d, sub_size=sub_size
)
def grid_2d_slim_via_shape_native_from(
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a
finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its slimmed dimensions with shape (total_pixels**2*sub_size**2, 2). y coordinates are
stored in the 0 index of the second dimension, x coordinates in the 1 index.
Grid2D are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0].
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
shape_native
The (y,x) shape of the 2D array the sub-grid of coordinates is computed for.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid is slimmed and has dimensions (total_unmasked_pixels*sub_size**2, 2).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_2d_slim = grid_2d_slim_via_shape_native_from(shape_native=(3,3), pixel_scales=(0.5, 0.5), sub_size=2, origin=(0.0, 0.0))
"""
return grid_2d_slim_via_mask_from(
mask_2d=np.full(fill_value=False, shape=shape_native),
pixel_scales=pixel_scales,
sub_size=sub_size,
origin=origin,
)
def grid_2d_via_shape_native_from(
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided
into a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes
the (y,x) scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size).
y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index.
Grids are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0].
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
shape_native
The (y,x) shape of the 2D array the sub-grid of coordinates is computed for.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size).
Examples
--------
grid_2d = grid_2d_via_shape_native_from(shape_native=(3, 3), pixel_scales=(1.0, 1.0), sub_size=2, origin=(0.0, 0.0))
"""
return grid_2d_via_mask_from(
mask_2d=np.full(fill_value=False, shape=shape_native),
pixel_scales=pixel_scales,
sub_size=sub_size,
origin=origin,
)
@numba_util.jit()
def grid_scaled_2d_slim_radial_projected_from(
extent: np.ndarray,
centre: Tuple[float, float],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
shape_slim: Optional[int] = 0,
) -> np.ndarray:
"""
Determine a projected radial grid of points from a 2D region of coordinates defined by an
extent [xmin, xmax, ymin, ymax] and with a (y,x) centre. This functions operates as follows:
1) Given the region defined by the extent [xmin, xmax, ymin, ymax], the algorithm finds the longest 1D distance of
the 4 paths from the (y,x) centre to the edge of the region (e.g. following the positive / negative y and x axes).
2) Use the pixel-scale corresponding to the direction chosen (e.g. if the positive x-axis was the longest, the
pixel_scale in the x dimension is used).
3) Determine the number of pixels between the centre and the edge of the region using the longest path between the
two chosen above.
4) Create a (y,x) grid of radial points where all points are at the centre's y value = 0.0 and the x values iterate
from the centre in increasing steps of the pixel-scale.
5) Rotate these radial coordinates by the input `angle` clockwise.
A schematric is shown below:
-------------------
| |
|<- - - - ->x | x = centre
| | <-> = longest radial path from centre to extent edge
| |
-------------------
Using the centre x above, this function finds the longest radial path to the edge of the extent window.
The returned `grid_radii` represents a radial set of points that in 1D sample the 2D grid outwards from its centre.
This grid stores the radial coordinates as (y,x) values (where all y values are the same) as opposed to a 1D data
structure so that it can be used in functions which require that a 2D grid structure is input.
Parameters
----------
extent
The extent of the grid the radii grid is computed using, with format [xmin, xmax, ymin, ymax]
centre : (float, flloat)
The (y,x) central coordinate which the radial grid is traced outwards from.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
shape_slim
Manually choose the shape of the 1D projected grid that is returned. If 0, the border based on the 2D grid is
used (due to numba None cannot be used as a default value).
Returns
-------
ndarray
A radial set of points sampling the longest distance from the centre to the edge of the extent in along the
positive x-axis.
"""
distance_to_positive_x = extent[1] - centre[1]
distance_to_positive_y = extent[3] - centre[0]
distance_to_negative_x = centre[1] - extent[0]
distance_to_negative_y = centre[0] - extent[2]
scaled_distance = max(
[
distance_to_positive_x,
distance_to_positive_y,
distance_to_negative_x,
distance_to_negative_y,
]
)
if (scaled_distance == distance_to_positive_y) or (
scaled_distance == distance_to_negative_y
):
pixel_scale = pixel_scales[0]
else:
pixel_scale = pixel_scales[1]
if shape_slim == 0:
shape_slim = sub_size * int((scaled_distance / pixel_scale)) + 1
grid_scaled_2d_slim_radii = np.zeros((shape_slim, 2))
grid_scaled_2d_slim_radii[:, 0] += centre[0]
radii = centre[1]
for slim_index in range(shape_slim):
grid_scaled_2d_slim_radii[slim_index, 1] = radii
radii += pixel_scale / sub_size
return grid_scaled_2d_slim_radii
@numba_util.jit()
def grid_pixels_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2d (y,x) scaled coordinates to a slimmed grid of 2d (y,x) pixel coordinate values. Pixel
coordinates are returned as floats such that they include the decimal offset from each pixel's top-left corner
relative to the input scaled coordinate.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled grid is defined by an origin and coordinates are shifted to this origin before computing their
1D grid pixel coordinate values.
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which are converted to pixel value coordinates.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted to.
Returns
-------
ndarray
A slimmed grid of 2D (y,x) pixel-value coordinates with dimensions (total_pixels, 2).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_pixels_2d_slim[slim_index, 0] = (
(-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0])
+ centres_scaled[0]
+ 0.5
)
grid_pixels_2d_slim[slim_index, 1] = (
(grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1])
+ centres_scaled[1]
+ 0.5
)
return grid_pixels_2d_slim
@numba_util.jit()
def grid_pixel_centres_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of 2D (y,x) pixel values. Pixel coordinates
are returned as integers such that they map directly to the pixel they are contained within.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted
Returns
-------
ndarray
A slimmed grid of 2D (y,x) pixel indexes with dimensions (total_pixels, 2).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_pixels_2d_slim[slim_index, 0] = int(
(-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0])
+ centres_scaled[0]
+ 0.5
)
grid_pixels_2d_slim[slim_index, 1] = int(
(grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1])
+ centres_scaled[1]
+ 0.5
)
return grid_pixels_2d_slim
@numba_util.jit()
def grid_pixel_indexes_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of pixel indexes. Pixel coordinates are
returned as integers such that they are the pixel from the top-left of the 2D grid going rights and then downwards.
The input and output grids are both slimmed and have shapes (total_pixels, 2) and (total_pixels,).
For example:
The pixel at the top-left, whose native index is [0,0], corresponds to slimmed pixel index 0.
The fifth pixel on the top row, whose native index is [0,5], corresponds to slimmed pixel index 4.
The first pixel on the second row, whose native index is [0,1], has slimmed pixel index 10 if a row has 10 pixels.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
The input and output grids are both of shape (total_pixels, 2).
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to slimmed pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted.
Returns
-------
ndarray
A grid of slimmed pixel indexes with dimensions (total_pixels,).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixel_indexes_2d_slim = grid_pixel_indexes_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = grid_pixel_centres_2d_slim_from(
grid_scaled_2d_slim=grid_scaled_2d_slim,
shape_native=shape_native,
pixel_scales=pixel_scales,
origin=origin,
)
grid_pixel_indexes_2d_slim = np.zeros(grid_pixels_2d_slim.shape[0])
for slim_index in range(grid_pixels_2d_slim.shape[0]):
grid_pixel_indexes_2d_slim[slim_index] = int(
grid_pixels_2d_slim[slim_index, 0] * shape_native[1]
+ grid_pixels_2d_slim[slim_index, 1]
)
return grid_pixel_indexes_2d_slim
@numba_util.jit()
def grid_scaled_2d_slim_from(
grid_pixels_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) pixel coordinates to a slimmed grid of 2D (y,x) scaled values.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate origin is defined by the class attribute origin, and coordinates are shifted to this
origin after computing their values from the 1D grid pixel indexes.
Parameters
----------
grid_pixels_2d_slim: np.ndarray
The slimmed grid of (y,x) coordinates in pixel values which is converted to scaled coordinates.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted.
Returns
-------
ndarray
A slimmed grid of 2d scaled coordinates with dimensions (total_pixels, 2).
Examples
--------
grid_pixels_2d_slim = np.array([[0,0], [0,1], [1,0], [1,1])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_pixels_2d_slim=grid_pixels_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_scaled_2d_slim = np.zeros((grid_pixels_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_scaled_2d_slim[slim_index, 0] = (
-(grid_pixels_2d_slim[slim_index, 0] - centres_scaled[0] - 0.5)
* pixel_scales[0]
)
grid_scaled_2d_slim[slim_index, 1] = (
grid_pixels_2d_slim[slim_index, 1] - centres_scaled[1] - 0.5
) * pixel_scales[1]
return grid_scaled_2d_slim
@numba_util.jit()
def grid_pixel_centres_2d_from(
grid_scaled_2d: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a native grid of 2D (y,x) scaled coordinates to a native grid of 2D (y,x) pixel values. Pixel coordinates
are returned as integers such that they map directly to the pixel they are contained within.
The input and output grids are both native resolution and therefore have shape (y_pixels, x_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
Parameters
----------
grid_scaled_2d: np.ndarray
The native grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted
Returns
-------
ndarray
A native grid of 2D (y,x) pixel indexes with dimensions (y_pixels, x_pixels, 2).
Examples
--------
grid_scaled_2d = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixel_centres_2d = grid_pixel_centres_2d_from(grid_scaled_2d=grid_scaled_2d, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d = np.zeros((grid_scaled_2d.shape[0], grid_scaled_2d.shape[1], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for y in range(grid_scaled_2d.shape[0]):
for x in range(grid_scaled_2d.shape[1]):
grid_pixels_2d[y, x, 0] = int(
(-grid_scaled_2d[y, x, 0] / pixel_scales[0]) + centres_scaled[0] + 0.5
)
grid_pixels_2d[y, x, 1] = int(
(grid_scaled_2d[y, x, 1] / pixel_scales[1]) + centres_scaled[1] + 0.5
)
return grid_pixels_2d
@numba_util.jit()
def relocated_grid_via_jit_from(grid, border_grid):
"""
Relocate the coordinates of a grid to its border if they are outside the border, where the border is
defined as all pixels at the edge of the grid's mask (see *mask._border_1d_indexes*).
This is performed as follows:
1: Use the mean value of the grid's y and x coordinates to determine the origin of the grid.
2: Compute the radial distance of every grid coordinate from the origin.
3: For every coordinate, find its nearest pixel in the border.
4: Determine if it is outside the border, by comparing its radial distance from the origin to its paired
border pixel's radial distance.
5: If its radial distance is larger, use the ratio of radial distances to move the coordinate to the
border (if its inside the border, do nothing).
The method can be used on uniform or irregular grids, however for irregular grids the border of the
'image-plane' mask is used to define border pixels.
Parameters
----------
grid : Grid2D
The grid (uniform or irregular) whose pixels are to be relocated to the border edge if outside it.
border_grid : Grid2D
The grid of border (y,x) coordinates.
"""
grid_relocated = np.zeros(grid.shape)
grid_relocated[:, :] = grid[:, :]
border_origin = np.zeros(2)
border_origin[0] = np.mean(border_grid[:, 0])
border_origin[1] = np.mean(border_grid[:, 1])
border_grid_radii = np.sqrt(
np.add(
np.square(np.subtract(border_grid[:, 0], border_origin[0])),
np.square(np.subtract(border_grid[:, 1], border_origin[1])),
)
)
border_min_radii = np.min(border_grid_radii)
grid_radii = np.sqrt(
np.add(
np.square( | np.subtract(grid[:, 0], border_origin[0]) | numpy.subtract |
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs= | np.zeros(10) | numpy.zeros |
# pvtrace is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# pvtrace is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
from external.transformations import translation_matrix, rotation_matrix
import external.transformations as tf
from Trace import Photon
from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm
from Materials import Spectrum
def random_spherecial_vector():
# This method of calculating isotropic vectors is taken from GNU Scientific Library
LOOP = True
while LOOP:
x = -1. + 2. * np.random.uniform()
y = -1. + 2. * np.random.uniform()
s = x**2 + y**2
if s <= 1.0:
LOOP = False
z = -1. + 2. * s
a = 2 * np.sqrt(1 - s)
x = a * x
y = a * y
return np.array([x,y,z])
class SimpleSource(object):
"""A light source that will generate photons of a single colour, direction and position."""
def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, use_random_polarisation=False):
super(SimpleSource, self).__init__()
self.position = position
self.direction = direction
self.wavelength = wavelength
self.use_random_polarisation = use_random_polarisation
self.throw = 0
self.source_id = "SimpleSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.position = np.array(self.position)
photon.direction = np.array(self.direction)
photon.active = True
photon.wavelength = self.wavelength
# If use_polarisation is set generate a random polarisation vector of the photon
if self.use_random_polarisation:
# Randomise rotation angle around xy-plane, the transform from +z to the direction of the photon
vec = random_spherecial_vector()
vec[2] = 0.
vec = norm(vec)
R = rotation_matrix_from_vector_alignment(self.direction, [0,0,1])
photon.polarisation = transform_direction(vec, R)
else:
photon.polarisation = None
photon.id = self.throw
self.throw = self.throw + 1
return photon
class Laser(object):
"""A light source that will generate photons of a single colour, direction and position."""
def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, polarisation=None):
super(Laser, self).__init__()
self.position = np.array(position)
self.direction = np.array(direction)
self.wavelength = wavelength
assert polarisation != None, "Polarisation of the Laser is not set."
self.polarisation = np.array(polarisation)
self.throw = 0
self.source_id = "LaserSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.position = np.array(self.position)
photon.direction = np.array(self.direction)
photon.active = True
photon.wavelength = self.wavelength
photon.polarisation = self.polarisation
photon.id = self.throw
self.throw = self.throw + 1
return photon
class PlanarSource(object):
"""A box that emits photons from the top surface (normal), sampled from the spectrum."""
def __init__(self, spectrum=None, wavelength=555, direction=(0,0,1), length=0.05, width=0.05):
super(PlanarSource, self).__init__()
self.spectrum = spectrum
self.wavelength = wavelength
self.plane = FinitePlane(length=length, width=width)
self.length = length
self.width = width
# direction is the direction that photons are fired out of the plane in the GLOBAL FRAME.
# i.e. this is passed directly to the photon to set is's direction
self.direction = direction
self.throw = 0
self.source_id = "PlanarSource_" + str(id(self))
def translate(self, translation):
self.plane.append_transform(tf.translation_matrix(translation))
def rotate(self, angle, axis):
self.plane.append_transform(tf.rotation_matrix(angle, axis))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.id = self.throw
self.throw = self.throw + 1
# Create a point which is on the surface of the finite plane in it's local frame
x = np.random.uniform(0., self.length)
y = np.random.uniform(0., self.width)
local_point = (x, y, 0.)
# Transform the direciton
photon.position = transform_point(local_point, self.plane.transform)
photon.direction = self.direction
photon.active = True
if self.spectrum != None:
photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform())
else:
photon.wavelength = self.wavelength
return photon
class LensSource(object):
"""
A source where photons generated in a plane are focused on a line with space tolerance given by variable "focussize".
The focus line should be perpendicular to the plane normal and aligned with the z-axis.
"""
def __init__(self, spectrum = None, wavelength = 555, linepoint=(0,0,0), linedirection=(0,0,1), focussize = 0, planeorigin = (-1,-1,-1), planeextent = (-1,1,1)):
super(LensSource, self).__init__()
self.spectrum = spectrum
self.wavelength = wavelength
self.planeorigin = planeorigin
self.planeextent = planeextent
self.linepoint = np.array(linepoint)
self.linedirection = np.array(linedirection)
self.focussize = focussize
self.throw = 0
self.source_id = "LensSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.id = self.throw
self.throw = self.throw + 1
# Position
x = np.random.uniform(self.planeorigin[0],self.planeextent[0])
y = np.random.uniform(self.planeorigin[1],self.planeextent[1])
z = np.random.uniform(self.planeorigin[2],self.planeextent[2])
photon.position = | np.array((x,y,z)) | numpy.array |
import os
import string
from collections import Counter
from datetime import datetime
from functools import partial
from pathlib import Path
from typing import Optional
import numpy as np
import pandas as pd
from scipy.stats.stats import chisquare
from tangled_up_in_unicode import block, block_abbr, category, category_long, script
from pandas_profiling.config import Settings
from pandas_profiling.model.summary_helpers_image import (
extract_exif,
hash_image,
is_image_truncated,
open_image,
)
def mad(arr: np.ndarray) -> np.ndarray:
"""Median Absolute Deviation: a "Robust" version of standard deviation.
Indices variability of the sample.
https://en.wikipedia.org/wiki/Median_absolute_deviation
"""
return np.median(np.abs(arr - np.median(arr)))
def named_aggregate_summary(series: pd.Series, key: str) -> dict:
summary = {
f"max_{key}": np.max(series),
f"mean_{key}": np.mean(series),
f"median_{key}": np.median(series),
f"min_{key}": np.min(series),
}
return summary
def length_summary(series: pd.Series, summary: dict = None) -> dict:
if summary is None:
summary = {}
length = series.str.len()
summary.update({"length": length})
summary.update(named_aggregate_summary(length, "length"))
return summary
def file_summary(series: pd.Series) -> dict:
"""
Args:
series: series to summarize
Returns:
"""
# Transform
stats = series.map(lambda x: os.stat(x))
def convert_datetime(x: float) -> str:
return datetime.fromtimestamp(x).strftime("%Y-%m-%d %H:%M:%S")
# Transform some more
summary = {
"file_size": stats.map(lambda x: x.st_size),
"file_created_time": stats.map(lambda x: x.st_ctime).map(convert_datetime),
"file_accessed_time": stats.map(lambda x: x.st_atime).map(convert_datetime),
"file_modified_time": stats.map(lambda x: x.st_mtime).map(convert_datetime),
}
return summary
def path_summary(series: pd.Series) -> dict:
"""
Args:
series: series to summarize
Returns:
"""
# TODO: optimize using value counts
summary = {
"common_prefix": os.path.commonprefix(series.values.tolist())
or "No common prefix",
"stem_counts": series.map(lambda x: os.path.splitext(x)[0]).value_counts(),
"suffix_counts": series.map(lambda x: os.path.splitext(x)[1]).value_counts(),
"name_counts": series.map(lambda x: os.path.basename(x)).value_counts(),
"parent_counts": series.map(lambda x: os.path.dirname(x)).value_counts(),
"anchor_counts": series.map(lambda x: os.path.splitdrive(x)[0]).value_counts(),
}
summary["n_stem_unique"] = len(summary["stem_counts"])
summary["n_suffix_unique"] = len(summary["suffix_counts"])
summary["n_name_unique"] = len(summary["name_counts"])
summary["n_parent_unique"] = len(summary["parent_counts"])
summary["n_anchor_unique"] = len(summary["anchor_counts"])
return summary
def url_summary(series: pd.Series) -> dict:
"""
Args:
series: series to summarize
Returns:
"""
summary = {
"scheme_counts": series.map(lambda x: x.scheme).value_counts(),
"netloc_counts": series.map(lambda x: x.netloc).value_counts(),
"path_counts": series.map(lambda x: x.path).value_counts(),
"query_counts": series.map(lambda x: x.query).value_counts(),
"fragment_counts": series.map(lambda x: x.fragment).value_counts(),
}
return summary
def count_duplicate_hashes(image_descriptions: dict) -> int:
"""
Args:
image_descriptions:
Returns:
"""
counts = pd.Series(
[x["hash"] for x in image_descriptions if "hash" in x]
).value_counts()
return counts.sum() - len(counts)
def extract_exif_series(image_exifs: list) -> dict:
"""
Args:
image_exifs:
Returns:
"""
exif_keys = []
exif_values: dict = {}
for image_exif in image_exifs:
# Extract key
exif_keys.extend(list(image_exif.keys()))
# Extract values per key
for exif_key, exif_val in image_exif.items():
if exif_key not in exif_values:
exif_values[exif_key] = []
exif_values[exif_key].append(exif_val)
series = {"exif_keys": pd.Series(exif_keys, dtype=object).value_counts().to_dict()}
for k, v in exif_values.items():
series[k] = pd.Series(v).value_counts()
return series
def extract_image_information(
path: Path, exif: bool = False, hash: bool = False
) -> dict:
"""Extracts all image information per file, as opening files is slow
Args:
path: Path to the image
exif: extract exif information
hash: calculate hash (for duplicate detection)
Returns:
A dict containing image information
"""
information: dict = {}
image = open_image(path)
information["opened"] = image is not None
if image is not None:
information["truncated"] = is_image_truncated(image)
if not information["truncated"]:
information["size"] = image.size
if exif:
information["exif"] = extract_exif(image)
if hash:
information["hash"] = hash_image(image)
return information
def image_summary(series: pd.Series, exif: bool = False, hash: bool = False) -> dict:
"""
Args:
series: series to summarize
exif: extract exif information
hash: calculate hash (for duplicate detection)
Returns:
"""
image_information = series.apply(
partial(extract_image_information, exif=exif, hash=hash)
)
summary = {
"n_truncated": sum(
[1 for x in image_information if "truncated" in x and x["truncated"]]
),
"image_dimensions": pd.Series(
[x["size"] for x in image_information if "size" in x],
name="image_dimensions",
),
}
image_widths = summary["image_dimensions"].map(lambda x: x[0])
summary.update(named_aggregate_summary(image_widths, "width"))
image_heights = summary["image_dimensions"].map(lambda x: x[1])
summary.update(named_aggregate_summary(image_heights, "height"))
image_areas = image_widths * image_heights
summary.update(named_aggregate_summary(image_areas, "area"))
if hash:
summary["n_duplicate_hash"] = count_duplicate_hashes(image_information)
if exif:
exif_series = extract_exif_series(
[x["exif"] for x in image_information if "exif" in x]
)
summary["exif_keys_counts"] = exif_series["exif_keys"]
summary["exif_data"] = exif_series
return summary
def get_character_counts(series: pd.Series) -> Counter:
"""Function to return the character counts
Args:
series: the Series to process
Returns:
A dict with character counts
"""
return Counter(series.str.cat())
def counter_to_series(counter: Counter) -> pd.Series:
if not counter:
return pd.Series([], dtype=object)
counter_as_tuples = counter.most_common()
items, counts = zip(*counter_as_tuples)
return pd.Series(counts, index=items)
def unicode_summary(series: pd.Series) -> dict:
# Unicode Character Summaries (category and script name)
character_counts = get_character_counts(series)
character_counts_series = counter_to_series(character_counts)
char_to_block = {key: block(key) for key in character_counts.keys()}
char_to_category_short = {key: category(key) for key in character_counts.keys()}
char_to_script = {key: script(key) for key in character_counts.keys()}
summary = {
"n_characters": len(character_counts_series),
"character_counts": character_counts_series,
"category_alias_values": {
key: category_long(value) for key, value in char_to_category_short.items()
},
"block_alias_values": {
key: block_abbr(value) for key, value in char_to_block.items()
},
}
# Retrieve original distribution
block_alias_counts: Counter = Counter()
per_block_char_counts: dict = {
k: Counter() for k in summary["block_alias_values"].values()
}
for char, n_char in character_counts.items():
block_name = summary["block_alias_values"][char]
block_alias_counts[block_name] += n_char
per_block_char_counts[block_name][char] = n_char
summary["block_alias_counts"] = counter_to_series(block_alias_counts)
summary["block_alias_char_counts"] = {
k: counter_to_series(v) for k, v in per_block_char_counts.items()
}
script_counts: Counter = Counter()
per_script_char_counts: dict = {k: Counter() for k in char_to_script.values()}
for char, n_char in character_counts.items():
script_name = char_to_script[char]
script_counts[script_name] += n_char
per_script_char_counts[script_name][char] = n_char
summary["script_counts"] = counter_to_series(script_counts)
summary["script_char_counts"] = {
k: counter_to_series(v) for k, v in per_script_char_counts.items()
}
category_alias_counts: Counter = Counter()
per_category_alias_char_counts: dict = {
k: Counter() for k in summary["category_alias_values"].values()
}
for char, n_char in character_counts.items():
category_alias_name = summary["category_alias_values"][char]
category_alias_counts[category_alias_name] += n_char
per_category_alias_char_counts[category_alias_name][char] += n_char
summary["category_alias_counts"] = counter_to_series(category_alias_counts)
summary["category_alias_char_counts"] = {
k: counter_to_series(v) for k, v in per_category_alias_char_counts.items()
}
# Unique counts
summary["n_category"] = len(summary["category_alias_counts"])
summary["n_scripts"] = len(summary["script_counts"])
summary["n_block_alias"] = len(summary["block_alias_counts"])
if len(summary["category_alias_counts"]) > 0:
summary["category_alias_counts"].index = summary[
"category_alias_counts"
].index.str.replace("_", " ")
return summary
def histogram_compute(
config: Settings,
finite_values: np.ndarray,
n_unique: int,
name: str = "histogram",
weights: Optional[np.ndarray] = None,
) -> dict:
stats = {}
bins = config.plot.histogram.bins
bins_arg = "auto" if bins == 0 else min(bins, n_unique)
stats[name] = | np.histogram(finite_values, bins=bins_arg, weights=weights) | numpy.histogram |
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam= | np.ones(10) | numpy.ones |
"""
YTArray class.
"""
from __future__ import print_function
#-----------------------------------------------------------------------------
# Copyright (c) 2013, yt Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
import copy
import numpy as np
from distutils.version import LooseVersion
from functools import wraps
from numpy import \
add, subtract, multiply, divide, logaddexp, logaddexp2, true_divide, \
floor_divide, negative, power, remainder, mod, absolute, rint, \
sign, conj, exp, exp2, log, log2, log10, expm1, log1p, sqrt, square, \
reciprocal, sin, cos, tan, arcsin, arccos, arctan, arctan2, \
hypot, sinh, cosh, tanh, arcsinh, arccosh, arctanh, deg2rad, rad2deg, \
bitwise_and, bitwise_or, bitwise_xor, invert, left_shift, right_shift, \
greater, greater_equal, less, less_equal, not_equal, equal, logical_and, \
logical_or, logical_xor, logical_not, maximum, minimum, fmax, fmin, \
isreal, iscomplex, isfinite, isinf, isnan, signbit, copysign, nextafter, \
modf, ldexp, frexp, fmod, floor, ceil, trunc, fabs, spacing
try:
# numpy 1.13 or newer
from numpy import positive, divmod as divmod_, isnat, heaviside
except ImportError:
positive, divmod_, isnat, heaviside = (None,)*4
from yt.units.unit_object import Unit, UnitParseError
from yt.units.unit_registry import UnitRegistry
from yt.units.dimensions import \
angle, \
current_mks, \
dimensionless, \
em_dimensions
from yt.utilities.exceptions import \
YTUnitOperationError, YTUnitConversionError, \
YTUfuncUnitError, YTIterableUnitCoercionError, \
YTInvalidUnitEquivalence, YTEquivalentDimsError
from yt.utilities.lru_cache import lru_cache
from numbers import Number as numeric_type
from yt.utilities.on_demand_imports import _astropy
from sympy import Rational
from yt.units.unit_lookup_table import \
default_unit_symbol_lut
from yt.units.equivalencies import equivalence_registry
from yt.utilities.logger import ytLogger as mylog
from .pint_conversions import convert_pint_units
NULL_UNIT = Unit()
POWER_SIGN_MAPPING = {multiply: 1, divide: -1}
# redefine this here to avoid a circular import from yt.funcs
def iterable(obj):
try: len(obj)
except: return False
return True
def return_arr(func):
@wraps(func)
def wrapped(*args, **kwargs):
ret, units = func(*args, **kwargs)
if ret.shape == ():
return YTQuantity(ret, units)
else:
# This could be a subclass, so don't call YTArray directly.
return type(args[0])(ret, units)
return wrapped
@lru_cache(maxsize=128, typed=False)
def sqrt_unit(unit):
return unit**0.5
@lru_cache(maxsize=128, typed=False)
def multiply_units(unit1, unit2):
return unit1 * unit2
def preserve_units(unit1, unit2=None):
return unit1
@lru_cache(maxsize=128, typed=False)
def power_unit(unit, power):
return unit**power
@lru_cache(maxsize=128, typed=False)
def square_unit(unit):
return unit*unit
@lru_cache(maxsize=128, typed=False)
def divide_units(unit1, unit2):
return unit1/unit2
@lru_cache(maxsize=128, typed=False)
def reciprocal_unit(unit):
return unit**-1
def passthrough_unit(unit, unit2=None):
return unit
def return_without_unit(unit, unit2=None):
return None
def arctan2_unit(unit1, unit2):
return NULL_UNIT
def comparison_unit(unit1, unit2=None):
return None
def invert_units(unit):
raise TypeError(
"Bit-twiddling operators are not defined for YTArray instances")
def bitop_units(unit1, unit2):
raise TypeError(
"Bit-twiddling operators are not defined for YTArray instances")
def get_inp_u_unary(ufunc, inputs, out_arr=None):
inp = inputs[0]
u = getattr(inp, 'units', None)
if u is None:
u = NULL_UNIT
if u.dimensions is angle and ufunc in trigonometric_operators:
inp = inp.in_units('radian').v
if out_arr is not None:
out_arr = ufunc(inp).view(np.ndarray)
return out_arr, inp, u
def get_inp_u_binary(ufunc, inputs):
inp1 = coerce_iterable_units(inputs[0])
inp2 = coerce_iterable_units(inputs[1])
unit1 = getattr(inp1, 'units', None)
unit2 = getattr(inp2, 'units', None)
ret_class = get_binary_op_return_class(type(inp1), type(inp2))
if unit1 is None:
unit1 = Unit(registry=getattr(unit2, 'registry', None))
if unit2 is None and ufunc is not power:
unit2 = Unit(registry=getattr(unit1, 'registry', None))
elif ufunc is power:
unit2 = inp2
if isinstance(unit2, np.ndarray):
if isinstance(unit2, YTArray):
if unit2.units.is_dimensionless:
pass
else:
raise YTUnitOperationError(ufunc, unit1, unit2)
unit2 = 1.0
return (inp1, inp2), (unit1, unit2), ret_class
def handle_preserve_units(inps, units, ufunc, ret_class):
if units[0] != units[1]:
any_nonzero = [np.any(inps[0]), np.any(inps[1])]
if any_nonzero[0] == np.bool_(False):
units = (units[1], units[1])
elif any_nonzero[1] == np.bool_(False):
units = (units[0], units[0])
else:
if not units[0].same_dimensions_as(units[1]):
raise YTUnitOperationError(ufunc, *units)
inps = (inps[0], ret_class(inps[1]).to(
ret_class(inps[0]).units))
return inps, units
def handle_comparison_units(inps, units, ufunc, ret_class, raise_error=False):
if units[0] != units[1]:
u1d = units[0].is_dimensionless
u2d = units[1].is_dimensionless
any_nonzero = [np.any(inps[0]), np.any(inps[1])]
if any_nonzero[0] == np.bool_(False):
units = (units[1], units[1])
elif any_nonzero[1] == np.bool_(False):
units = (units[0], units[0])
elif not any([u1d, u2d]):
if not units[0].same_dimensions_as(units[1]):
raise YTUnitOperationError(ufunc, *units)
else:
if raise_error:
raise YTUfuncUnitError(ufunc, *units)
inps = (inps[0], ret_class(inps[1]).to(
ret_class(inps[0]).units))
return inps, units
def handle_multiply_divide_units(unit, units, out, out_arr):
if unit.is_dimensionless and unit.base_value != 1.0:
if not units[0].is_dimensionless:
if units[0].dimensions == units[1].dimensions:
out_arr = np.multiply(out_arr.view(np.ndarray),
unit.base_value, out=out)
unit = Unit(registry=unit.registry)
return out, out_arr, unit
def coerce_iterable_units(input_object):
if isinstance(input_object, np.ndarray):
return input_object
if iterable(input_object):
if any([isinstance(o, YTArray) for o in input_object]):
ff = getattr(input_object[0], 'units', NULL_UNIT, )
if any([ff != getattr(_, 'units', NULL_UNIT) for _ in input_object]):
raise YTIterableUnitCoercionError(input_object)
# This will create a copy of the data in the iterable.
return YTArray(input_object)
return input_object
else:
return input_object
def sanitize_units_mul(this_object, other_object):
inp = coerce_iterable_units(this_object)
ret = coerce_iterable_units(other_object)
# If the other object is a YTArray and has the same dimensions as the object
# under consideration, convert so we don't mix units with the same
# dimensions.
if isinstance(ret, YTArray):
if inp.units.same_dimensions_as(ret.units):
ret.in_units(inp.units)
return ret
def sanitize_units_add(this_object, other_object, op_string):
inp = coerce_iterable_units(this_object)
ret = coerce_iterable_units(other_object)
# Make sure the other object is a YTArray before we use the `units`
# attribute.
if isinstance(ret, YTArray):
if not inp.units.same_dimensions_as(ret.units):
# handle special case of adding or subtracting with zero or
# array filled with zero
if not np.any(other_object):
return ret.view(np.ndarray)
elif not np.any(this_object):
return ret
raise YTUnitOperationError(op_string, inp.units, ret.units)
ret = ret.in_units(inp.units)
else:
# If the other object is not a YTArray, then one of the arrays must be
# dimensionless or filled with zeros
if not inp.units.is_dimensionless and np.any(ret):
raise YTUnitOperationError(op_string, inp.units, dimensionless)
return ret
def validate_comparison_units(this, other, op_string):
# Check that other is a YTArray.
if hasattr(other, 'units'):
if this.units.expr is other.units.expr:
if this.units.base_value == other.units.base_value:
return other
if not this.units.same_dimensions_as(other.units):
raise YTUnitOperationError(op_string, this.units, other.units)
return other.in_units(this.units)
return other
@lru_cache(maxsize=128, typed=False)
def _unit_repr_check_same(my_units, other_units):
"""
Takes a Unit object, or string of known unit symbol, and check that it
is compatible with this quantity. Returns Unit object.
"""
# let Unit() handle units arg if it's not already a Unit obj.
if not isinstance(other_units, Unit):
other_units = Unit(other_units, registry=my_units.registry)
equiv_dims = em_dimensions.get(my_units.dimensions, None)
if equiv_dims == other_units.dimensions:
if current_mks in equiv_dims.free_symbols:
base = "SI"
else:
base = "CGS"
raise YTEquivalentDimsError(my_units, other_units, base)
if not my_units.same_dimensions_as(other_units):
raise YTUnitConversionError(
my_units, my_units.dimensions, other_units, other_units.dimensions)
return other_units
unary_operators = (
negative, absolute, rint, sign, conj, exp, exp2, log, log2,
log10, expm1, log1p, sqrt, square, reciprocal, sin, cos, tan, arcsin,
arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh, deg2rad,
rad2deg, invert, logical_not, isreal, iscomplex, isfinite, isinf, isnan,
signbit, floor, ceil, trunc, modf, frexp, fabs, spacing, positive, isnat,
)
binary_operators = (
add, subtract, multiply, divide, logaddexp, logaddexp2, true_divide, power,
remainder, mod, arctan2, hypot, bitwise_and, bitwise_or, bitwise_xor,
left_shift, right_shift, greater, greater_equal, less, less_equal,
not_equal, equal, logical_and, logical_or, logical_xor, maximum, minimum,
fmax, fmin, copysign, nextafter, ldexp, fmod, divmod_, heaviside
)
trigonometric_operators = (
sin, cos, tan,
)
class YTArray(np.ndarray):
"""
An ndarray subclass that attaches a symbolic unit object to the array data.
Parameters
----------
input_array : :obj:`!iterable`
A tuple, list, or array to attach units to
input_units : String unit specification, unit symbol object, or astropy units
The units of the array. Powers must be specified using python
syntax (cm**3, not cm^3).
registry : ~yt.units.unit_registry.UnitRegistry
The registry to create units from. If input_units is already associated
with a unit registry and this is specified, this will be used instead of
the registry associated with the unit object.
dtype : data-type
The dtype of the array data. Defaults to the dtype of the input data,
or, if none is found, uses np.float64
bypass_validation : boolean
If True, all input validation is skipped. Using this option may produce
corrupted, invalid units or array data, but can lead to significant
speedups in the input validation logic adds significant overhead. If set,
input_units *must* be a valid unit object. Defaults to False.
Examples
--------
>>> from yt import YTArray
>>> a = YTArray([1, 2, 3], 'cm')
>>> b = YTArray([4, 5, 6], 'm')
>>> a + b
YTArray([ 401., 502., 603.]) cm
>>> b + a
YTArray([ 4.01, 5.02, 6.03]) m
NumPy ufuncs will pass through units where appropriate.
>>> import numpy as np
>>> a = YTArray(np.arange(8) - 4, 'g/cm**3')
>>> np.abs(a)
YTArray([4, 3, 2, 1, 0, 1, 2, 3]) g/cm**3
and strip them when it would be annoying to deal with them.
>>> np.log10(a)
array([ -inf, 0. , 0.30103 , 0.47712125, 0.60205999,
0.69897 , 0.77815125, 0.84509804])
YTArray is tightly integrated with yt datasets:
>>> import yt
>>> ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030')
>>> a = ds.arr(np.ones(5), 'code_length')
>>> a.in_cgs()
YTArray([ 3.08600000e+24, 3.08600000e+24, 3.08600000e+24,
3.08600000e+24, 3.08600000e+24]) cm
This is equivalent to:
>>> b = YTArray(np.ones(5), 'code_length', registry=ds.unit_registry)
>>> np.all(a == b)
True
"""
_ufunc_registry = {
add: preserve_units,
subtract: preserve_units,
multiply: multiply_units,
divide: divide_units,
logaddexp: return_without_unit,
logaddexp2: return_without_unit,
true_divide: divide_units,
floor_divide: divide_units,
negative: passthrough_unit,
power: power_unit,
remainder: preserve_units,
mod: preserve_units,
fmod: preserve_units,
absolute: passthrough_unit,
fabs: passthrough_unit,
rint: return_without_unit,
sign: return_without_unit,
conj: passthrough_unit,
exp: return_without_unit,
exp2: return_without_unit,
log: return_without_unit,
log2: return_without_unit,
log10: return_without_unit,
expm1: return_without_unit,
log1p: return_without_unit,
sqrt: sqrt_unit,
square: square_unit,
reciprocal: reciprocal_unit,
sin: return_without_unit,
cos: return_without_unit,
tan: return_without_unit,
sinh: return_without_unit,
cosh: return_without_unit,
tanh: return_without_unit,
arcsin: return_without_unit,
arccos: return_without_unit,
arctan: return_without_unit,
arctan2: arctan2_unit,
arcsinh: return_without_unit,
arccosh: return_without_unit,
arctanh: return_without_unit,
hypot: preserve_units,
deg2rad: return_without_unit,
rad2deg: return_without_unit,
bitwise_and: bitop_units,
bitwise_or: bitop_units,
bitwise_xor: bitop_units,
invert: invert_units,
left_shift: bitop_units,
right_shift: bitop_units,
greater: comparison_unit,
greater_equal: comparison_unit,
less: comparison_unit,
less_equal: comparison_unit,
not_equal: comparison_unit,
equal: comparison_unit,
logical_and: comparison_unit,
logical_or: comparison_unit,
logical_xor: comparison_unit,
logical_not: return_without_unit,
maximum: preserve_units,
minimum: preserve_units,
fmax: preserve_units,
fmin: preserve_units,
isreal: return_without_unit,
iscomplex: return_without_unit,
isfinite: return_without_unit,
isinf: return_without_unit,
isnan: return_without_unit,
signbit: return_without_unit,
copysign: passthrough_unit,
nextafter: preserve_units,
modf: passthrough_unit,
ldexp: bitop_units,
frexp: return_without_unit,
floor: passthrough_unit,
ceil: passthrough_unit,
trunc: passthrough_unit,
spacing: passthrough_unit,
positive: passthrough_unit,
divmod_: passthrough_unit,
isnat: return_without_unit,
heaviside: preserve_units,
}
__array_priority__ = 2.0
def __new__(cls, input_array, input_units=None, registry=None, dtype=None,
bypass_validation=False):
if dtype is None:
dtype = getattr(input_array, 'dtype', np.float64)
if bypass_validation is True:
obj = np.asarray(input_array, dtype=dtype).view(cls)
obj.units = input_units
if registry is not None:
obj.units.registry = registry
return obj
if input_array is NotImplemented:
return input_array.view(cls)
if registry is None and isinstance(input_units, (str, bytes)):
if input_units.startswith('code_'):
raise UnitParseError(
"Code units used without referring to a dataset. \n"
"Perhaps you meant to do something like this instead: \n"
"ds.arr(%s, \"%s\")" % (input_array, input_units)
)
if isinstance(input_array, YTArray):
ret = input_array.view(cls)
if input_units is None:
if registry is None:
ret.units = input_array.units
else:
units = Unit(str(input_array.units), registry=registry)
ret.units = units
elif isinstance(input_units, Unit):
ret.units = input_units
else:
ret.units = Unit(input_units, registry=registry)
return ret
elif isinstance(input_array, np.ndarray):
pass
elif iterable(input_array) and input_array:
if isinstance(input_array[0], YTArray):
return YTArray(np.array(input_array, dtype=dtype),
input_array[0].units, registry=registry)
# Input array is an already formed ndarray instance
# We first cast to be our class type
obj = np.asarray(input_array, dtype=dtype).view(cls)
# Check units type
if input_units is None:
# Nothing provided. Make dimensionless...
units = Unit()
elif isinstance(input_units, Unit):
if registry and registry is not input_units.registry:
units = Unit(str(input_units), registry=registry)
else:
units = input_units
else:
# units kwarg set, but it's not a Unit object.
# don't handle all the cases here, let the Unit class handle if
# it's a str.
units = Unit(input_units, registry=registry)
# Attach the units
obj.units = units
return obj
def __repr__(self):
"""
"""
return super(YTArray, self).__repr__()+' '+self.units.__repr__()
def __str__(self):
"""
"""
return str(self.view(np.ndarray)) + ' ' + str(self.units)
#
# Start unit conversion methods
#
def convert_to_units(self, units):
"""
Convert the array and units to the given units.
Parameters
----------
units : Unit object or str
The units you want to convert to.
"""
new_units = _unit_repr_check_same(self.units, units)
(conversion_factor, offset) = self.units.get_conversion_factor(new_units)
self.units = new_units
values = self.d
values *= conversion_factor
if offset:
np.subtract(self, offset*self.uq, self)
return self
def convert_to_base(self, unit_system="cgs"):
"""
Convert the array and units to the equivalent base units in
the specified unit system.
Parameters
----------
unit_system : string, optional
The unit system to be used in the conversion. If not specified,
the default base units of cgs are used.
Examples
--------
>>> E = YTQuantity(2.5, "erg/s")
>>> E.convert_to_base(unit_system="galactic")
"""
return self.convert_to_units(self.units.get_base_equivalent(unit_system))
def convert_to_cgs(self):
"""
Convert the array and units to the equivalent cgs units.
"""
return self.convert_to_units(self.units.get_cgs_equivalent())
def convert_to_mks(self):
"""
Convert the array and units to the equivalent mks units.
"""
return self.convert_to_units(self.units.get_mks_equivalent())
def in_units(self, units, equivalence=None, **kwargs):
"""
Creates a copy of this array with the data in the supplied
units, and returns it.
Optionally, an equivalence can be specified to convert to an
equivalent quantity which is not in the same dimensions.
.. note::
All additional keyword arguments are passed to the
equivalency, which should be used if that particular
equivalency requires them.
Parameters
----------
units : Unit object or string
The units you want to get a new quantity in.
equivalence : string, optional
The equivalence you wish to use. To see which
equivalencies are supported for this unitful
quantity, try the :meth:`list_equivalencies`
method. Default: None
Returns
-------
YTArray
"""
if equivalence is None:
new_units = _unit_repr_check_same(self.units, units)
(conversion_factor, offset) = self.units.get_conversion_factor(new_units)
new_array = type(self)(self.ndview * conversion_factor, new_units)
if offset:
np.subtract(new_array, offset*new_array.uq, new_array)
return new_array
else:
return self.to_equivalent(units, equivalence, **kwargs)
def to(self, units, equivalence=None, **kwargs):
"""
An alias for YTArray.in_units().
See the docstrings of that function for details.
"""
return self.in_units(units, equivalence=equivalence, **kwargs)
def to_value(self, units=None, equivalence=None, **kwargs):
"""
Creates a copy of this array with the data in the supplied
units, and returns it without units. Output is therefore a
bare NumPy array.
Optionally, an equivalence can be specified to convert to an
equivalent quantity which is not in the same dimensions.
.. note::
All additional keyword arguments are passed to the
equivalency, which should be used if that particular
equivalency requires them.
Parameters
----------
units : Unit object or string, optional
The units you want to get the bare quantity in. If not
specified, the value will be returned in the current units.
equivalence : string, optional
The equivalence you wish to use. To see which
equivalencies are supported for this unitful
quantity, try the :meth:`list_equivalencies`
method. Default: None
Returns
-------
NumPy array
"""
if units is None:
v = self.value
else:
v = self.in_units(units, equivalence=equivalence, **kwargs).value
if isinstance(self, YTQuantity):
return float(v)
else:
return v
def in_base(self, unit_system="cgs"):
"""
Creates a copy of this array with the data in the specified unit system,
and returns it in that system's base units.
Parameters
----------
unit_system : string, optional
The unit system to be used in the conversion. If not specified,
the default base units of cgs are used.
Examples
--------
>>> E = YTQuantity(2.5, "erg/s")
>>> E_new = E.in_base(unit_system="galactic")
"""
return self.in_units(self.units.get_base_equivalent(unit_system))
def in_cgs(self):
"""
Creates a copy of this array with the data in the equivalent cgs units,
and returns it.
Returns
-------
Quantity object with data converted to cgs units.
"""
return self.in_units(self.units.get_cgs_equivalent())
def in_mks(self):
"""
Creates a copy of this array with the data in the equivalent mks units,
and returns it.
Returns
-------
Quantity object with data converted to mks units.
"""
return self.in_units(self.units.get_mks_equivalent())
def to_equivalent(self, unit, equiv, **kwargs):
"""
Convert a YTArray or YTQuantity to an equivalent, e.g., something that is
related by only a constant factor but not in the same units.
Parameters
----------
unit : string
The unit that you wish to convert to.
equiv : string
The equivalence you wish to use. To see which equivalencies are
supported for this unitful quantity, try the
:meth:`list_equivalencies` method.
Examples
--------
>>> a = yt.YTArray(1.0e7,"K")
>>> a.to_equivalent("keV", "thermal")
"""
conv_unit = Unit(unit, registry=self.units.registry)
if self.units.same_dimensions_as(conv_unit):
return self.in_units(conv_unit)
this_equiv = equivalence_registry[equiv]()
oneway_or_equivalent = (
conv_unit.has_equivalent(equiv) or this_equiv._one_way)
if self.has_equivalent(equiv) and oneway_or_equivalent:
new_arr = this_equiv.convert(
self, conv_unit.dimensions, **kwargs)
if isinstance(new_arr, tuple):
try:
return type(self)(new_arr[0], new_arr[1]).in_units(unit)
except YTUnitConversionError:
raise YTInvalidUnitEquivalence(equiv, self.units, unit)
else:
return new_arr.in_units(unit)
else:
raise YTInvalidUnitEquivalence(equiv, self.units, unit)
def list_equivalencies(self):
"""
Lists the possible equivalencies associated with this YTArray or
YTQuantity.
"""
self.units.list_equivalencies()
def has_equivalent(self, equiv):
"""
Check to see if this YTArray or YTQuantity has an equivalent unit in
*equiv*.
"""
return self.units.has_equivalent(equiv)
def ndarray_view(self):
"""
Returns a view into the array, but as an ndarray rather than ytarray.
Returns
-------
View of this array's data.
"""
return self.view(np.ndarray)
def to_ndarray(self):
"""
Creates a copy of this array with the unit information stripped
"""
return np.array(self)
@classmethod
def from_astropy(cls, arr, unit_registry=None):
"""
Convert an AstroPy "Quantity" to a YTArray or YTQuantity.
Parameters
----------
arr : AstroPy Quantity
The Quantity to convert from.
unit_registry : yt UnitRegistry, optional
A yt unit registry to use in the conversion. If one is not
supplied, the default one will be used.
"""
# Converting from AstroPy Quantity
u = arr.unit
ap_units = []
for base, exponent in zip(u.bases, u.powers):
unit_str = base.to_string()
# we have to do this because AstroPy is silly and defines
# hour as "h"
if unit_str == "h": unit_str = "hr"
ap_units.append("%s**(%s)" % (unit_str, Rational(exponent)))
ap_units = "*".join(ap_units)
if isinstance(arr.value, np.ndarray):
return YTArray(arr.value, ap_units, registry=unit_registry)
else:
return YTQuantity(arr.value, ap_units, registry=unit_registry)
def to_astropy(self, **kwargs):
"""
Creates a new AstroPy quantity with the same unit information.
"""
if _astropy.units is None:
raise ImportError("You don't have AstroPy installed, so you can't convert to " +
"an AstroPy quantity.")
return self.value*_astropy.units.Unit(str(self.units), **kwargs)
@classmethod
def from_pint(cls, arr, unit_registry=None):
"""
Convert a Pint "Quantity" to a YTArray or YTQuantity.
Parameters
----------
arr : Pint Quantity
The Quantity to convert from.
unit_registry : yt UnitRegistry, optional
A yt unit registry to use in the conversion. If one is not
supplied, the default one will be used.
Examples
--------
>>> from pint import UnitRegistry
>>> import numpy as np
>>> ureg = UnitRegistry()
>>> a = np.random.random(10)
>>> b = ureg.Quantity(a, "erg/cm**3")
>>> c = yt.YTArray.from_pint(b)
"""
p_units = []
for base, exponent in arr._units.items():
bs = convert_pint_units(base)
p_units.append("%s**(%s)" % (bs, Rational(exponent)))
p_units = "*".join(p_units)
if isinstance(arr.magnitude, np.ndarray):
return YTArray(arr.magnitude, p_units, registry=unit_registry)
else:
return YTQuantity(arr.magnitude, p_units, registry=unit_registry)
def to_pint(self, unit_registry=None):
"""
Convert a YTArray or YTQuantity to a Pint Quantity.
Parameters
----------
arr : YTArray or YTQuantity
The unitful quantity to convert from.
unit_registry : Pint UnitRegistry, optional
The Pint UnitRegistry to use in the conversion. If one is not
supplied, the default one will be used. NOTE: This is not
the same as a yt UnitRegistry object.
Examples
--------
>>> a = YTQuantity(4.0, "cm**2/s")
>>> b = a.to_pint()
"""
from pint import UnitRegistry
if unit_registry is None:
unit_registry = UnitRegistry()
powers_dict = self.units.expr.as_powers_dict()
units = []
for unit, pow in powers_dict.items():
# we have to do this because Pint doesn't recognize
# "yr" as "year"
if str(unit).endswith("yr") and len(str(unit)) in [2,3]:
unit = str(unit).replace("yr","year")
units.append("%s**(%s)" % (unit, Rational(pow)))
units = "*".join(units)
return unit_registry.Quantity(self.value, units)
#
# End unit conversion methods
#
def write_hdf5(self, filename, dataset_name=None, info=None, group_name=None):
r"""Writes a YTArray to hdf5 file.
Parameters
----------
filename: string
The filename to create and write a dataset to
dataset_name: string
The name of the dataset to create in the file.
info: dictionary
A dictionary of supplementary info to write to append as attributes
to the dataset.
group_name: string
An optional group to write the arrays to. If not specified, the arrays
are datasets at the top level by default.
Examples
--------
>>> a = YTArray([1,2,3], 'cm')
>>> myinfo = {'field':'dinosaurs', 'type':'field_data'}
>>> a.write_hdf5('test_array_data.h5', dataset_name='dinosaurs',
... info=myinfo)
"""
from yt.utilities.on_demand_imports import _h5py as h5py
from yt.extern.six.moves import cPickle as pickle
if info is None:
info = {}
info['units'] = str(self.units)
info['unit_registry'] = np.void(pickle.dumps(self.units.registry.lut))
if dataset_name is None:
dataset_name = 'array_data'
f = h5py.File(filename)
if group_name is not None:
if group_name in f:
g = f[group_name]
else:
g = f.create_group(group_name)
else:
g = f
if dataset_name in g.keys():
d = g[dataset_name]
# Overwrite without deleting if we can get away with it.
if d.shape == self.shape and d.dtype == self.dtype:
d[...] = self
for k in d.attrs.keys():
del d.attrs[k]
else:
del f[dataset_name]
d = g.create_dataset(dataset_name, data=self)
else:
d = g.create_dataset(dataset_name, data=self)
for k, v in info.items():
d.attrs[k] = v
f.close()
@classmethod
def from_hdf5(cls, filename, dataset_name=None, group_name=None):
r"""Attempts read in and convert a dataset in an hdf5 file into a
YTArray.
Parameters
----------
filename: string
The filename to of the hdf5 file.
dataset_name: string
The name of the dataset to read from. If the dataset has a units
attribute, attempt to infer units as well.
group_name: string
An optional group to read the arrays from. If not specified, the
arrays are datasets at the top level by default.
"""
import h5py
from yt.extern.six.moves import cPickle as pickle
if dataset_name is None:
dataset_name = 'array_data'
f = h5py.File(filename)
if group_name is not None:
g = f[group_name]
else:
g = f
dataset = g[dataset_name]
data = dataset[:]
units = dataset.attrs.get('units', '')
if 'unit_registry' in dataset.attrs.keys():
unit_lut = pickle.loads(dataset.attrs['unit_registry'].tostring())
else:
unit_lut = None
f.close()
registry = UnitRegistry(lut=unit_lut, add_default_symbols=False)
return cls(data, units, registry=registry)
#
# Start convenience methods
#
@property
def value(self):
"""Get a copy of the array data as a numpy ndarray"""
return np.array(self)
v = value
@property
def ndview(self):
"""Get a view of the array data."""
return self.ndarray_view()
d = ndview
@property
def unit_quantity(self):
"""Get a YTQuantity with the same unit as this array and a value of
1.0"""
return YTQuantity(1.0, self.units)
uq = unit_quantity
@property
def unit_array(self):
"""Get a YTArray filled with ones with the same unit and shape as this
array"""
return np.ones_like(self)
ua = unit_array
def __getitem__(self, item):
ret = super(YTArray, self).__getitem__(item)
if ret.shape == ():
return YTQuantity(ret, self.units, bypass_validation=True)
else:
if hasattr(self, 'units'):
ret.units = self.units
return ret
#
# Start operation methods
#
if LooseVersion(np.__version__) < LooseVersion('1.13.0'):
def __add__(self, right_object):
"""
Add this ytarray to the object on the right of the `+` operator.
Must check for the correct (same dimension) units.
"""
ro = sanitize_units_add(self, right_object, "addition")
return super(YTArray, self).__add__(ro)
def __radd__(self, left_object):
""" See __add__. """
lo = sanitize_units_add(self, left_object, "addition")
return super(YTArray, self).__radd__(lo)
def __iadd__(self, other):
""" See __add__. """
oth = sanitize_units_add(self, other, "addition")
np.add(self, oth, out=self)
return self
def __sub__(self, right_object):
"""
Subtract the object on the right of the `-` from this ytarray. Must
check for the correct (same dimension) units.
"""
ro = sanitize_units_add(self, right_object, "subtraction")
return super(YTArray, self).__sub__(ro)
def __rsub__(self, left_object):
""" See __sub__. """
lo = sanitize_units_add(self, left_object, "subtraction")
return super(YTArray, self).__rsub__(lo)
def __isub__(self, other):
""" See __sub__. """
oth = sanitize_units_add(self, other, "subtraction")
np.subtract(self, oth, out=self)
return self
def __neg__(self):
""" Negate the data. """
return super(YTArray, self).__neg__()
def __mul__(self, right_object):
"""
Multiply this YTArray by the object on the right of the `*`
operator. The unit objects handle being multiplied.
"""
ro = sanitize_units_mul(self, right_object)
return super(YTArray, self).__mul__(ro)
def __rmul__(self, left_object):
""" See __mul__. """
lo = sanitize_units_mul(self, left_object)
return super(YTArray, self).__rmul__(lo)
def __imul__(self, other):
""" See __mul__. """
oth = sanitize_units_mul(self, other)
np.multiply(self, oth, out=self)
return self
def __div__(self, right_object):
"""
Divide this YTArray by the object on the right of the `/` operator.
"""
ro = sanitize_units_mul(self, right_object)
return super(YTArray, self).__div__(ro)
def __rdiv__(self, left_object):
""" See __div__. """
lo = sanitize_units_mul(self, left_object)
return super(YTArray, self).__rdiv__(lo)
def __idiv__(self, other):
""" See __div__. """
oth = sanitize_units_mul(self, other)
np.divide(self, oth, out=self)
return self
def __truediv__(self, right_object):
ro = sanitize_units_mul(self, right_object)
return super(YTArray, self).__truediv__(ro)
def __rtruediv__(self, left_object):
""" See __div__. """
lo = sanitize_units_mul(self, left_object)
return super(YTArray, self).__rtruediv__(lo)
def __itruediv__(self, other):
""" See __div__. """
oth = sanitize_units_mul(self, other)
np.true_divide(self, oth, out=self)
return self
def __floordiv__(self, right_object):
ro = sanitize_units_mul(self, right_object)
return super(YTArray, self).__floordiv__(ro)
def __rfloordiv__(self, left_object):
""" See __div__. """
lo = sanitize_units_mul(self, left_object)
return super(YTArray, self).__rfloordiv__(lo)
def __ifloordiv__(self, other):
""" See __div__. """
oth = sanitize_units_mul(self, other)
np.floor_divide(self, oth, out=self)
return self
def __or__(self, right_object):
return super(YTArray, self).__or__(right_object)
def __ror__(self, left_object):
return super(YTArray, self).__ror__(left_object)
def __ior__(self, other):
np.bitwise_or(self, other, out=self)
return self
def __xor__(self, right_object):
return super(YTArray, self).__xor__(right_object)
def __rxor__(self, left_object):
return super(YTArray, self).__rxor__(left_object)
def __ixor__(self, other):
np.bitwise_xor(self, other, out=self)
return self
def __and__(self, right_object):
return super(YTArray, self).__and__(right_object)
def __rand__(self, left_object):
return super(YTArray, self).__rand__(left_object)
def __iand__(self, other):
np.bitwise_and(self, other, out=self)
return self
def __pow__(self, power):
"""
Raise this YTArray to some power.
Parameters
----------
power : float or dimensionless YTArray.
The pow value.
"""
if isinstance(power, YTArray):
if not power.units.is_dimensionless:
raise YTUnitOperationError('power', power.unit)
# Work around a sympy issue (I think?)
#
# If I don't do this, super(YTArray, self).__pow__ returns a YTArray
# with a unit attribute set to the sympy expression 1/1 rather than
# a dimensionless Unit object.
if self.units.is_dimensionless and power == -1:
ret = super(YTArray, self).__pow__(power)
return type(self)(ret, input_units='')
return super(YTArray, self).__pow__(power)
def __abs__(self):
""" Return a YTArray with the abs of the data. """
return super(YTArray, self).__abs__()
#
# Start comparison operators.
#
def __lt__(self, other):
""" Test if this is less than the object on the right. """
# converts if possible
oth = validate_comparison_units(self, other, 'less_than')
return super(YTArray, self).__lt__(oth)
def __le__(self, other):
"""Test if this is less than or equal to the object on the right.
"""
oth = validate_comparison_units(self, other, 'less_than or equal')
return super(YTArray, self).__le__(oth)
def __eq__(self, other):
""" Test if this is equal to the object on the right. """
# Check that other is a YTArray.
if other is None:
# self is a YTArray, so it can't be None.
return False
oth = validate_comparison_units(self, other, 'equal')
return super(YTArray, self).__eq__(oth)
def __ne__(self, other):
""" Test if this is not equal to the object on the right. """
# Check that the other is a YTArray.
if other is None:
return True
oth = validate_comparison_units(self, other, 'not equal')
return super(YTArray, self).__ne__(oth)
def __ge__(self, other):
""" Test if this is greater than or equal to other. """
# Check that the other is a YTArray.
oth = validate_comparison_units(
self, other, 'greater than or equal')
return super(YTArray, self).__ge__(oth)
def __gt__(self, other):
""" Test if this is greater than the object on the right. """
# Check that the other is a YTArray.
oth = validate_comparison_units(self, other, 'greater than')
return super(YTArray, self).__gt__(oth)
#
# End comparison operators
#
#
# Begin reduction operators
#
@return_arr
def prod(self, axis=None, dtype=None, out=None):
if axis is not None:
units = self.units**self.shape[axis]
else:
units = self.units**self.size
return super(YTArray, self).prod(axis, dtype, out), units
@return_arr
def mean(self, axis=None, dtype=None, out=None):
return super(YTArray, self).mean(axis, dtype, out), self.units
@return_arr
def sum(self, axis=None, dtype=None, out=None):
return super(YTArray, self).sum(axis, dtype, out), self.units
@return_arr
def std(self, axis=None, dtype=None, out=None, ddof=0):
return super(YTArray, self).std(axis, dtype, out, ddof), self.units
def __array_wrap__(self, out_arr, context=None):
ret = super(YTArray, self).__array_wrap__(out_arr, context)
if isinstance(ret, YTQuantity) and ret.shape != ():
ret = ret.view(YTArray)
if context is None:
if ret.shape == ():
return ret[()]
else:
return ret
ufunc = context[0]
inputs = context[1]
if ufunc in unary_operators:
out_arr, inp, u = get_inp_u_unary(ufunc, inputs, out_arr)
unit = self._ufunc_registry[context[0]](u)
ret_class = type(self)
elif ufunc in binary_operators:
unit_operator = self._ufunc_registry[context[0]]
inps, units, ret_class = get_inp_u_binary(ufunc, inputs)
if unit_operator in (preserve_units, comparison_unit,
arctan2_unit):
inps, units = handle_comparison_units(
inps, units, ufunc, ret_class, raise_error=True)
unit = unit_operator(*units)
if unit_operator in (multiply_units, divide_units):
out_arr, out_arr, unit = handle_multiply_divide_units(
unit, units, out_arr, out_arr)
else:
raise RuntimeError(
"Support for the %s ufunc has not been added "
"to YTArray." % str(context[0]))
if unit is None:
out_arr = np.array(out_arr, copy=False)
return out_arr
out_arr.units = unit
if out_arr.size == 1:
return YTQuantity(np.array(out_arr), unit)
else:
if ret_class is YTQuantity:
# This happens if you do ndarray * YTQuantity. Explicitly
# casting to YTArray avoids creating a YTQuantity with
# size > 1
return YTArray(np.array(out_arr), unit)
return ret_class(np.array(out_arr, copy=False), unit)
else: # numpy version equal to or newer than 1.13
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
func = getattr(ufunc, method)
if 'out' in kwargs:
out_orig = kwargs.pop('out')
out = np.asarray(out_orig[0])
else:
out = None
if len(inputs) == 1:
_, inp, u = get_inp_u_unary(ufunc, inputs)
out_arr = func(np.asarray(inp), out=out, **kwargs)
if ufunc in (multiply, divide) and method == 'reduce':
power_sign = POWER_SIGN_MAPPING[ufunc]
if 'axis' in kwargs and kwargs['axis'] is not None:
unit = u**(power_sign*inp.shape[kwargs['axis']])
else:
unit = u**(power_sign*inp.size)
else:
unit = self._ufunc_registry[ufunc](u)
ret_class = type(self)
elif len(inputs) == 2:
unit_operator = self._ufunc_registry[ufunc]
inps, units, ret_class = get_inp_u_binary(ufunc, inputs)
if unit_operator in (comparison_unit, arctan2_unit):
inps, units = handle_comparison_units(
inps, units, ufunc, ret_class)
elif unit_operator is preserve_units:
inps, units = handle_preserve_units(
inps, units, ufunc, ret_class)
unit = unit_operator(*units)
out_arr = func(np.asarray(inps[0]), np.asarray(inps[1]),
out=out, **kwargs)
if unit_operator in (multiply_units, divide_units):
out, out_arr, unit = handle_multiply_divide_units(
unit, units, out, out_arr)
else:
raise RuntimeError(
"Support for the %s ufunc with %i inputs has not been"
"added to YTArray." % (str(ufunc), len(inputs)))
if unit is None:
out_arr = np.array(out_arr, copy=False)
elif ufunc in (modf, divmod_):
out_arr = tuple((ret_class(o, unit) for o in out_arr))
elif out_arr.size == 1:
out_arr = YTQuantity(np.asarray(out_arr), unit)
else:
if ret_class is YTQuantity:
# This happens if you do ndarray * YTQuantity. Explicitly
# casting to YTArray avoids creating a YTQuantity with
# size > 1
out_arr = YTArray(np.asarray(out_arr), unit)
else:
out_arr = ret_class( | np.asarray(out_arr) | numpy.asarray |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[1].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
print(f'DFA fluctuation with 11 knots: {np.round(np.var(time_series - imfs_51[3, :]), 3)}')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[2].set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$', r'$5\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[2].plot(0.95 * np.pi * | np.ones(101) | numpy.ones |
'''
-------------------------------------------------------------------------------------------------
This code accompanies the paper titled "Human injury-based safety decision of automated vehicles"
Author: <NAME>, <NAME>, <NAME>, <NAME>
Corresponding author: <NAME> (<EMAIL>)
-------------------------------------------------------------------------------------------------
'''
import torch
import numpy as np
from torch import nn
from torch.nn.utils import weight_norm
__author__ = "<NAME>"
def Collision_cond(veh_striking_list, V1_v, V2_v, delta_angle, veh_param):
''' Estimate the collision condition. '''
(veh_l, veh_w, veh_cgf, veh_cgs, veh_k, veh_m) = veh_param
delta_angle_2 = np.arccos(np.abs(np.cos(delta_angle)))
if -1e-6 < delta_angle_2 < 1e-6:
delta_angle_2 = 1e-6
delta_v1_list = []
delta_v2_list = []
# Estimate the collision condition (delat-v) according to the principal impact direction.
for veh_striking in veh_striking_list:
if veh_striking[0] == 1:
veh_ca = np.arctan(veh_cgf[0] / veh_cgs[0])
veh_a2 = np.abs(veh_cgs[1] - veh_striking[3])
veh_RDS = np.abs(V1_v * np.cos(delta_angle) - V2_v)
veh_a1 = np.abs(np.sqrt(veh_cgf[0] ** 2 + veh_cgs[0] ** 2) * np.cos(veh_ca + delta_angle_2))
if (veh_striking[1]+1) in [16, 1, 2, 3, 17, 20, 21] and (veh_striking[2]+1) in [16, 1, 2, 3, 17, 20, 21]:
veh_e = 2 / veh_RDS
else:
veh_e = 0.5 / veh_RDS
elif veh_striking[0] == 2:
veh_ca = np.arctan(veh_cgf[0] / veh_cgs[0])
veh_a2 = np.abs(veh_cgf[1] - veh_striking[3])
veh_a1 = np.abs(np.sqrt(veh_cgf[0] ** 2 + veh_cgs[0] ** 2) * np.cos(delta_angle_2 - veh_ca + np.pi / 2))
veh_RDS = V1_v * | np.sin(delta_angle_2) | numpy.sin |
import numpy as np
from scipy import ndimage
def erode_value_blobs(array, steps=1, values_to_ignore=tuple(), new_value=0):
unique_values = list(np.unique(array))
all_entries_to_keep = np.zeros(shape=array.shape, dtype=np.bool)
for unique_value in unique_values:
entries_of_this_value = array == unique_value
if unique_value in values_to_ignore:
all_entries_to_keep = np.logical_or(entries_of_this_value, all_entries_to_keep)
else:
eroded_unique_indicator = ndimage.binary_erosion(entries_of_this_value, iterations=steps)
all_entries_to_keep = np.logical_or(eroded_unique_indicator, all_entries_to_keep)
result = array * all_entries_to_keep
if new_value != 0:
eroded_entries = | np.logical_not(all_entries_to_keep) | numpy.logical_not |
from abc import ABCMeta, abstractmethod
import os
from vmaf.tools.misc import make_absolute_path, run_process
from vmaf.tools.stats import ListStats
__copyright__ = "Copyright 2016-2018, Netflix, Inc."
__license__ = "Apache, Version 2.0"
import re
import numpy as np
import ast
from vmaf import ExternalProgramCaller, to_list
from vmaf.config import VmafConfig, VmafExternalConfig
from vmaf.core.executor import Executor
from vmaf.core.result import Result
from vmaf.tools.reader import YuvReader
class FeatureExtractor(Executor):
"""
FeatureExtractor takes in a list of assets, and run feature extraction on
them, and return a list of corresponding results. A FeatureExtractor must
specify a unique type and version combination (by the TYPE and VERSION
attribute), so that the Result generated by it can be identified.
A derived class of FeatureExtractor must:
1) Override TYPE and VERSION
2) Override _generate_result(self, asset), which call a
command-line executable and generate feature scores in a log file.
3) Override _get_feature_scores(self, asset), which read the feature
scores from the log file, and return the scores in a dictionary format.
For an example, follow VmafFeatureExtractor.
"""
__metaclass__ = ABCMeta
@property
@abstractmethod
def ATOM_FEATURES(self):
raise NotImplementedError
def _read_result(self, asset):
result = {}
result.update(self._get_feature_scores(asset))
executor_id = self.executor_id
return Result(asset, executor_id, result)
@classmethod
def get_scores_key(cls, atom_feature):
return "{type}_{atom_feature}_scores".format(
type=cls.TYPE, atom_feature=atom_feature)
@classmethod
def get_score_key(cls, atom_feature):
return "{type}_{atom_feature}_score".format(
type=cls.TYPE, atom_feature=atom_feature)
def _get_feature_scores(self, asset):
# routine to read the feature scores from the log file, and return
# the scores in a dictionary format.
log_file_path = self._get_log_file_path(asset)
atom_feature_scores_dict = {}
atom_feature_idx_dict = {}
for atom_feature in self.ATOM_FEATURES:
atom_feature_scores_dict[atom_feature] = []
atom_feature_idx_dict[atom_feature] = 0
with open(log_file_path, 'rt') as log_file:
for line in log_file.readlines():
for atom_feature in self.ATOM_FEATURES:
re_template = "{af}: ([0-9]+) ([a-zA-Z0-9.-]+)".format(af=atom_feature)
mo = re.match(re_template, line)
if mo:
cur_idx = int(mo.group(1))
assert cur_idx == atom_feature_idx_dict[atom_feature]
# parse value, allowing NaN and inf
val = float(mo.group(2))
if np.isnan(val) or np.isinf(val):
val = None
atom_feature_scores_dict[atom_feature].append(val)
atom_feature_idx_dict[atom_feature] += 1
continue
len_score = len(atom_feature_scores_dict[self.ATOM_FEATURES[0]])
assert len_score != 0
for atom_feature in self.ATOM_FEATURES[1:]:
assert len_score == len(atom_feature_scores_dict[atom_feature]), \
"Feature data possibly corrupt. Run cleanup script and try again."
feature_result = {}
for atom_feature in self.ATOM_FEATURES:
scores_key = self.get_scores_key(atom_feature)
feature_result[scores_key] = atom_feature_scores_dict[atom_feature]
return feature_result
class VmafFeatureExtractor(FeatureExtractor):
TYPE = "VMAF_feature"
# VERSION = '0.1' # vmaf_study; Anush's VIF fix
# VERSION = '0.2' # expose vif_num, vif_den, adm_num, adm_den, anpsnr
# VERSION = '0.2.1' # expose vif num/den of each scale
# VERSION = '0.2.2' # adm abs-->fabs, corrected border handling, uniform reading with option of offset for input YUV, updated VIF corner case
# VERSION = '0.2.2b' # expose adm_den/num_scalex
# VERSION = '0.2.3' # AVX for VMAF convolution; update adm features by folding noise floor into per coef
# VERSION = '0.2.4' # Fix a bug in adm feature passing scale into dwt_quant_step
# VERSION = '0.2.4b' # Modify by adding ADM noise floor outside cube root; add derived feature motion2
VERSION = '0.2.4c' # Modify by moving motion2 to c code
ATOM_FEATURES = ['vif', 'adm', 'ansnr', 'motion', 'motion2',
'vif_num', 'vif_den', 'adm_num', 'adm_den', 'anpsnr',
'vif_num_scale0', 'vif_den_scale0',
'vif_num_scale1', 'vif_den_scale1',
'vif_num_scale2', 'vif_den_scale2',
'vif_num_scale3', 'vif_den_scale3',
'adm_num_scale0', 'adm_den_scale0',
'adm_num_scale1', 'adm_den_scale1',
'adm_num_scale2', 'adm_den_scale2',
'adm_num_scale3', 'adm_den_scale3',
]
DERIVED_ATOM_FEATURES = ['vif_scale0', 'vif_scale1', 'vif_scale2', 'vif_scale3',
'vif2', 'adm2', 'adm3',
'adm_scale0', 'adm_scale1', 'adm_scale2', 'adm_scale3',
]
ADM2_CONSTANT = 0
ADM_SCALE_CONSTANT = 0
def _generate_result(self, asset):
# routine to call the command-line executable and generate feature
# scores in the log file.
quality_width, quality_height = asset.quality_width_height
log_file_path = self._get_log_file_path(asset)
yuv_type=self._get_workfile_yuv_type(asset)
ref_path=asset.ref_workfile_path
dis_path=asset.dis_workfile_path
w=quality_width
h=quality_height
logger = self.logger
ExternalProgramCaller.call_vmaf_feature(yuv_type, ref_path, dis_path, w, h, log_file_path, logger)
@classmethod
def _post_process_result(cls, result):
# override Executor._post_process_result
result = super(VmafFeatureExtractor, cls)._post_process_result(result)
# adm2 =
# (adm_num + ADM2_CONSTANT) / (adm_den + ADM2_CONSTANT)
adm2_scores_key = cls.get_scores_key('adm2')
adm_num_scores_key = cls.get_scores_key('adm_num')
adm_den_scores_key = cls.get_scores_key('adm_den')
result.result_dict[adm2_scores_key] = list(
(np.array(result.result_dict[adm_num_scores_key]) + cls.ADM2_CONSTANT) /
(np.array(result.result_dict[adm_den_scores_key]) + cls.ADM2_CONSTANT)
)
# vif_scalei = vif_num_scalei / vif_den_scalei, i = 0, 1, 2, 3
vif_num_scale0_scores_key = cls.get_scores_key('vif_num_scale0')
vif_den_scale0_scores_key = cls.get_scores_key('vif_den_scale0')
vif_num_scale1_scores_key = cls.get_scores_key('vif_num_scale1')
vif_den_scale1_scores_key = cls.get_scores_key('vif_den_scale1')
vif_num_scale2_scores_key = cls.get_scores_key('vif_num_scale2')
vif_den_scale2_scores_key = cls.get_scores_key('vif_den_scale2')
vif_num_scale3_scores_key = cls.get_scores_key('vif_num_scale3')
vif_den_scale3_scores_key = cls.get_scores_key('vif_den_scale3')
vif_scale0_scores_key = cls.get_scores_key('vif_scale0')
vif_scale1_scores_key = cls.get_scores_key('vif_scale1')
vif_scale2_scores_key = cls.get_scores_key('vif_scale2')
vif_scale3_scores_key = cls.get_scores_key('vif_scale3')
result.result_dict[vif_scale0_scores_key] = list(
(np.array(result.result_dict[vif_num_scale0_scores_key])
/ np.array(result.result_dict[vif_den_scale0_scores_key]))
)
result.result_dict[vif_scale1_scores_key] = list(
(np.array(result.result_dict[vif_num_scale1_scores_key])
/ np.array(result.result_dict[vif_den_scale1_scores_key]))
)
result.result_dict[vif_scale2_scores_key] = list(
(np.array(result.result_dict[vif_num_scale2_scores_key])
/ np.array(result.result_dict[vif_den_scale2_scores_key]))
)
result.result_dict[vif_scale3_scores_key] = list(
(np.array(result.result_dict[vif_num_scale3_scores_key])
/ np.array(result.result_dict[vif_den_scale3_scores_key]))
)
# vif2 =
# ((vif_num_scale0 / vif_den_scale0) + (vif_num_scale1 / vif_den_scale1) +
# (vif_num_scale2 / vif_den_scale2) + (vif_num_scale3 / vif_den_scale3)) / 4.0
vif_scores_key = cls.get_scores_key('vif2')
result.result_dict[vif_scores_key] = list(
(
(np.array(result.result_dict[vif_num_scale0_scores_key])
/ np.array(result.result_dict[vif_den_scale0_scores_key])) +
(np.array(result.result_dict[vif_num_scale1_scores_key])
/ np.array(result.result_dict[vif_den_scale1_scores_key])) +
(np.array(result.result_dict[vif_num_scale2_scores_key])
/ np.array(result.result_dict[vif_den_scale2_scores_key])) +
(np.array(result.result_dict[vif_num_scale3_scores_key])
/ np.array(result.result_dict[vif_den_scale3_scores_key]))
) / 4.0
)
# adm_scalei = adm_num_scalei / adm_den_scalei, i = 0, 1, 2, 3
adm_num_scale0_scores_key = cls.get_scores_key('adm_num_scale0')
adm_den_scale0_scores_key = cls.get_scores_key('adm_den_scale0')
adm_num_scale1_scores_key = cls.get_scores_key('adm_num_scale1')
adm_den_scale1_scores_key = cls.get_scores_key('adm_den_scale1')
adm_num_scale2_scores_key = cls.get_scores_key('adm_num_scale2')
adm_den_scale2_scores_key = cls.get_scores_key('adm_den_scale2')
adm_num_scale3_scores_key = cls.get_scores_key('adm_num_scale3')
adm_den_scale3_scores_key = cls.get_scores_key('adm_den_scale3')
adm_scale0_scores_key = cls.get_scores_key('adm_scale0')
adm_scale1_scores_key = cls.get_scores_key('adm_scale1')
adm_scale2_scores_key = cls.get_scores_key('adm_scale2')
adm_scale3_scores_key = cls.get_scores_key('adm_scale3')
result.result_dict[adm_scale0_scores_key] = list(
(np.array(result.result_dict[adm_num_scale0_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale0_scores_key]) + cls.ADM_SCALE_CONSTANT)
)
result.result_dict[adm_scale1_scores_key] = list(
(np.array(result.result_dict[adm_num_scale1_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale1_scores_key]) + cls.ADM_SCALE_CONSTANT)
)
result.result_dict[adm_scale2_scores_key] = list(
(np.array(result.result_dict[adm_num_scale2_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale2_scores_key]) + cls.ADM_SCALE_CONSTANT)
)
result.result_dict[adm_scale3_scores_key] = list(
(np.array(result.result_dict[adm_num_scale3_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale3_scores_key]) + cls.ADM_SCALE_CONSTANT)
)
# adm3 = \
# (((adm_num_scale0 + ADM_SCALE_CONSTANT) / (adm_den_scale0 + ADM_SCALE_CONSTANT))
# + ((adm_num_scale1 + ADM_SCALE_CONSTANT) / (adm_den_scale1 + ADM_SCALE_CONSTANT))
# + ((adm_num_scale2 + ADM_SCALE_CONSTANT) / (adm_den_scale2 + ADM_SCALE_CONSTANT))
# + ((adm_num_scale3 + ADM_SCALE_CONSTANT) / (adm_den_scale3 + ADM_SCALE_CONSTANT))) / 4.0
adm3_scores_key = cls.get_scores_key('adm3')
result.result_dict[adm3_scores_key] = list(
(
((np.array(result.result_dict[adm_num_scale0_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale0_scores_key]) + cls.ADM_SCALE_CONSTANT)) +
((np.array(result.result_dict[adm_num_scale1_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale1_scores_key]) + cls.ADM_SCALE_CONSTANT)) +
((np.array(result.result_dict[adm_num_scale2_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ ( | np.array(result.result_dict[adm_den_scale2_scores_key]) | numpy.array |
import numpy as np
import tensorflow as tf
H = 2
N = 2
M = 3
BS = 10
def my_softmax(arr):
max_elements = np.reshape(np.max(arr, axis = 2), (BS, N, 1))
arr = arr - max_elements
exp_array = np.exp(arr)
print (exp_array)
sum_array = np.reshape(np.sum(exp_array, axis=2), (BS, N, 1))
return exp_array /sum_array
def masked_softmax(logits, mask, dim):
"""
Takes masked softmax over given dimension of logits.
Inputs:
logits: Numpy array. We want to take softmax over dimension dim.
mask: Numpy array of same shape as logits.
Has 1s where there's real data in logits, 0 where there's padding
dim: int. dimension over which to take softmax
Returns:
masked_logits: Numpy array same shape as logits.
This is the same as logits, but with 1e30 subtracted
(i.e. very large negative number) in the padding locations.
prob_dist: Numpy array same shape as logits.
The result of taking softmax over masked_logits in given dimension.
Should be 0 in padding locations.
Should sum to 1 over given dimension.
"""
exp_mask = (1 - tf.cast(mask, 'float64')) * (-1e30) # -large where there's padding, 0 elsewhere
print (exp_mask)
masked_logits = tf.add(logits, exp_mask) # where there's padding, set logits to -large
prob_dist = tf.nn.softmax(masked_logits, dim)
return masked_logits, prob_dist
def test_build_similarity(contexts, questions):
w_sim_1 = tf.get_variable('w_sim_1',
initializer=w_1) # 2 * H
w_sim_2 = tf.get_variable('w_sim_2',
initializer=w_2) # 2 * self.hidden_size
w_sim_3 = tf.get_variable('w_sim_3',
initializer=w_3) # 2 * self.hidden_size
q_tile = tf.tile(tf.expand_dims(questions, 0), [N, 1, 1, 1]) # N x BS x M x 2H
q_tile = tf.transpose(q_tile, (1, 0, 3, 2)) # BS x N x 2H x M
contexts = tf.expand_dims(contexts, -1) # BS x N x 2H x 1
result = (contexts * q_tile) # BS x N x 2H x M
tf.assert_equal(tf.shape(result), [BS, N, 2 * H, M])
result = tf.transpose(result, (0, 1, 3, 2)) # BS x N x M x 2H
result = tf.reshape(result, (-1, N * M, 2 * H)) # BS x (NxM) x 2H
tf.assert_equal(tf.shape(result), [BS, N*M, 2*H])
# w_sim_1 = tf.tile(tf.expand_dims(w_sim_1, 0), [BS, 1])
# w_sim_2 = tf.tile(tf.expand_dims(w_sim_2, 0), [BS, 1])
# w_sim_3 = tf.tile(tf.expand_dims(w_sim_3, 0), [BS, 1])
term1 = tf.matmul(tf.reshape(contexts, (BS * N, 2*H)), tf.expand_dims(w_sim_1, -1)) # BS x N
term1 = tf.reshape(term1, (-1, N))
term2 = tf.matmul(tf.reshape(questions, (BS * M, 2*H)), tf.expand_dims(w_sim_2, -1)) # BS x M
term2 = tf.reshape(term2, (-1, M))
term3 = tf.matmul(tf.reshape(result, (BS * N * M, 2* H)), tf.expand_dims(w_sim_3, -1))
term3 = tf.reshape(term3, (-1, N, M)) # BS x N x M
S = tf.reshape(term1,(-1, N, 1)) + term3 + tf.reshape(term2, (-1, 1, M))
return S
def test_build_sim_mask():
context_mask = np.array([True, True]) # BS x N
question_mask = | np.array([True, True, False]) | numpy.array |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cntk as C
import numpy as np
from .common import floatx, epsilon, image_dim_ordering, image_data_format
from collections import defaultdict
from contextlib import contextmanager
import warnings
C.set_global_option('align_axis', 1)
b_any = any
dev = C.device.use_default_device()
if dev.type() == 0:
warnings.warn(
'CNTK backend warning: GPU is not detected. '
'CNTK\'s CPU version is not fully optimized,'
'please run with GPU to get better performance.')
# A learning phase is a bool tensor used to run Keras models in
# either train mode (learning_phase == 1) or test mode (learning_phase == 0).
# LEARNING_PHASE_PLACEHOLDER is the placeholder for dynamic learning phase
_LEARNING_PHASE_PLACEHOLDER = C.constant(shape=(), dtype=np.float32, value=1.0, name='_keras_learning_phase')
# static learning phase flag, if it is not 0 or 1, we will go with dynamic learning phase tensor.
_LEARNING_PHASE = -1
_UID_PREFIXES = defaultdict(int)
# cntk doesn't support gradient as symbolic op, to hook up with keras model,
# we will create gradient as a constant placeholder, here use this global
# map to keep the mapping from grad placeholder to parameter
grad_parameter_dict = {}
NAME_SCOPE_STACK = []
@contextmanager
def name_scope(name):
global NAME_SCOPE_STACK
NAME_SCOPE_STACK.append(name)
yield
NAME_SCOPE_STACK.pop()
def get_uid(prefix=''):
_UID_PREFIXES[prefix] += 1
return _UID_PREFIXES[prefix]
def learning_phase():
# If _LEARNING_PHASE is not 0 or 1, return dynamic learning phase tensor
return _LEARNING_PHASE if _LEARNING_PHASE in {0, 1} else _LEARNING_PHASE_PLACEHOLDER
def set_learning_phase(value):
global _LEARNING_PHASE
if value not in {0, 1}:
raise ValueError('CNTK Backend: Set learning phase '
'with value %s is not supported, '
'expected 0 or 1.' % value)
_LEARNING_PHASE = value
def clear_session():
"""Reset learning phase flag for cntk backend.
"""
global _LEARNING_PHASE
global _LEARNING_PHASE_PLACEHOLDER
_LEARNING_PHASE = -1
_LEARNING_PHASE_PLACEHOLDER.value = np.asarray(1.0)
def in_train_phase(x, alt, training=None):
global _LEARNING_PHASE
if training is None:
training = learning_phase()
uses_learning_phase = True
else:
uses_learning_phase = False
# CNTK currently don't support cond op, so here we use
# element_select approach as workaround. It may have
# perf issue, will resolve it later with cntk cond op.
if callable(x) and isinstance(x, C.cntk_py.Function) is False:
x = x()
if callable(alt) and isinstance(alt, C.cntk_py.Function) is False:
alt = alt()
if training is True:
x._uses_learning_phase = uses_learning_phase
return x
else:
# if _LEARNING_PHASE is static
if isinstance(training, int) or isinstance(training, bool):
result = x if training == 1 or training is True else alt
else:
result = C.element_select(training, x, alt)
result._uses_learning_phase = uses_learning_phase
return result
def in_test_phase(x, alt, training=None):
return in_train_phase(alt, x, training=training)
def _convert_string_dtype(dtype):
# cntk only support float32 and float64
if dtype == 'float32':
return np.float32
elif dtype == 'float64':
return np.float64
else:
# cntk only running with float,
# try to cast to float to run the model
return np.float32
def _convert_dtype_string(dtype):
if dtype == np.float32:
return 'float32'
elif dtype == np.float64:
return 'float64'
else:
raise ValueError('CNTK Backend: Unsupported dtype: %s. '
'CNTK only supports float32 and '
'float64.' % dtype)
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if name is None:
name = ''
if isinstance(
value,
C.variables.Constant) or isinstance(
value,
C.variables.Parameter):
value = value.value
# we don't support init parameter with symbolic op, so eval it first as
# workaround
if isinstance(value, C.cntk_py.Function):
value = eval(value)
shape = value.shape if hasattr(value, 'shape') else ()
if hasattr(value, 'dtype') and value.dtype != dtype and len(shape) > 0:
value = value.astype(dtype)
# TODO: remove the conversion when cntk supports int32, int64
# https://docs.microsoft.com/en-us/python/api/cntk.variables.parameter
dtype = 'float32' if 'int' in str(dtype) else dtype
v = C.parameter(shape=shape,
init=value,
dtype=dtype,
name=_prepare_name(name, 'variable'))
v._keras_shape = v.shape
v._uses_learning_phase = False
v.constraint = constraint
return v
def bias_add(x, bias, data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
dims = len(x.shape)
if dims > 0 and x.shape[0] == C.InferredDimension:
dims -= 1
bias_dims = len(bias.shape)
if bias_dims != 1 and bias_dims != dims:
raise ValueError('Unexpected bias dimensions %d, '
'expected 1 or %d dimensions' % (bias_dims, dims))
if dims == 4:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1, 1, 1)
else:
shape = (bias.shape[3],) + bias.shape[:3]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, 1, 1, bias.shape[0])
else:
shape = bias.shape
elif dims == 3:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1, 1)
else:
shape = (bias.shape[2],) + bias.shape[:2]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, 1, bias.shape[0])
else:
shape = bias.shape
elif dims == 2:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1)
else:
shape = (bias.shape[1],) + bias.shape[:1]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, bias.shape[0])
else:
shape = bias.shape
else:
shape = bias.shape
return x + reshape(bias, shape)
def eval(x):
if isinstance(x, C.cntk_py.Function):
return x.eval()
elif isinstance(x, C.variables.Constant) or isinstance(x, C.variables.Parameter):
return x.value
else:
raise ValueError('CNTK Backend: `eval` method on '
'`%s` type is not supported. '
'CNTK only supports `eval` with '
'`Function`, `Constant` or '
'`Parameter`.' % type(x))
def placeholder(
shape=None,
ndim=None,
dtype=None,
sparse=False,
name=None,
dynamic_axis_num=1):
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
dynamic_dimension = C.FreeDimension if _get_cntk_version() >= 2.2 else C.InferredDimension
cntk_shape = [dynamic_dimension if s is None else s for s in shape]
cntk_shape = tuple(cntk_shape)
if dynamic_axis_num > len(cntk_shape):
raise ValueError('CNTK backend: creating placeholder with '
'%d dimension is not supported, at least '
'%d dimensions are needed.'
% (len(cntk_shape, dynamic_axis_num)))
if name is None:
name = ''
cntk_shape = cntk_shape[dynamic_axis_num:]
x = C.input(
shape=cntk_shape,
dtype=_convert_string_dtype(dtype),
is_sparse=sparse,
name=name)
x._keras_shape = shape
x._uses_learning_phase = False
x._cntk_placeholder = True
return x
def is_placeholder(x):
"""Returns whether `x` is a placeholder.
# Arguments
x: A candidate placeholder.
# Returns
Boolean.
"""
return hasattr(x, '_cntk_placeholder') and x._cntk_placeholder
def is_keras_tensor(x):
if not is_tensor(x):
raise ValueError('Unexpectedly found an instance of type `' +
str(type(x)) + '`. '
'Expected a symbolic tensor instance.')
return hasattr(x, '_keras_history')
def is_tensor(x):
return isinstance(x, (C.variables.Constant,
C.variables.Variable,
C.variables.Parameter,
C.ops.functions.Function))
def shape(x):
shape = list(int_shape(x))
num_dynamic = _get_dynamic_axis_num(x)
non_dyn_shape = []
for i in range(len(x.shape)):
if shape[i + num_dynamic] is None:
non_dyn_shape.append(x.shape[i])
else:
non_dyn_shape.append(shape[i + num_dynamic])
return shape[:num_dynamic] + non_dyn_shape
def is_sparse(tensor):
return tensor.is_sparse
def int_shape(x):
if hasattr(x, '_keras_shape'):
return x._keras_shape
shape = x.shape
if hasattr(x, 'dynamic_axes'):
dynamic_shape = [None for a in x.dynamic_axes]
shape = tuple(dynamic_shape) + shape
return shape
def ndim(x):
shape = int_shape(x)
return len(shape)
def _prepare_name(name, default):
prefix = '_'.join(NAME_SCOPE_STACK)
if name is None or name == '':
return prefix + '/' + default
return prefix + '/' + name
def constant(value, dtype=None, shape=None, name=None):
if dtype is None:
dtype = floatx()
if shape is None:
shape = ()
np_value = value * np.ones(shape)
const = C.constant(np_value,
dtype=dtype,
name=_prepare_name(name, 'constant'))
const._keras_shape = const.shape
const._uses_learning_phase = False
return const
def random_binomial(shape, p=0.0, dtype=None, seed=None):
# use numpy workaround now
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e7)
np.random.seed(seed)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
size = 1
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
size *= _
binomial = np.random.binomial(1, p, size).astype(dtype).reshape(shape)
return variable(value=binomial, dtype=dtype)
def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None):
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
return random_uniform_variable(shape, minval, maxval, dtype, seed)
def random_uniform_variable(shape, low, high,
dtype=None, name=None, seed=None):
if dtype is None:
dtype = floatx()
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e3)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
if name is None:
name = ''
scale = (high - low) / 2
p = C.parameter(
shape,
init=C.initializer.uniform(
scale,
seed=seed),
dtype=dtype,
name=name)
return variable(value=p.value + low + scale)
def random_normal_variable(
shape,
mean,
scale,
dtype=None,
name=None,
seed=None):
if dtype is None:
dtype = floatx()
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e7)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
if name is None:
name = ''
return C.parameter(
shape=shape,
init=C.initializer.normal(
scale=scale,
seed=seed),
dtype=dtype,
name=name)
def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
if dtype is None:
dtype = floatx()
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
# how to apply mean and stddev
return random_normal_variable(shape=shape, mean=mean, scale=1.0, seed=seed)
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
if seed is None:
seed = np.random.randint(1, 10e6)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
return C.parameter(
shape, init=C.initializer.truncated_normal(
stddev, seed=seed), dtype=dtype)
def dtype(x):
return _convert_dtype_string(x.dtype)
def zeros(shape, dtype=None, name=None):
if dtype is None:
dtype = floatx()
ctype = _convert_string_dtype(dtype)
return variable(value=np.zeros(shape, ctype), dtype=dtype, name=name)
def ones(shape, dtype=None, name=None):
if dtype is None:
dtype = floatx()
ctype = _convert_string_dtype(dtype)
return variable(value=np.ones(shape, ctype), dtype=dtype, name=name)
def eye(size, dtype=None, name=None):
if dtype is None:
dtype = floatx()
return variable(np.eye(size), dtype, name)
def zeros_like(x, dtype=None, name=None):
return x * 0
def ones_like(x, dtype=None, name=None):
return zeros_like(x) + 1
def count_params(x):
for _ in x.shape:
if _ == C.InferredDimension or _ == C.FreeDimension:
raise ValueError('CNTK backend: `count_params` with dynamic '
'shape is not supported. Please provide '
'fixed dimension instead of `None`.')
return np.prod(int_shape(x))
def cast(x, dtype):
# cntk calculate everything in float, so don't need case from bool / int
return x
def dot(x, y):
if len(x.shape) > 2 or len(y.shape) > 2:
y_shape = int_shape(y)
if len(y_shape) > 2:
permutation = [len(y_shape) - 2]
permutation += list(range(len(y_shape) - 2))
permutation += [len(y_shape) - 1]
y = C.transpose(y, perm=permutation)
return C.times(x, y, len(y_shape) - 1)
else:
return C.times(x, y)
def batch_dot(x, y, axes=None):
x_shape = int_shape(x)
y_shape = int_shape(y)
if isinstance(axes, int):
axes = (axes, axes)
if axes is None:
# behaves like tf.batch_matmul as default
axes = [len(x_shape) - 1, len(y_shape) - 2]
if b_any([isinstance(a, (list, tuple)) for a in axes]):
raise ValueError('Multiple target dimensions are not supported. ' +
'Expected: None, int, (int, int), ' +
'Provided: ' + str(axes))
if len(x_shape) == 2 and len(y_shape) == 2:
if axes[0] == axes[1]:
result = sum(x * y, axis=axes[0], keepdims=True)
return result if axes[0] == 1 else transpose(result)
else:
return sum(x * transpose(y), axis=axes[0], keepdims=True)
else:
if len(y_shape) == 2:
y = expand_dims(y)
normalized_axis = []
normalized_axis.append(_normalize_axis(axes[0], x)[0])
normalized_axis.append(_normalize_axis(axes[1], y)[0])
# transpose
i = normalized_axis[0]
while i < len(x.shape) - 1:
x = C.swapaxes(x, i, i + 1)
i += 1
i = normalized_axis[1]
while i > 0:
y = C.swapaxes(y, i, i - 1)
i -= 1
result = C.times(x, y, output_rank=(len(y.shape) - 1)
if len(y.shape) > 1 else 1)
if len(y_shape) == 2:
result = squeeze(result, -1)
return result
def transpose(x):
return C.swapaxes(x, 0, 1)
def gather(reference, indices):
# There is a bug in cntk gather op which may cause crash.
# We have made a fix but not catched in CNTK 2.1 release.
# Will update with gather op in next release
if _get_cntk_version() >= 2.2:
return C.ops.gather(reference, indices)
else:
num_classes = reference.shape[0]
one_hot_matrix = C.ops.one_hot(indices, num_classes)
return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1)
def _remove_dims(x, axis, keepdims=False):
if keepdims is False and isinstance(axis, list):
# sequence axis is removed by default, so don't need reshape on it
reduce_axes = []
for a in axis:
if isinstance(a, C.Axis) is False:
reduce_axes.append(a)
return _reshape_dummy_dim(x, reduce_axes)
else:
if isinstance(axis, list):
has_seq = False
for a in axis:
if isinstance(a, C.Axis):
has_seq = True
break
if has_seq:
nones = _get_dynamic_axis_num(x)
x = expand_dims(x, nones)
return x
def max(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_max')
return _remove_dims(output, axis, keepdims)
def min(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_min')
return _remove_dims(output, axis, keepdims)
def sum(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_sum')
return _remove_dims(output, axis, keepdims)
def prod(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_prod')
return _remove_dims(output, axis, keepdims)
def logsumexp(x, axis=None, keepdims=False):
return log(sum(exp(x), axis=axis, keepdims=keepdims))
def var(x, axis=None, keepdims=False):
m = mean(x, axis, keepdims=True)
devs_squared = C.square(x - m)
return mean(devs_squared, axis=axis, keepdims=keepdims)
def std(x, axis=None, keepdims=False):
return C.sqrt(var(x, axis=axis, keepdims=keepdims))
def expand_dims(x, axis=-1):
shape = list(int_shape(x))
nones = _get_dynamic_axis_num(x)
index = axis if axis >= 0 else len(shape) + 1
shape.insert(index, 1)
new_shape = shape[nones:]
new_shape = tuple(
[C.InferredDimension if _ is None else _ for _ in new_shape])
result = C.reshape(x, new_shape)
if index < nones:
result._keras_shape = shape
return result
def squeeze(x, axis):
if isinstance(axis, tuple):
axis = list(axis)
if not isinstance(axis, list):
axis = [axis]
shape = list(int_shape(x))
_axis = []
for _ in axis:
if isinstance(_, int):
_axis.append(_ if _ >= 0 else _ + len(shape))
if len(_axis) == 0:
return x
nones = _get_dynamic_axis_num(x)
for _ in sorted(_axis, reverse=True):
del shape[_]
new_shape = shape[nones:]
new_shape = tuple([C.InferredDimension if _ == C.FreeDimension else _ for _ in new_shape])
return C.reshape(x, new_shape)
def tile(x, n):
if isinstance(n, int):
n = (n,)
elif isinstance(n, list):
n = tuple(n)
shape = int_shape(x)
num_dynamic_axis = _get_dynamic_axis_num(x)
# Padding the axis
if len(n) < len(shape):
n = tuple([1 for _ in range(len(shape) - len(n))]) + n
if len(n) != len(shape):
raise NotImplementedError
i = num_dynamic_axis
for i, rep in enumerate(n):
if i >= num_dynamic_axis and shape[i] is not None:
tmp = [x] * rep
x = C.splice(*tmp, axis=i - num_dynamic_axis)
i += 1
return x
def _normalize_axis(axis, x):
shape = int_shape(x)
ndim = len(shape)
nones = _get_dynamic_axis_num(x)
if nones > ndim:
raise ValueError('CNTK Backend: tensor with keras shape: `%s` has '
'%d cntk dynamic axis, this is not expected, please '
'double check the keras shape history.' % (str(shape), nones))
# Current cntk does not support shape like (1, batch). so using the workaround
# here to mapping the correct axis. Will remove this tricky after we add support
# in native cntk op
cntk_axis = []
dynamic_axis_index = 0
for i in range(ndim):
if shape[i] is None and dynamic_axis_index < nones:
cntk_axis.append(x.dynamic_axes[dynamic_axis_index])
dynamic_axis_index += 1
else:
cntk_axis.append(i - dynamic_axis_index)
if dynamic_axis_index < nones:
i = 0
while dynamic_axis_index < nones:
cntk_axis[i] = x.dynamic_axes[dynamic_axis_index]
i += 1
dynamic_axis_index += 1
while i < len(cntk_axis):
cntk_axis[i] -= nones
i += 1
if isinstance(axis, tuple):
_axis = list(axis)
elif isinstance(axis, int):
_axis = [axis]
elif isinstance(axis, list):
_axis = list(axis)
else:
_axis = axis
if isinstance(_axis, list):
for i, a in enumerate(_axis):
if a is not None and a < 0:
_axis[i] = (a % ndim)
if _axis[i] is not None:
_axis[i] = cntk_axis[_axis[i]]
else:
if _axis is None:
_axis = C.Axis.all_axes()
return _axis
def _reshape_dummy_dim(x, axis):
shape = list(x.shape)
_axis = [_ + len(shape) if _ < 0 else _ for _ in axis]
if shape.count(C.InferredDimension) > 1 or shape.count(C.FreeDimension) > 1:
result = x
for index in sorted(_axis, reverse=True):
result = C.reshape(result,
shape=(),
begin_axis=index,
end_axis=index + 1)
return result
else:
for index in sorted(_axis, reverse=True):
del shape[index]
shape = [C.InferredDimension if _ == C.FreeDimension else _ for _ in shape]
return C.reshape(x, shape)
def mean(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_mean')
return _remove_dims(output, axis, keepdims)
def any(x, axis=None, keepdims=False):
reduce_result = sum(x, axis, keepdims=keepdims)
any_matrix = C.element_select(
reduce_result,
ones_like(reduce_result),
zeros_like(reduce_result))
if len(reduce_result.shape) == 0 and _get_dynamic_axis_num(x) == 0:
return C.reduce_sum(any_matrix)
else:
return any_matrix
def all(x, axis=None, keepdims=False):
reduce_result = prod(x, axis, keepdims=keepdims)
all_matrix = C.element_select(
reduce_result,
ones_like(reduce_result),
zeros_like(reduce_result))
if len(reduce_result.shape) == 0 and _get_dynamic_axis_num(x) == 0:
return C.reduce_sum(all_matrix)
else:
return all_matrix
def classification_error(target, output, axis=-1):
return C.ops.reduce_mean(
C.equal(
argmax(
output,
axis=-1),
argmax(
target,
axis=-1)),
axis=C.Axis.all_axes())
def argmax(x, axis=-1):
axis = [axis]
axis = _normalize_axis(axis, x)
output = C.ops.argmax(x, axis=axis[0])
return _reshape_dummy_dim(output, axis)
def argmin(x, axis=-1):
axis = [axis]
axis = _normalize_axis(axis, x)
output = C.ops.argmin(x, axis=axis[0])
return _reshape_dummy_dim(output, axis)
def square(x):
return C.square(x)
def abs(x):
return C.abs(x)
def sqrt(x):
return C.sqrt(x)
def exp(x):
return C.exp(x)
def log(x):
return C.log(x)
def round(x):
return C.round(x)
def sigmoid(x):
return C.sigmoid(x)
def sign(x):
return x / C.abs(x)
def pow(x, a):
return C.pow(x, a)
def clip(x, min_value, max_value):
if max_value is not None and max_value < min_value:
max_value = min_value
if max_value is None:
max_value = np.inf
if min_value is None:
min_value = -np.inf
return C.clip(x, min_value, max_value)
def binary_crossentropy(target, output, from_logits=False):
if from_logits:
output = C.sigmoid(output)
output = C.clip(output, epsilon(), 1.0 - epsilon())
output = -target * C.log(output) - (1.0 - target) * C.log(1.0 - output)
return output
def get_variable_shape(x):
return int_shape(x)
def update(x, new_x):
return C.assign(x, new_x)
def moving_average_update(variable, value, momentum):
return C.assign(variable, variable * momentum + value * (1. - momentum))
def update_add(x, increment):
result = x + increment
return C.assign(x, result)
def gradients(loss, variables):
# cntk does not support gradients as symbolic op,
# to hook up with keras model
# we will return a constant as place holder, the cntk learner will apply
# the gradient during training.
global grad_parameter_dict
if isinstance(variables, list) is False:
variables = [variables]
grads = []
for v in variables:
g = C.constant(0, shape=v.shape, name='keras_grad_placeholder')
grads.append(g)
grad_parameter_dict[g] = v
return grads
def equal(x, y):
return C.equal(x, y)
def not_equal(x, y):
return C.not_equal(x, y)
def greater(x, y):
return C.greater(x, y)
def greater_equal(x, y):
return C.greater_equal(x, y)
def less(x, y):
return C.less(x, y)
def less_equal(x, y):
return C.less_equal(x, y)
def maximum(x, y):
return C.element_max(x, y)
def minimum(x, y):
return C.element_min(x, y)
def sin(x):
return C.sin(x)
def cos(x):
return C.cos(x)
def normalize_batch_in_training(x, gamma, beta,
reduction_axes, epsilon=1e-3):
if gamma is None:
if beta is None:
gamma = ones_like(x)
else:
gamma = ones_like(beta)
if beta is None:
if gamma is None:
beta = zeros_like(x)
else:
beta = zeros_like(gamma)
mean, variant = _moments(x, _normalize_axis(reduction_axes, x))
if sorted(reduction_axes) == list(range(ndim(x)))[:-1]:
normalized = batch_normalization(
x, mean, variant, beta, gamma, epsilon)
else:
# need broadcasting
target_shape = []
x_shape = int_shape(x)
# skip the batch axis
for axis in range(1, ndim(x)):
if axis in reduction_axes:
target_shape.append(1)
if ndim(gamma) > axis:
gamma = C.reduce_mean(gamma, axis - 1)
beta = C.reduce_mean(beta, axis - 1)
else:
target_shape.append(x_shape[axis])
broadcast_mean = C.reshape(mean, target_shape)
broadcast_var = C.reshape(variant, target_shape)
broadcast_gamma = C.reshape(gamma, target_shape)
broadcast_beta = C.reshape(beta, target_shape)
normalized = batch_normalization(
x,
broadcast_mean,
broadcast_var,
broadcast_beta,
broadcast_gamma,
epsilon)
return normalized, mean, variant
def _moments(x, axes=None, shift=None, keep_dims=False):
_axes = tuple(axes)
if shift is None:
shift = x
# Compute true mean while keeping the dims for proper broadcasting.
for axis in _axes:
shift = C.reduce_mean(shift, axis=axis)
shift = C.stop_gradient(shift)
shifted_mean = C.minus(x, shift)
for axis in _axes:
shifted_mean = C.reduce_mean(shifted_mean, axis=axis)
variance_mean = C.square(C.minus(x, shift))
for axis in _axes:
variance_mean = C.reduce_mean(variance_mean, axis=axis)
variance = C.minus(variance_mean, C.square(shifted_mean))
mean = C.plus(shifted_mean, shift)
if not keep_dims:
mean = squeeze(mean, _axes)
variance = squeeze(variance, _axes)
return mean, variance
def batch_normalization(x, mean, var, beta, gamma, epsilon=1e-3):
# The mean / var / beta / gamma may be processed by broadcast
# so it may have an extra batch axis with 1, it is not needed
# in cntk, need to remove those dummy axis.
if ndim(mean) == ndim(x) and shape(mean)[0] == 1:
mean = _reshape_dummy_dim(mean, [0])
if ndim(var) == ndim(x) and shape(var)[0] == 1:
var = _reshape_dummy_dim(var, [0])
if gamma is None:
gamma = ones_like(var)
elif ndim(gamma) == ndim(x) and shape(gamma)[0] == 1:
gamma = _reshape_dummy_dim(gamma, [0])
if beta is None:
beta = zeros_like(mean)
elif ndim(beta) == ndim(x) and shape(beta)[0] == 1:
beta = _reshape_dummy_dim(beta, [0])
return (x - mean) / (C.sqrt(var) + epsilon) * gamma + beta
def concatenate(tensors, axis=-1):
if len(tensors) == 0:
return None
axis = [axis]
axis = _normalize_axis(axis, tensors[0])
return C.splice(*tensors, axis=axis[0])
def flatten(x):
return reshape(x, (-1,))
def reshape(x, shape):
shape = tuple([C.InferredDimension if _ == C.FreeDimension else _ for _ in shape])
if isinstance(x, C.variables.Parameter):
return C.reshape(x, shape)
else:
num_dynamic_axis = _get_dynamic_axis_num(x)
if num_dynamic_axis == 1 and len(shape) > 0 and shape[0] == -1:
# collapse axis with batch axis
if b_any(_ == C.InferredDimension for _ in x.shape) or b_any(
_ == C.FreeDimension for _ in x.shape):
warnings.warn(
'Warning: CNTK backend does not support '
'collapse of batch axis with inferred dimension. '
'The reshape did not take place.')
return x
return _reshape_batch(x, shape)
else:
# no collapse, then first need to padding the shape
if num_dynamic_axis >= len(shape):
i = 0
while i < len(shape):
if shape[i] is None or shape[i] == -1:
i += 1
else:
break
shape = tuple([-1 for _ in range(num_dynamic_axis - i)]) + shape
new_shape = list(shape)
new_shape = new_shape[num_dynamic_axis:]
new_shape = [C.InferredDimension if _ is None else _ for _ in new_shape]
return C.reshape(x, new_shape)
def permute_dimensions(x, pattern):
dims = len(int_shape(x))
num_dynamic_axis = _get_dynamic_axis_num(x)
if isinstance(pattern, list):
current_layout = [i for i in range(dims)]
else:
current_layout = tuple([i for i in range(dims)])
if num_dynamic_axis > 0 and pattern[:num_dynamic_axis] != current_layout[:num_dynamic_axis]:
raise ValueError('CNTK backend: the permute pattern %s '
'requested permute on dynamic axis, '
'which is not supported. Please do permute '
'on static axis.' % pattern)
axis = list(pattern)
axis = axis[num_dynamic_axis:]
axis = _normalize_axis(axis, x)
return C.transpose(x, axis)
def resize_images(x, height_factor, width_factor, data_format):
if data_format == 'channels_first':
output = repeat_elements(x, height_factor, axis=2)
output = repeat_elements(output, width_factor, axis=3)
return output
elif data_format == 'channels_last':
output = repeat_elements(x, height_factor, axis=1)
output = repeat_elements(output, width_factor, axis=2)
return output
else:
raise ValueError('CNTK Backend: Invalid data_format:', data_format)
def resize_volumes(x, depth_factor, height_factor, width_factor, data_format):
if data_format == 'channels_first':
output = repeat_elements(x, depth_factor, axis=2)
output = repeat_elements(output, height_factor, axis=3)
output = repeat_elements(output, width_factor, axis=4)
return output
elif data_format == 'channels_last':
output = repeat_elements(x, depth_factor, axis=1)
output = repeat_elements(output, height_factor, axis=2)
output = repeat_elements(output, width_factor, axis=3)
return output
else:
raise ValueError('CNTK Backend: Invalid data_format:', data_format)
def repeat_elements(x, rep, axis):
axis = _normalize_axis(axis, x)
axis = axis[0]
slices = []
shape = x.shape
i = 0
while i < shape[axis]:
tmp = C.ops.slice(x, axis, i, i + 1)
for _ in range(rep):
slices.append(tmp)
i += 1
return C.splice(*slices, axis=axis)
def repeat(x, n):
# this is a workaround for recurrent layer
# if n is inferred dimension,
# we can't figure out how to repeat it in cntk now
# return the same x to take cntk broadcast feature
# to make the recurrent layer work.
# need to be fixed in GA.
if n is C.InferredDimension or n is C.FreeDimension:
return x
index = 1 - _get_dynamic_axis_num(x)
if index < 0 or index > 1:
raise NotImplementedError
new_shape = list(x.shape)
new_shape.insert(index, 1)
new_shape = tuple(new_shape)
x = C.reshape(x, new_shape)
temp = [x] * n
return C.splice(*temp, axis=index)
def tanh(x):
return C.tanh(x)
def _static_rnn(step_function, inputs, initial_states,
go_backwards=False, mask=None, constants=None,
unroll=False, input_length=None):
shape = int_shape(inputs)
dims = len(shape)
uses_learning_phase = False
if dims < 3:
raise ValueError('Input should be at least 3D.')
# if the second axis is static axis, CNTK will do unroll by default
if shape[1] is None:
raise ValueError('CNTK Backend: the input of static rnn '
'has shape `%s`, the second axis '
'is not static. If you want to run '
'rnn with non-static axis, please try '
'dynamic rnn with sequence axis.' % shape)
if constants is None:
constants = []
if mask is not None:
mask_shape = int_shape(mask)
if len(mask_shape) == dims - 1:
mask = expand_dims(mask)
nones = _get_dynamic_axis_num(inputs)
states = tuple(initial_states)
outputs = []
time_axis = 1 - nones if nones > 0 else 1
if go_backwards:
i = shape[1] - 1
while i >= 0:
current = C.ops.slice(inputs, time_axis, i, i + 1)
# remove dummy dimension
current = squeeze(current, time_axis)
output, new_states = step_function(
current, tuple(states) + tuple(constants))
if getattr(output, '_uses_learning_phase', False):
uses_learning_phase = True
if mask is not None:
mask_slice = C.ops.slice(mask, time_axis, i, i + 1)
mask_slice = squeeze(mask_slice, time_axis)
if len(outputs) == 0:
prev_output = zeros_like(output)
else:
prev_output = outputs[-1]
output = C.ops.element_select(mask_slice, output, prev_output)
return_states = []
for s, n_s in zip(states, new_states):
return_states.append(
C.ops.element_select(
mask_slice, n_s, s))
new_states = return_states
outputs.append(output)
states = new_states
i -= 1
else:
i = 0
while i < shape[1]:
current = C.ops.slice(inputs, time_axis, i, i + 1)
# remove dummy dimension
current = squeeze(current, 1)
output, new_states = step_function(
current, tuple(states) + tuple(constants))
if getattr(output, '_uses_learning_phase', False):
uses_learning_phase = True
if mask is not None:
mask_slice = C.ops.slice(mask, time_axis, i, i + 1)
mask_slice = squeeze(mask_slice, 1)
if len(outputs) == 0:
prev_output = zeros_like(output)
else:
prev_output = outputs[-1]
output = C.ops.element_select(mask_slice, output, prev_output)
return_states = []
for s, n_s in zip(states, new_states):
return_states.append(
C.ops.element_select(
mask_slice, n_s, s))
new_states = return_states
outputs.append(output)
states = new_states[:len(states)]
i += 1
i = 1
# add the time_step axis back
final_output = expand_dims(outputs[0], 1)
last_output = outputs[0]
while i < len(outputs):
# add the time_step axis back
output_slice = expand_dims(outputs[i], 1)
final_output = C.splice(final_output, output_slice, axis=time_axis)
last_output = outputs[i]
i += 1
last_output._uses_learning_phase = uses_learning_phase
return last_output, final_output, states
def rnn(step_function, inputs, initial_states,
go_backwards=False, mask=None, constants=None,
unroll=False, input_length=None):
shape = int_shape(inputs)
dims = len(shape)
global uses_learning_phase
uses_learning_phase = False
if dims < 3:
raise ValueError('CNTK Backend: the input of rnn has only rank %d '
'Need at least rank 3 to run RNN.' % dims)
if _get_dynamic_axis_num(inputs) == 0 or unroll:
return _static_rnn(
step_function,
inputs,
initial_states,
go_backwards,
mask,
constants,
unroll,
input_length)
if constants is None:
constants = []
num_time_step = shape[1]
if num_time_step is None and not has_seq_axis(inputs):
num_time_step = inputs.shape[0]
initial = []
for s in initial_states:
if _get_dynamic_axis_num(s) == 0:
if hasattr(C, 'to_batch'):
initial.append(C.to_batch(s))
else:
initial.append(C.user_function(ConvertToBatch(s)))
else:
initial.append(s)
need_convert = not has_seq_axis(inputs)
if go_backwards and need_convert is False:
raise NotImplementedError('CNTK Backend: `go_backwards` is not supported with '
'variable-length sequences. Please specify a '
'static length for your sequences.')
rnn_inputs = inputs
if need_convert:
if go_backwards:
rnn_inputs = reverse(rnn_inputs, 1)
rnn_inputs = C.to_sequence(rnn_inputs)
rnn_constants = []
for constant in constants:
if isinstance(constant, list):
new_c = []
for c in constant:
if _get_dynamic_axis_num(c) == 1:
new_c.append(C.sequence.broadcast_as(c, rnn_inputs))
else:
new_c.append(c)
rnn_constants.append(new_c)
else:
if _get_dynamic_axis_num(constant) == 1:
rnn_constants.append(C.sequence.broadcast_as(constant, rnn_inputs))
else:
rnn_constants.append(constant)
else:
rnn_constants = constants
if mask is not None and not has_seq_axis(mask):
if go_backwards:
mask = reverse(mask, 1)
if len(int_shape(mask)) == 2:
mask = expand_dims(mask)
mask = C.to_sequence_like(mask, rnn_inputs)
states = tuple(initial)
with C.default_options(axis_offset=1):
def _recurrence(x, states, m):
# create place holder
place_holders = [C.placeholder(dynamic_axes=x.dynamic_axes) for _ in states]
past_values = []
for s, p in zip(states, place_holders):
past_values.append(C.sequence.past_value(p, s))
new_output, new_states = step_function(
x, tuple(past_values) + tuple(rnn_constants))
if getattr(new_output, '_uses_learning_phase', False):
global uses_learning_phase
uses_learning_phase = True
if m is not None:
new_states = [C.element_select(m, n, s) for n, s in zip(new_states, past_values)]
n_s = []
for o, p in zip(new_states, place_holders):
n_s.append(o.replace_placeholders({p: o.output}))
if len(n_s) > 0:
new_output = n_s[0]
return new_output, n_s
final_output, final_states = _recurrence(rnn_inputs, states, mask)
last_output = C.sequence.last(final_output)
last_states = [C.sequence.last(s) for s in final_states]
if need_convert:
final_output = C.sequence.unpack(final_output, 0, no_mask_output=True)
if num_time_step is not None and num_time_step is not C.FreeDimension:
final_output = _reshape_sequence(final_output, num_time_step)
f_stats = []
for l_s, i_s in zip(last_states, initial_states):
if _get_dynamic_axis_num(i_s) == 0 and _get_dynamic_axis_num(l_s) == 1:
if hasattr(C, 'unpack_batch'):
f_stats.append(C.unpack_batch(l_s))
else:
f_stats.append(C.user_function(ConvertToStatic(l_s, batch_size=i_s.shape[0])))
else:
f_stats.append(l_s)
last_output._uses_learning_phase = uses_learning_phase
return last_output, final_output, f_stats
def has_seq_axis(x):
return hasattr(x, 'dynamic_axes') and len(x.dynamic_axes) > 1
def l2_normalize(x, axis=None):
axis = [axis]
axis = _normalize_axis(axis, x)
norm = C.sqrt(C.reduce_sum(C.square(x), axis=axis[0]))
return x / norm
def hard_sigmoid(x):
x = (0.2 * x) + 0.5
x = C.clip(x, 0.0, 1.0)
return x
def conv1d(x, kernel, strides=1, padding='valid',
data_format=None, dilation_rate=1):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if padding == 'causal':
# causal (dilated) convolution:
left_pad = dilation_rate * (kernel.shape[0] - 1)
x = temporal_padding(x, (left_pad, 0))
padding = 'valid'
if data_format == 'channels_last':
x = C.swapaxes(x, 0, 1)
kernel = C.swapaxes(kernel, 0, 2)
padding = _preprocess_border_mode(padding)
strides = [strides]
x = C.convolution(
kernel,
x,
strides=tuple(strides),
auto_padding=[
False,
padding])
if data_format == 'channels_last':
x = C.swapaxes(x, 0, 1)
return x
def conv2d(x, kernel, strides=(1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
kernel = _preprocess_conv2d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
if dilation_rate == (1, 1):
strides = (1,) + strides
x = C.convolution(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding])
else:
assert dilation_rate[0] == dilation_rate[1]
assert strides == (1, 1), 'Invalid strides for dilated convolution'
x = C.convolution(
kernel,
x,
strides=dilation_rate[0],
auto_padding=[
False,
padding,
padding])
return _postprocess_conv2d_output(x, data_format)
def separable_conv1d(x, depthwise_kernel, pointwise_kernel, strides=1,
padding='valid', data_format=None, dilation_rate=1):
raise NotImplementedError
def separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1),
padding='valid', data_format=None, dilation_rate=(1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
depthwise_kernel = _preprocess_conv2d_kernel(depthwise_kernel, data_format)
depthwise_kernel = C.reshape(C.transpose(depthwise_kernel, (1, 0, 2, 3)),
(-1, 1) + depthwise_kernel.shape[2:])
pointwise_kernel = _preprocess_conv2d_kernel(pointwise_kernel, data_format)
padding = _preprocess_border_mode(padding)
if dilation_rate == (1, 1):
strides = (1,) + strides
x = C.convolution(depthwise_kernel, x,
strides=strides,
auto_padding=[False, padding, padding],
groups=x.shape[0])
x = C.convolution(pointwise_kernel, x,
strides=(1, 1, 1),
auto_padding=[False])
else:
if dilation_rate[0] != dilation_rate[1]:
raise ValueError('CNTK Backend: non-square dilation_rate is '
'not supported.')
if strides != (1, 1):
raise ValueError('Invalid strides for dilated convolution')
x = C.convolution(depthwise_kernel, x,
strides=dilation_rate[0],
auto_padding=[False, padding, padding])
x = C.convolution(pointwise_kernel, x,
strides=(1, 1, 1),
auto_padding=[False])
return _postprocess_conv2d_output(x, data_format)
def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
depthwise_kernel = _preprocess_conv2d_kernel(depthwise_kernel, data_format)
depthwise_kernel = C.reshape(C.transpose(depthwise_kernel, (1, 0, 2, 3)),
(-1, 1) + depthwise_kernel.shape[2:])
padding = _preprocess_border_mode(padding)
if dilation_rate == (1, 1):
strides = (1,) + strides
x = C.convolution(depthwise_kernel, x,
strides=strides,
auto_padding=[False, padding, padding],
groups=x.shape[0])
else:
if dilation_rate[0] != dilation_rate[1]:
raise ValueError('CNTK Backend: non-square dilation_rate is '
'not supported.')
if strides != (1, 1):
raise ValueError('Invalid strides for dilated convolution')
x = C.convolution(depthwise_kernel, x,
strides=dilation_rate[0],
auto_padding=[False, padding, padding],
groups=x.shape[0])
return _postprocess_conv2d_output(x, data_format)
def conv3d(x, kernel, strides=(1, 1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv3d_input(x, data_format)
kernel = _preprocess_conv3d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
strides = strides + (strides[0],)
x = C.convolution(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding,
padding])
return _postprocess_conv3d_output(x, data_format)
def conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1),
padding='valid', data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv3d_input(x, data_format)
kernel = _preprocess_conv3d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
strides = (1,) + strides
# cntk output_shape does not include batch axis
output_shape = output_shape[1:]
# in keras2, need handle output shape in different format
if data_format == 'channels_last':
shape = list(output_shape)
shape[0] = output_shape[3]
shape[1] = output_shape[0]
shape[2] = output_shape[1]
shape[3] = output_shape[2]
output_shape = tuple(shape)
x = C.convolution_transpose(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding,
padding],
output_shape=output_shape)
return _postprocess_conv3d_output(x, data_format)
def pool2d(x, pool_size, strides=(1, 1),
padding='valid', data_format=None,
pool_mode='max'):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
padding = _preprocess_border_mode(padding)
strides = strides
pool_size = pool_size
x = _preprocess_conv2d_input(x, data_format)
if pool_mode == 'max':
x = C.pooling(
x,
C.MAX_POOLING,
pool_size,
strides,
auto_padding=[padding])
elif pool_mode == 'avg':
x = C.pooling(
x,
C.AVG_POOLING,
pool_size,
strides,
auto_padding=[padding])
else:
raise ValueError('Invalid pooling mode: ' + str(pool_mode))
return _postprocess_conv2d_output(x, data_format)
def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid',
data_format=None, pool_mode='max'):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
padding = _preprocess_border_mode(padding)
x = _preprocess_conv3d_input(x, data_format)
if pool_mode == 'max':
x = C.pooling(
x,
C.MAX_POOLING,
pool_size,
strides,
auto_padding=[padding])
elif pool_mode == 'avg':
x = C.pooling(
x,
C.AVG_POOLING,
pool_size,
strides,
auto_padding=[padding])
else:
raise ValueError('Invalid pooling mode: ' + str(pool_mode))
return _postprocess_conv3d_output(x, data_format)
def relu(x, alpha=0., max_value=None):
if alpha != 0.:
negative_part = C.relu(-x)
x = C.relu(x)
if max_value is not None:
x = C.clip(x, 0.0, max_value)
if alpha != 0.:
x -= alpha * negative_part
return x
def dropout(x, level, noise_shape=None, seed=None):
if level < 0. or level >= 1:
raise ValueError('CNTK Backend: Invalid dropout level %s, '
'must be in interval [0, 1].' % level)
return C.dropout(x, level)
def batch_flatten(x):
# cntk's batch axis is not in shape,
# so just flatten all the dim in x.shape
dim = np.prod(x.shape)
x = C.reshape(x, (-1,))
x._keras_shape = (None, dim)
return x
def softmax(x, axis=-1):
return C.softmax(x, axis=axis)
def softplus(x):
return C.softplus(x)
def softsign(x):
return x / (1 + C.abs(x))
def categorical_crossentropy(target, output, from_logits=False):
if from_logits:
result = C.cross_entropy_with_softmax(output, target)
# cntk's result shape is (batch, 1), while keras expect (batch, )
return C.reshape(result, ())
else:
# scale preds so that the class probas of each sample sum to 1
output /= C.reduce_sum(output, axis=-1)
# avoid numerical instability with epsilon clipping
output = C.clip(output, epsilon(), 1.0 - epsilon())
return -sum(target * C.log(output), axis=-1)
def sparse_categorical_crossentropy(target, output, from_logits=False):
target = C.one_hot(target, output.shape[-1])
target = C.reshape(target, output.shape)
return categorical_crossentropy(target, output, from_logits)
class Function(object):
def __init__(self, inputs, outputs, updates=[], **kwargs):
self.placeholders = inputs
self.trainer = None
self.unrelated_updates = None
self.updates = updates
if len(updates) > 0:
assert len(outputs) > 0
self.loss = outputs[0]
# need group update by gradient place holder
u_ops = []
unrelated_updates = []
for update in updates:
if isinstance(update, tuple):
if len(update) != 2:
raise NotImplementedError
else:
u = C.assign(update[0], update[1])
else:
u = update
if len(u.arguments) == 0:
u_ops.append(u)
else:
unrelated_updates.append(u)
update_func = C.combine([u.output for u in u_ops])
grads = update_func.find_all_with_name('keras_grad_placeholder')
u_list = []
p_list = []
for g in grads:
if g in grad_parameter_dict:
p_list.append(grad_parameter_dict[g])
u_list.append(g)
else:
raise ValueError(
'CNTK backend: when constructing trainer, '
'found gradient node `%s` which is not '
'related to any parameters in the model. '
'Please double check how the gradient node '
'is constructed.' % g)
if len(u_list) > 0:
learner = C.cntk_py.universal_learner(p_list, u_list, update_func)
criterion = (
outputs[0],
outputs[1]) if len(outputs) > 1 else (
outputs[0],
)
self.trainer = C.trainer.Trainer(
outputs[0], criterion, [learner])
self.trainer_output = tuple([f.output for f in criterion])
elif len(u_ops) > 0:
unrelated_updates.extend(u_ops)
if len(unrelated_updates) > 0:
self.unrelated_updates = C.combine([_.output for _ in unrelated_updates])
if self.trainer is None:
self.metrics_outputs = [f.output for f in outputs]
self.metrics_func = C.combine(self.metrics_outputs)
# cntk only could handle loss and 1 metric in trainer, for metrics more
# than 2, need manual eval
elif len(outputs) > 2:
self.metrics_outputs = [f.output for f in outputs[2:]]
self.metrics_func = C.combine(self.metrics_outputs)
else:
self.metrics_func = None
@staticmethod
def _is_input_shape_compatible(input, placeholder):
if hasattr(input, 'shape') and hasattr(placeholder, 'shape'):
num_dynamic = get_num_dynamic_axis(placeholder)
input_shape = input.shape[num_dynamic:]
placeholder_shape = placeholder.shape
for i, p in zip(input_shape, placeholder_shape):
if i != p and p != C.InferredDimension and p != C.FreeDimension:
return False
return True
def __call__(self, inputs):
global _LEARNING_PHASE_PLACEHOLDER
global _LEARNING_PHASE
assert isinstance(inputs, (list, tuple))
feed_dict = {}
for tensor, value in zip(self.placeholders, inputs):
# cntk only support calculate on float, do auto cast here
if (hasattr(value, 'dtype') and
value.dtype != np.float32 and
value.dtype != np.float64):
value = value.astype(np.float32)
if tensor == _LEARNING_PHASE_PLACEHOLDER:
_LEARNING_PHASE_PLACEHOLDER.value = np.asarray(value)
else:
# in current version cntk can't support input with variable
# length. Will support it in next release.
if not self._is_input_shape_compatible(value, tensor):
raise ValueError('CNTK backend: The placeholder has been resolved '
'to shape `%s`, but input shape is `%s`. Currently '
'CNTK can not take variable length inputs. Please '
'pass inputs that have a static shape.'
% (str(tensor.shape), str(value.shape)))
feed_dict[tensor] = value
updated = []
if self.trainer is not None:
input_dict = {}
for argument in self.loss.arguments:
if argument in feed_dict:
input_dict[argument] = feed_dict[argument]
else:
raise ValueError(
'CNTK backend: argument %s is not found in inputs. '
'Please double check the model and inputs in '
'`train_function`.' % argument.name)
result = self.trainer.train_minibatch(
input_dict, self.trainer_output)
assert(len(result) == 2)
outputs = result[1]
for o in self.trainer_output:
updated.append(outputs[o])
if self.metrics_func is not None:
input_dict = {}
for argument in self.metrics_func.arguments:
if argument in feed_dict:
input_dict[argument] = feed_dict[argument]
else:
raise ValueError('CNTK backend: metrics argument %s '
'is not found in inputs. Please double '
'check the model and inputs.' % argument.name)
# Some ops (like dropout) won't be applied during "eval" in cntk.
# They only evaluated in training phase. To make it work, call
# "forward" method to let cntk know we want to evaluate them.from
# But the assign ops won't be executed under this mode, that's why
# we need this check.
if (self.unrelated_updates is None and
(_LEARNING_PHASE_PLACEHOLDER.value == 1.0 or _LEARNING_PHASE == 1)):
_, output_values = self.metrics_func.forward(
input_dict,
self.metrics_func.outputs,
(self.metrics_func.outputs[0],),
as_numpy=False)
else:
output_values = self.metrics_func.eval(input_dict, as_numpy=False)
if isinstance(output_values, dict):
for o in self.metrics_outputs:
value = output_values[o]
v = value.asarray()
updated.append(v)
else:
v = output_values.asarray()
for o in self.metrics_outputs:
updated.append(v)
if self.unrelated_updates is not None:
input_dict = {}
for argument in self.unrelated_updates.arguments:
if argument in feed_dict:
input_dict[argument] = feed_dict[argument]
else:
raise ValueError(
'CNTK backend: assign ops argument %s '
'is not found in inputs. Please double '
'check the model and inputs.' % argument.name)
self.unrelated_updates.eval(input_dict, as_numpy=False)
return updated
def function(inputs, outputs, updates=[], **kwargs):
return Function(inputs, outputs, updates=updates, **kwargs)
def temporal_padding(x, padding=(1, 1)):
assert len(padding) == 2
num_dynamic_axis = _get_dynamic_axis_num(x)
base_shape = x.shape
if num_dynamic_axis > 0:
assert len(base_shape) == 2
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[padding, (0, 0)])
else:
x = _padding(x, padding, 0)
else:
assert len(base_shape) == 3
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[(0, 0), padding, (0, 0)])
else:
x = _padding(x, padding, 1)
return x
def _padding(x, pattern, axis):
base_shape = x.shape
if b_any([dim < 0 for dim in base_shape]):
raise ValueError('CNTK Backend: padding input tensor with '
'shape `%s` contains non-specified dimension, '
'which is not supported. Please give fixed '
'dimension to enable padding.' % base_shape)
if pattern[0] > 0:
prefix_shape = list(base_shape)
prefix_shape[axis] = pattern[0]
prefix_shape = tuple(prefix_shape)
x = C.splice(C.constant(value=0, shape=prefix_shape), x, axis=axis)
base_shape = x.shape
if pattern[1] > 0:
postfix_shape = list(base_shape)
postfix_shape[axis] = pattern[1]
postfix_shape = tuple(postfix_shape)
x = C.splice(x, C.constant(value=0, shape=postfix_shape), axis=axis)
return x
def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None):
assert len(padding) == 2
assert len(padding[0]) == 2
assert len(padding[1]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
num_dynamic_axis = _get_dynamic_axis_num(x)
base_shape = x.shape
if data_format == 'channels_first':
if num_dynamic_axis > 0:
assert len(base_shape) == 3
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1])])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
else:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], [0, 0], list(padding[0]), list(padding[1])])
else:
x = _padding(x, padding[0], 2)
x = _padding(x, padding[1], 3)
else:
if num_dynamic_axis > 0:
assert len(base_shape) == 3
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[list(padding[0]), list(padding[1]), [0, 0]])
else:
x = _padding(x, padding[0], 0)
x = _padding(x, padding[1], 1)
else:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), [0, 0]])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
return x
def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None):
assert len(padding) == 3
assert len(padding[0]) == 2
assert len(padding[1]) == 2
assert len(padding[2]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
num_dynamic_axis = _get_dynamic_axis_num(x)
base_shape = x.shape
if data_format == 'channels_first':
if num_dynamic_axis > 0:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), list(padding[2])])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
x = _padding(x, padding[2], 3)
else:
assert len(base_shape) == 5
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], [0, 0], list(padding[0]), list(padding[1]), list(padding[2])])
else:
x = _padding(x, padding[0], 2)
x = _padding(x, padding[1], 3)
x = _padding(x, padding[2], 4)
else:
if num_dynamic_axis > 0:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[list(padding[0]), list(padding[1]), list(padding[2]), [0, 0]])
else:
x = _padding(x, padding[0], 0)
x = _padding(x, padding[1], 1)
x = _padding(x, padding[2], 2)
else:
assert len(base_shape) == 5
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), list(padding[2]), [0, 0]])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
x = _padding(x, padding[2], 3)
return x
def one_hot(indices, num_classes):
return C.one_hot(indices, num_classes)
def get_value(x):
if isinstance(
x,
C.variables.Parameter) or isinstance(
x,
C.variables.Constant):
return x.value
else:
return eval(x)
def batch_get_value(xs):
result = []
for x in xs:
if (isinstance(x, C.variables.Parameter) or
isinstance(x, C.variables.Constant)):
result.append(x.value)
else:
result.append(eval(x))
return result
def set_value(x, value):
if (isinstance(x, C.variables.Parameter) or
isinstance(x, C.variables.Constant)):
if isinstance(value, (float, int)):
value = np.full(x.shape, value, dtype=floatx())
x.value = value
else:
raise NotImplementedError
def print_tensor(x, message=''):
return C.user_function(
LambdaFunc(x,
when=lambda x: True,
execute=lambda x: print(message)))
def batch_set_value(tuples):
for t in tuples:
x = t[0]
value = t[1]
if isinstance(value, np.ndarray) is False:
value = np.asarray(value)
if isinstance(x, C.variables.Parameter):
x.value = value
else:
raise NotImplementedError
def stop_gradient(variables):
if isinstance(variables, (list, tuple)):
return map(C.stop_gradient, variables)
else:
return C.stop_gradient(variables)
def switch(condition, then_expression, else_expression):
ndim_cond = ndim(condition)
ndim_expr = ndim(then_expression)
if ndim_cond > ndim_expr:
raise ValueError('Rank of condition should be less'
' than or equal to rank of then and'
' else expressions. ndim(condition)=' +
str(ndim_cond) + ', ndim(then_expression)'
'=' + str(ndim_expr))
elif ndim_cond < ndim_expr:
shape_expr = int_shape(then_expression)
ndim_diff = ndim_expr - ndim_cond
for i in range(ndim_diff):
condition = expand_dims(condition)
condition = tile(condition, shape_expr[ndim_cond + i])
return C.element_select(condition,
then_expression,
else_expression)
def elu(x, alpha=1.):
res = C.elu(x)
if alpha == 1:
return res
else:
return C.element_select(C.greater(x, 0), res, alpha * res)
def in_top_k(predictions, targets, k):
_targets = C.one_hot(targets, predictions.shape[-1])
result = C.classification_error(predictions, _targets, topN=k)
return 1 - C.reshape(result, shape=())
def conv2d_transpose(x, kernel, output_shape, strides=(1, 1),
padding='valid', data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
kernel = _preprocess_conv2d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
strides = (1,) + strides
# cntk output_shape does not include batch axis
output_shape = output_shape[1:]
# in keras2, need handle output shape in different format
if data_format == 'channels_last':
shape = list(output_shape)
shape[0] = output_shape[2]
shape[1] = output_shape[0]
shape[2] = output_shape[1]
output_shape = tuple(shape)
x = C.convolution_transpose(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding],
output_shape=output_shape)
return _postprocess_conv2d_output(x, data_format)
def identity(x, name=None):
if name is None:
name = '%s_alias' % x.name
return C.alias(x, name=name)
def _preprocess_conv2d_input(x, data_format):
if data_format == 'channels_last':
# TF uses the last dimension as channel dimension,
# instead of the 2nd one.
# TH input shape: (samples, input_depth, rows, cols)
# TF input shape: (samples, rows, cols, input_depth)
x = C.transpose(x, (2, 0, 1))
return x
def _preprocess_conv2d_kernel(kernel, data_format):
# As of Keras 2.0.0, all kernels are normalized
# on the format `(rows, cols, input_depth, depth)`,
# independently of `data_format`.
# CNTK expects `(depth, input_depth, rows, cols)`.
kernel = C.transpose(kernel, (3, 2, 0, 1))
return kernel
def _preprocess_border_mode(padding):
if padding == 'same':
padding = True
elif padding == 'valid':
padding = False
else:
raise ValueError('Invalid border mode: ' + str(padding))
return padding
def _postprocess_conv2d_output(x, data_format):
if data_format == 'channels_last':
x = C.transpose(x, (1, 2, 0))
return x
def _preprocess_conv3d_input(x, data_format):
if data_format == 'channels_last':
# TF uses the last dimension as channel dimension,
# instead of the 2nd one.
# TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
# TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3,
# input_depth)
x = C.transpose(x, (3, 0, 1, 2))
return x
def _preprocess_conv3d_kernel(kernel, dim_ordering):
kernel = C.transpose(kernel, (4, 3, 0, 1, 2))
return kernel
def _postprocess_conv3d_output(x, dim_ordering):
if dim_ordering == 'channels_last':
x = C.transpose(x, (1, 2, 3, 0))
return x
def _get_dynamic_axis_num(x):
if hasattr(x, 'dynamic_axes'):
return len(x.dynamic_axes)
else:
return 0
def _contain_seqence_axis(x):
if _get_dynamic_axis_num(x) > 1:
return x.dynamic_axes[1] == C.Axis.default_dynamic_axis()
else:
return False
def get_num_dynamic_axis(x):
return _get_dynamic_axis_num(x)
def _reduce_on_axis(x, axis, reduce_fun_name):
if isinstance(axis, list):
for a in axis:
if isinstance(a, C.Axis) \
and a != C.Axis.default_batch_axis() \
and hasattr(C.sequence, reduce_fun_name):
x = getattr(C.sequence, reduce_fun_name)(x, a)
else:
x = getattr(C, reduce_fun_name)(x, a)
else:
x = getattr(C, reduce_fun_name)(x, axis)
return x
def _reshape_sequence(x, time_step):
tmp_shape = list(int_shape(x))
tmp_shape[1] = time_step
return reshape(x, tmp_shape)
def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
stride = strides[0]
kernel_shape = int_shape(kernel)
output_length, feature_dim, filters = kernel_shape
xs = []
for i in range(output_length):
slice_length = slice(i * stride,
i * stride + kernel_size[0])
xs.append(reshape(inputs[:, slice_length, :],
(-1, 1, feature_dim)))
x_aggregate = concatenate(xs, axis=1)
# transpose kernel to output_filters first, to apply broadcast
weight = permute_dimensions(kernel, (2, 0, 1))
# Shape: (batch, filters, output_length, input_length * kernel_size)
output = x_aggregate * weight
# Shape: (batch, filters, output_length)
output = sum(output, axis=3)
# Shape: (batch, output_length, filters)
return permute_dimensions(output, (0, 2, 1))
def local_conv2d(inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
stride_row, stride_col = strides
output_row, output_col = output_shape
kernel_shape = int_shape(kernel)
_, feature_dim, filters = kernel_shape
xs = []
for i in range(output_row):
for j in range(output_col):
slice_row = slice(i * stride_row,
i * stride_row + kernel_size[0])
slice_col = slice(j * stride_col,
j * stride_col + kernel_size[1])
if data_format == 'channels_first':
xs.append(reshape(inputs[:, :, slice_row, slice_col],
(-1, 1, feature_dim)))
else:
xs.append(reshape(inputs[:, slice_row, slice_col, :],
(-1, 1, feature_dim)))
x_aggregate = concatenate(xs, axis=1)
# transpose kernel to put filters first
weight = permute_dimensions(kernel, (2, 0, 1))
# shape: batch, filters, output_length, input_length * kernel_size
output = x_aggregate * weight
# shape: batch, filters, output_length
output = sum(output, axis=3)
# shape: batch, filters, row, col
output = reshape(output,
(-1, filters, output_row, output_col))
if data_format == 'channels_last':
# shape: batch, row, col, filters
output = permute_dimensions(output, (0, 2, 3, 1))
return output
def reverse(x, axes):
if isinstance(axes, int):
axes = [axes]
cntk_axes = _normalize_axis(axes, x)
begin_index = [0 for _ in cntk_axes]
end_index = [0 for _ in cntk_axes]
strides = [-1 for _ in cntk_axes]
return C.slice(x, cntk_axes, begin_index, end_index, strides)
def _reshape_batch(x, shape):
# there is a bug in cntk 2.1's unpack_batch implementation
if hasattr(C, 'unpack_batch') and _get_cntk_version() >= 2.2:
const_a = C.unpack_batch(x)
const_a = C.reshape(const_a, shape)
return C.to_batch(const_a)
else:
return C.user_function(ReshapeBatch(x, shape[1:]))
def _get_cntk_version():
version = C.__version__
if version.endswith('+'):
version = version[:-1]
# for hot fix, ignore all the . except the first one.
if len(version) > 2 and version[1] == '.':
version = version[:2] + version[2:].replace('.', '')
try:
return float(version)
except:
warnings.warn(
'CNTK backend warning: CNTK version not detected. '
'Will using CNTK 2.0 GA as default.')
return float(2.0)
class ReshapeBatch(C.ops.functions.UserFunction):
def __init__(self, input, shape, name='reshape_with_batch'):
super(ReshapeBatch, self).__init__([input], as_numpy=False, name=name)
self.from_shape = input.shape
self.target_shape = shape
def infer_outputs(self):
batch_axis = C.Axis.default_batch_axis()
return [
C.output_variable(
self.target_shape,
self.inputs[0].dtype,
[batch_axis])]
def forward(self, arguments, device=None, outputs_to_retain=None):
num_element = arguments.shape()[0] * np.prod(np.asarray(self.from_shape))
num_static_element = np.prod(np.asarray(self.target_shape))
num_batch = int(num_element / num_static_element)
result = arguments.data().as_shape((num_batch,) + self.target_shape)
return None, C.cntk_py.Value(result)
def backward(self, state, root_gradients):
grad_array_view = root_gradients.data()
num_element = root_gradients.shape()[0] * np.prod( | np.asarray(self.target_shape) | numpy.asarray |
'''
<NAME>
set up :2020-1-9
intergrate img and label into one file
-- fiducial1024_v1
'''
import argparse
import sys, os
import pickle
import random
import collections
import json
import numpy as np
import scipy.io as io
import scipy.misc as m
import matplotlib.pyplot as plt
import glob
import math
import time
import threading
import multiprocessing as mp
from multiprocessing import Pool
import re
import cv2
# sys.path.append('/lustre/home/gwxie/hope/project/dewarp/datasets/') # /lustre/home/gwxie/program/project/unwarp/perturbed_imgaes/GAN
import utils
def getDatasets(dir):
return os.listdir(dir)
class perturbed(utils.BasePerturbed):
def __init__(self, path, bg_path, save_path, save_suffix):
self.path = path
self.bg_path = bg_path
self.save_path = save_path
self.save_suffix = save_suffix
def save_img(self, m, n, fold_curve='fold', repeat_time=4, fiducial_points = 16, relativeShift_position='relativeShift_v2'):
origin_img = cv2.imread(self.path, flags=cv2.IMREAD_COLOR)
save_img_shape = [512*2, 480*2] # 320
# reduce_value = np.random.choice([2**4, 2**5, 2**6, 2**7, 2**8], p=[0.01, 0.1, 0.4, 0.39, 0.1])
reduce_value = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.02, 0.18, 0.2, 0.3, 0.1, 0.1, 0.08, 0.02])
# reduce_value = np.random.choice([8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.01, 0.02, 0.2, 0.4, 0.19, 0.18])
# reduce_value = np.random.choice([16, 24, 32, 40, 48, 64], p=[0.01, 0.1, 0.2, 0.4, 0.2, 0.09])
base_img_shrink = save_img_shape[0] - reduce_value
# enlarge_img_shrink = [1024, 768]
# enlarge_img_shrink = [896, 672] # 420
enlarge_img_shrink = [512*4, 480*4] # 420
# enlarge_img_shrink = [896*2, 768*2] # 420
# enlarge_img_shrink = [896, 768] # 420
# enlarge_img_shrink = [768, 576] # 420
# enlarge_img_shrink = [640, 480] # 420
''''''
im_lr = origin_img.shape[0]
im_ud = origin_img.shape[1]
reduce_value_v2 = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 28*2, 32*2, 48*2], p=[0.02, 0.18, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1])
# reduce_value_v2 = np.random.choice([16, 24, 28, 32, 48, 64], p=[0.01, 0.1, 0.2, 0.3, 0.25, 0.14])
if im_lr > im_ud:
im_ud = min(int(im_ud / im_lr * base_img_shrink), save_img_shape[1] - reduce_value_v2)
im_lr = save_img_shape[0] - reduce_value
else:
base_img_shrink = save_img_shape[1] - reduce_value
im_lr = min(int(im_lr / im_ud * base_img_shrink), save_img_shape[0] - reduce_value_v2)
im_ud = base_img_shrink
if round(im_lr / im_ud, 2) < 0.5 or round(im_ud / im_lr, 2) < 0.5:
repeat_time = min(repeat_time, 8)
edge_padding = 3
im_lr -= im_lr % (fiducial_points-1) - (2*edge_padding) # im_lr % (fiducial_points-1) - 1
im_ud -= im_ud % (fiducial_points-1) - (2*edge_padding) # im_ud % (fiducial_points-1) - 1
im_hight = np.linspace(edge_padding, im_lr - edge_padding, fiducial_points, dtype=np.int64)
im_wide = np.linspace(edge_padding, im_ud - edge_padding, fiducial_points, dtype=np.int64)
# im_lr -= im_lr % (fiducial_points-1) - (1+2*edge_padding) # im_lr % (fiducial_points-1) - 1
# im_ud -= im_ud % (fiducial_points-1) - (1+2*edge_padding) # im_ud % (fiducial_points-1) - 1
# im_hight = np.linspace(edge_padding, im_lr - (1+edge_padding), fiducial_points, dtype=np.int64)
# im_wide = np.linspace(edge_padding, im_ud - (1+edge_padding), fiducial_points, dtype=np.int64)
im_x, im_y = np.meshgrid(im_hight, im_wide)
segment_x = (im_lr) // (fiducial_points-1)
segment_y = (im_ud) // (fiducial_points-1)
# plt.plot(im_x, im_y,
# color='limegreen',
# marker='.',
# linestyle='')
# plt.grid(True)
# plt.show()
self.origin_img = cv2.resize(origin_img, (im_ud, im_lr), interpolation=cv2.INTER_CUBIC)
perturbed_bg_ = getDatasets(self.bg_path)
perturbed_bg_img_ = self.bg_path+random.choice(perturbed_bg_)
perturbed_bg_img = cv2.imread(perturbed_bg_img_, flags=cv2.IMREAD_COLOR)
mesh_shape = self.origin_img.shape[:2]
self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 256, dtype=np.float32)#np.zeros_like(perturbed_bg_img)
# self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 0, dtype=np.int16)#np.zeros_like(perturbed_bg_img)
self.new_shape = self.synthesis_perturbed_img.shape[:2]
perturbed_bg_img = cv2.resize(perturbed_bg_img, (save_img_shape[1], save_img_shape[0]), cv2.INPAINT_TELEA)
origin_pixel_position = np.argwhere(np.zeros(mesh_shape, dtype=np.uint32) == 0).reshape(mesh_shape[0], mesh_shape[1], 2)
pixel_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(self.new_shape[0], self.new_shape[1], 2)
self.perturbed_xy_ = np.zeros((self.new_shape[0], self.new_shape[1], 2))
# self.perturbed_xy_ = pixel_position.copy().astype(np.float32)
# fiducial_points_grid = origin_pixel_position[im_x, im_y]
self.synthesis_perturbed_label = np.zeros((self.new_shape[0], self.new_shape[1], 2))
x_min, y_min, x_max, y_max = self.adjust_position_v2(0, 0, mesh_shape[0], mesh_shape[1], save_img_shape)
origin_pixel_position += [x_min, y_min]
x_min, y_min, x_max, y_max = self.adjust_position(0, 0, mesh_shape[0], mesh_shape[1])
x_shift = random.randint(-enlarge_img_shrink[0]//16, enlarge_img_shrink[0]//16)
y_shift = random.randint(-enlarge_img_shrink[1]//16, enlarge_img_shrink[1]//16)
x_min += x_shift
x_max += x_shift
y_min += y_shift
y_max += y_shift
'''im_x,y'''
im_x += x_min
im_y += y_min
self.synthesis_perturbed_img[x_min:x_max, y_min:y_max] = self.origin_img
self.synthesis_perturbed_label[x_min:x_max, y_min:y_max] = origin_pixel_position
synthesis_perturbed_img_map = self.synthesis_perturbed_img.copy()
synthesis_perturbed_label_map = self.synthesis_perturbed_label.copy()
foreORbackground_label = np.full((mesh_shape), 1, dtype=np.int16)
foreORbackground_label_map = np.full((self.new_shape), 0, dtype=np.int16)
foreORbackground_label_map[x_min:x_max, y_min:y_max] = foreORbackground_label
# synthesis_perturbed_img_map = self.pad(self.synthesis_perturbed_img.copy(), x_min, y_min, x_max, y_max)
# synthesis_perturbed_label_map = self.pad(synthesis_perturbed_label_map, x_min, y_min, x_max, y_max)
'''*****************************************************************'''
is_normalizationFun_mixture = self.is_perform(0.2, 0.8)
# if not is_normalizationFun_mixture:
normalizationFun_0_1 = False
# normalizationFun_0_1 = self.is_perform(0.5, 0.5)
if fold_curve == 'fold':
fold_curve_random = True
# is_normalizationFun_mixture = False
normalizationFun_0_1 = self.is_perform(0.2, 0.8)
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
fold_curve_random = self.is_perform(0.1, 0.9) # False # self.is_perform(0.01, 0.99)
alpha_perturbed = random.randint(80, 160) / 100
# is_normalizationFun_mixture = False # self.is_perform(0.01, 0.99)
synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 256)
# synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 0, dtype=np.int16)
synthesis_perturbed_label = np.zeros_like(self.synthesis_perturbed_label)
alpha_perturbed_change = self.is_perform(0.5, 0.5)
p_pp_choice = self.is_perform(0.8, 0.2) if fold_curve == 'fold' else self.is_perform(0.1, 0.9)
for repeat_i in range(repeat_time):
if alpha_perturbed_change:
if fold_curve == 'fold':
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
alpha_perturbed = random.randint(80, 160) / 100
''''''
linspace_x = [0, (self.new_shape[0] - im_lr) // 2 - 1,
self.new_shape[0] - (self.new_shape[0] - im_lr) // 2 - 1, self.new_shape[0] - 1]
linspace_y = [0, (self.new_shape[1] - im_ud) // 2 - 1,
self.new_shape[1] - (self.new_shape[1] - im_ud) // 2 - 1, self.new_shape[1] - 1]
linspace_x_seq = [1, 2, 3]
linspace_y_seq = [1, 2, 3]
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_p = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
if ((r_x == 1 or r_x == 3) and (r_y == 1 or r_y == 3)) and p_pp_choice:
linspace_x_seq.remove(r_x)
linspace_y_seq.remove(r_y)
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_pp = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
# perturbed_p, perturbed_pp = np.array(
# [random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10]) \
# , np.array([random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10])
# perturbed_p, perturbed_pp = np.array(
# [random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10]) \
# , np.array([random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10])
''''''
perturbed_vp = perturbed_pp - perturbed_p
perturbed_vp_norm = np.linalg.norm(perturbed_vp)
perturbed_distance_vertex_and_line = np.dot((perturbed_p - pixel_position), perturbed_vp) / perturbed_vp_norm
''''''
# perturbed_v = np.array([random.randint(-3000, 3000) / 100, random.randint(-3000, 3000) / 100])
# perturbed_v = np.array([random.randint(-4000, 4000) / 100, random.randint(-4000, 4000) / 100])
if fold_curve == 'fold' and self.is_perform(0.6, 0.4): # self.is_perform(0.3, 0.7):
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
perturbed_v = np.array([random.randint(-10000, 10000) / 100, random.randint(-10000, 10000) / 100])
# perturbed_v = np.array([random.randint(-11000, 11000) / 100, random.randint(-11000, 11000) / 100])
else:
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
# perturbed_v = np.array([random.randint(-16000, 16000) / 100, random.randint(-16000, 16000) / 100])
perturbed_v = np.array([random.randint(-8000, 8000) / 100, random.randint(-8000, 8000) / 100])
# perturbed_v = np.array([random.randint(-3500, 3500) / 100, random.randint(-3500, 3500) / 100])
# perturbed_v = np.array([random.randint(-600, 600) / 10, random.randint(-600, 600) / 10])
''''''
if fold_curve == 'fold':
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
''''''
if fold_curve_random:
# omega_perturbed = (alpha_perturbed+0.2) / (perturbed_d + alpha_perturbed)
# omega_perturbed = alpha_perturbed**perturbed_d
omega_perturbed = alpha_perturbed / (perturbed_d + alpha_perturbed)
else:
omega_perturbed = 1 - perturbed_d ** alpha_perturbed
'''shadow'''
if self.is_perform(0.6, 0.4):
synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] = np.minimum(np.maximum(synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] - np.int16(np.round(omega_perturbed[x_min:x_max, y_min:y_max].repeat(3).reshape(x_max-x_min, y_max-y_min, 3) * abs(np.linalg.norm(perturbed_v//2))*np.array([0.4-random.random()*0.1, 0.4-random.random()*0.1, 0.4-random.random()*0.1]))), 0), 255)
''''''
if relativeShift_position in ['position', 'relativeShift_v2']:
self.perturbed_xy_ += np.array([omega_perturbed * perturbed_v[0], omega_perturbed * perturbed_v[1]]).transpose(1, 2, 0)
else:
print('relativeShift_position error')
exit()
'''
flat_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(
self.new_shape[0] * self.new_shape[1], 2)
vtx, wts = self.interp_weights(self.perturbed_xy_.reshape(self.new_shape[0] * self.new_shape[1], 2), flat_position)
wts_sum = np.abs(wts).sum(-1)
# flat_img.reshape(flat_shape[0] * flat_shape[1], 3)[:] = interpolate(pixel, vtx, wts)
wts = wts[wts_sum <= 1, :]
vtx = vtx[wts_sum <= 1, :]
synthesis_perturbed_img.reshape(self.new_shape[0] * self.new_shape[1], 3)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_img_map.reshape(self.new_shape[0] * self.new_shape[1], 3), vtx, wts)
synthesis_perturbed_label.reshape(self.new_shape[0] * self.new_shape[1], 2)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_label_map.reshape(self.new_shape[0] * self.new_shape[1], 2), vtx, wts)
foreORbackground_label = np.zeros(self.new_shape)
foreORbackground_label.reshape(self.new_shape[0] * self.new_shape[1], 1)[wts_sum <= 1, :] = self.interpolate(foreORbackground_label_map.reshape(self.new_shape[0] * self.new_shape[1], 1), vtx, wts)
foreORbackground_label[foreORbackground_label < 0.99] = 0
foreORbackground_label[foreORbackground_label >= 0.99] = 1
# synthesis_perturbed_img = np.around(synthesis_perturbed_img).astype(np.uint8)
synthesis_perturbed_label[:, :, 0] *= foreORbackground_label
synthesis_perturbed_label[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 0] *= foreORbackground_label
synthesis_perturbed_img[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 2] *= foreORbackground_label
self.synthesis_perturbed_img = synthesis_perturbed_img
self.synthesis_perturbed_label = synthesis_perturbed_label
'''
'''perspective'''
perspective_shreshold = random.randint(26, 36)*10 # 280
x_min_per, y_min_per, x_max_per, y_max_per = self.adjust_position(perspective_shreshold, perspective_shreshold, self.new_shape[0]-perspective_shreshold, self.new_shape[1]-perspective_shreshold)
pts1 = np.float32([[x_min_per, y_min_per], [x_max_per, y_min_per], [x_min_per, y_max_per], [x_max_per, y_max_per]])
e_1_ = x_max_per - x_min_per
e_2_ = y_max_per - y_min_per
e_3_ = e_2_
e_4_ = e_1_
perspective_shreshold_h = e_1_*0.02
perspective_shreshold_w = e_2_*0.02
a_min_, a_max_ = 70, 110
# if self.is_perform(1, 0):
if fold_curve == 'curve' and self.is_perform(0.5, 0.5):
if self.is_perform(0.5, 0.5):
while True:
pts2 = np.around(
np.float32([[x_min_per - (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_min_per + (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold]])) # right
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
else:
while True:
pts2 = np.around(
np.float32([[x_min_per + (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_min_per - (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold]]))
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = | np.linalg.norm(pts2[1]-pts2[3]) | numpy.linalg.norm |
# coding: utf-8
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Test the Logarithmic Units and Quantities
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
from ...extern import six
from ...extern.six.moves import zip
import pickle
import itertools
import pytest
import numpy as np
from numpy.testing.utils import assert_allclose
from ...tests.helper import assert_quantity_allclose
from ... import units as u, constants as c
lu_units = [u.dex, u.mag, u.decibel]
lu_subclasses = [u.DexUnit, u.MagUnit, u.DecibelUnit]
lq_subclasses = [u.Dex, u.Magnitude, u.Decibel]
pu_sample = (u.dimensionless_unscaled, u.m, u.g/u.s**2, u.Jy)
class TestLogUnitCreation(object):
def test_logarithmic_units(self):
"""Check logarithmic units are set up correctly."""
assert u.dB.to(u.dex) == 0.1
assert u.dex.to(u.mag) == -2.5
assert u.mag.to(u.dB) == -4
@pytest.mark.parametrize('lu_unit, lu_cls', zip(lu_units, lu_subclasses))
def test_callable_units(self, lu_unit, lu_cls):
assert isinstance(lu_unit, u.UnitBase)
assert callable(lu_unit)
assert lu_unit._function_unit_class is lu_cls
@pytest.mark.parametrize('lu_unit', lu_units)
def test_equality_to_normal_unit_for_dimensionless(self, lu_unit):
lu = lu_unit()
assert lu == lu._default_function_unit # eg, MagUnit() == u.mag
assert lu._default_function_unit == lu # and u.mag == MagUnit()
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_call_units(self, lu_unit, physical_unit):
"""Create a LogUnit subclass using the callable unit and physical unit,
and do basic check that output is right."""
lu1 = lu_unit(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
def test_call_invalid_unit(self):
with pytest.raises(TypeError):
u.mag([])
with pytest.raises(ValueError):
u.mag(u.mag())
@pytest.mark.parametrize('lu_cls, physical_unit', itertools.product(
lu_subclasses + [u.LogUnit], pu_sample))
def test_subclass_creation(self, lu_cls, physical_unit):
"""Create a LogUnit subclass object for given physical unit,
and do basic check that output is right."""
lu1 = lu_cls(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
lu2 = lu_cls(physical_unit,
function_unit=2*lu1._default_function_unit)
assert lu2.physical_unit == physical_unit
assert lu2.function_unit == u.Unit(2*lu2._default_function_unit)
with pytest.raises(ValueError):
lu_cls(physical_unit, u.m)
def test_predefined_magnitudes():
assert_quantity_allclose((-21.1*u.STmag).physical,
1.*u.erg/u.cm**2/u.s/u.AA)
assert_quantity_allclose((-48.6*u.ABmag).physical,
1.*u.erg/u.cm**2/u.s/u.Hz)
assert_quantity_allclose((0*u.M_bol).physical, c.L_bol0)
assert_quantity_allclose((0*u.m_bol).physical,
c.L_bol0/(4.*np.pi*(10.*c.pc)**2))
def test_predefined_reinitialisation():
assert u.mag('ST') == u.STmag
assert u.mag('AB') == u.ABmag
assert u.mag('Bol') == u.M_bol
assert u.mag('bol') == u.m_bol
def test_predefined_string_roundtrip():
"""Ensure roundtripping; see #5015"""
with u.magnitude_zero_points.enable():
assert u.Unit(u.STmag.to_string()) == u.STmag
assert u.Unit(u.ABmag.to_string()) == u.ABmag
assert u.Unit(u.M_bol.to_string()) == u.M_bol
assert u.Unit(u.m_bol.to_string()) == u.m_bol
def test_inequality():
"""Check __ne__ works (regresssion for #5342)."""
lu1 = u.mag(u.Jy)
lu2 = u.dex(u.Jy)
lu3 = u.mag(u.Jy**2)
lu4 = lu3 - lu1
assert lu1 != lu2
assert lu1 != lu3
assert lu1 == lu4
class TestLogUnitStrings(object):
def test_str(self):
"""Do some spot checks that str, repr, etc. work as expected."""
lu1 = u.mag(u.Jy)
assert str(lu1) == 'mag(Jy)'
assert repr(lu1) == 'Unit("mag(Jy)")'
assert lu1.to_string('generic') == 'mag(Jy)'
with pytest.raises(ValueError):
lu1.to_string('fits')
lu2 = u.dex()
assert str(lu2) == 'dex'
assert repr(lu2) == 'Unit("dex(1)")'
assert lu2.to_string() == 'dex(1)'
lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag)
assert str(lu3) == '2 mag(Jy)'
assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
assert lu3.to_string() == '2 mag(Jy)'
lu4 = u.mag(u.ct)
assert lu4.to_string('generic') == 'mag(ct)'
assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
'\\mathrm{ct} \\right)}$')
assert lu4._repr_latex_() == lu4.to_string('latex')
class TestLogUnitConversion(object):
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_physical_unit_conversion(self, lu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to their non-log counterparts."""
lu1 = lu_unit(physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(physical_unit, 0.) == 1.
assert physical_unit.is_equivalent(lu1)
assert physical_unit.to(lu1, 1.) == 0.
pu = u.Unit(8.*physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(pu, 0.) == 0.125
assert pu.is_equivalent(lu1)
assert_allclose(pu.to(lu1, 0.125), 0., atol=1.e-15)
# Check we round-trip.
value = np.linspace(0., 10., 6)
assert_allclose(pu.to(lu1, lu1.to(pu, value)), value, atol=1.e-15)
# And that we're not just returning True all the time.
pu2 = u.g
assert not lu1.is_equivalent(pu2)
with pytest.raises(u.UnitsError):
lu1.to(pu2)
assert not pu2.is_equivalent(lu1)
with pytest.raises(u.UnitsError):
pu2.to(lu1)
@pytest.mark.parametrize('lu_unit', lu_units)
def test_container_unit_conversion(self, lu_unit):
"""Check that conversion to logarithmic units (u.mag, u.dB, u.dex)
is only possible when the physical unit is dimensionless."""
values = np.linspace(0., 10., 6)
lu1 = lu_unit(u.dimensionless_unscaled)
assert lu1.is_equivalent(lu1.function_unit)
assert_allclose(lu1.to(lu1.function_unit, values), values)
lu2 = lu_unit(u.Jy)
assert not lu2.is_equivalent(lu2.function_unit)
with pytest.raises(u.UnitsError):
lu2.to(lu2.function_unit, values)
@pytest.mark.parametrize(
'flu_unit, tlu_unit, physical_unit',
itertools.product(lu_units, lu_units, pu_sample))
def test_subclass_conversion(self, flu_unit, tlu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to each other if they correspond to equivalent physical units."""
values = np.linspace(0., 10., 6)
flu = flu_unit(physical_unit)
tlu = tlu_unit(physical_unit)
assert flu.is_equivalent(tlu)
assert_allclose(flu.to(tlu), flu.function_unit.to(tlu.function_unit))
assert_allclose(flu.to(tlu, values),
values * flu.function_unit.to(tlu.function_unit))
tlu2 = tlu_unit(u.Unit(100.*physical_unit))
assert flu.is_equivalent(tlu2)
# Check that we round-trip.
assert_allclose(flu.to(tlu2, tlu2.to(flu, values)), values, atol=1.e-15)
tlu3 = tlu_unit(physical_unit.to_system(u.si)[0])
assert flu.is_equivalent(tlu3)
assert_allclose(flu.to(tlu3, tlu3.to(flu, values)), values, atol=1.e-15)
tlu4 = tlu_unit(u.g)
assert not flu.is_equivalent(tlu4)
with pytest.raises(u.UnitsError):
flu.to(tlu4, values)
def test_unit_decomposition(self):
lu = u.mag(u.Jy)
assert lu.decompose() == u.mag(u.Jy.decompose())
assert lu.decompose().physical_unit.bases == [u.kg, u.s]
assert lu.si == u.mag(u.Jy.si)
assert lu.si.physical_unit.bases == [u.kg, u.s]
assert lu.cgs == u.mag(u.Jy.cgs)
assert lu.cgs.physical_unit.bases == [u.g, u.s]
def test_unit_multiple_possible_equivalencies(self):
lu = u.mag(u.Jy)
assert lu.is_equivalent(pu_sample)
class TestLogUnitArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other units is only
possible when the physical unit is dimensionless, and that this
turns the unit into a normal one."""
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 * u.m
with pytest.raises(u.UnitsError):
u.m * lu1
with pytest.raises(u.UnitsError):
lu1 / lu1
for unit in (u.dimensionless_unscaled, u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lu1 / unit
lu2 = u.mag(u.dimensionless_unscaled)
with pytest.raises(u.UnitsError):
lu2 * lu1
with pytest.raises(u.UnitsError):
lu2 / lu1
# But dimensionless_unscaled can be cancelled.
assert lu2 / lu2 == u.dimensionless_unscaled
# With dimensionless, normal units are OK, but we return a plain unit.
tf = lu2 * u.m
tr = u.m * lu2
for t in (tf, tr):
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lu2.physical_unit)
# Now we essentially have a LogUnit with a prefactor of 100,
# so should be equivalent again.
t = tf / u.cm
with u.set_enabled_equivalencies(u.logarithmic()):
assert t.is_equivalent(lu2.function_unit)
assert_allclose(t.to(u.dimensionless_unscaled, np.arange(3.)/100.),
lu2.to(lu2.physical_unit, np.arange(3.)))
# If we effectively remove lu1, a normal unit should be returned.
t2 = tf / lu2
assert not isinstance(t2, type(lu2))
assert t2 == u.m
t3 = tf / lu2.function_unit
assert not isinstance(t3, type(lu2))
assert t3 == u.m
# For completeness, also ensure non-sensical operations fail
with pytest.raises(TypeError):
lu1 * object()
with pytest.raises(TypeError):
slice(None) * lu1
with pytest.raises(TypeError):
lu1 / []
with pytest.raises(TypeError):
1 / lu1
@pytest.mark.parametrize('power', (2, 0.5, 1, 0))
def test_raise_to_power(self, power):
"""Check that raising LogUnits to some power is only possible when the
physical unit is dimensionless, and that conversion is turned off when
the resulting logarithmic unit (such as mag**2) is incompatible."""
lu1 = u.mag(u.Jy)
if power == 0:
assert lu1 ** power == u.dimensionless_unscaled
elif power == 1:
assert lu1 ** power == lu1
else:
with pytest.raises(u.UnitsError):
lu1 ** power
# With dimensionless, though, it works, but returns a normal unit.
lu2 = u.mag(u.dimensionless_unscaled)
t = lu2**power
if power == 0:
assert t == u.dimensionless_unscaled
elif power == 1:
assert t == lu2
else:
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit**power
# also check we roundtrip
t2 = t**(1./power)
assert t2 == lu2.function_unit
with u.set_enabled_equivalencies(u.logarithmic()):
assert_allclose(t2.to(u.dimensionless_unscaled, np.arange(3.)),
lu2.to(lu2.physical_unit, np.arange(3.)))
@pytest.mark.parametrize('other', pu_sample)
def test_addition_subtraction_to_normal_units_fails(self, other):
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 + other
with pytest.raises(u.UnitsError):
lu1 - other
with pytest.raises(u.UnitsError):
other - lu1
def test_addition_subtraction_to_non_units_fails(self):
lu1 = u.mag(u.Jy)
with pytest.raises(TypeError):
lu1 + 1.
with pytest.raises(TypeError):
lu1 - [1., 2., 3.]
@pytest.mark.parametrize(
'other', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag)))
def test_addition_subtraction(self, other):
"""Check physical units are changed appropriately"""
lu1 = u.mag(u.Jy)
other_pu = getattr(other, 'physical_unit', u.dimensionless_unscaled)
lu_sf = lu1 + other
assert lu_sf.is_equivalent(lu1.physical_unit * other_pu)
lu_sr = other + lu1
assert lu_sr.is_equivalent(lu1.physical_unit * other_pu)
lu_df = lu1 - other
assert lu_df.is_equivalent(lu1.physical_unit / other_pu)
lu_dr = other - lu1
assert lu_dr.is_equivalent(other_pu / lu1.physical_unit)
def test_complicated_addition_subtraction(self):
"""for fun, a more complicated example of addition and subtraction"""
dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2))
lu_dm = u.mag(dm0)
lu_absST = u.STmag - lu_dm
assert lu_absST.is_equivalent(u.erg/u.s/u.AA)
def test_neg_pos(self):
lu1 = u.mag(u.Jy)
neg_lu = -lu1
assert neg_lu != lu1
assert neg_lu.physical_unit == u.Jy**-1
assert -neg_lu == lu1
pos_lu = +lu1
assert pos_lu is not lu1
assert pos_lu == lu1
def test_pickle():
lu1 = u.dex(u.cm/u.s**2)
s = pickle.dumps(lu1)
lu2 = pickle.loads(s)
assert lu1 == lu2
def test_hashable():
lu1 = u.dB(u.mW)
lu2 = u.dB(u.m)
lu3 = u.dB(u.mW)
assert hash(lu1) != hash(lu2)
assert hash(lu1) == hash(lu3)
luset = {lu1, lu2, lu3}
assert len(luset) == 2
class TestLogQuantityCreation(object):
@pytest.mark.parametrize('lq, lu', zip(lq_subclasses + [u.LogQuantity],
lu_subclasses + [u.LogUnit]))
def test_logarithmic_quantities(self, lq, lu):
"""Check logarithmic quantities are all set up correctly"""
assert lq._unit_class == lu
assert type(lu()._quantity_class(1.)) is lq
@pytest.mark.parametrize('lq_cls, physical_unit',
itertools.product(lq_subclasses, pu_sample))
def test_subclass_creation(self, lq_cls, physical_unit):
"""Create LogQuantity subclass objects for some physical units,
and basic check on transformations"""
value = np.arange(1., 10.)
log_q = lq_cls(value * physical_unit)
assert log_q.unit.physical_unit == physical_unit
assert log_q.unit.function_unit == log_q.unit._default_function_unit
assert_allclose(log_q.physical.value, value)
with pytest.raises(ValueError):
lq_cls(value, physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_different_units(self, unit):
q = u.Magnitude(1.23, unit)
assert q.unit.function_unit == getattr(unit, 'function_unit', unit)
assert q.unit.physical_unit is getattr(unit, 'physical_unit',
u.dimensionless_unscaled)
@pytest.mark.parametrize('value, unit', (
(1.*u.mag(u.Jy), None),
(1.*u.dex(u.Jy), None),
(1.*u.mag(u.W/u.m**2/u.Hz), u.mag(u.Jy)),
(1.*u.dex(u.W/u.m**2/u.Hz), u.mag(u.Jy))))
def test_function_values(self, value, unit):
lq = u.Magnitude(value, unit)
assert lq == value
assert lq.unit.function_unit == u.mag
assert lq.unit.physical_unit == getattr(unit, 'physical_unit',
value.unit.physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag(), u.mag(u.Jy), u.mag(u.m), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_indirect_creation(self, unit):
q1 = 2.5 * unit
assert isinstance(q1, u.Magnitude)
assert q1.value == 2.5
assert q1.unit == unit
pv = 100. * unit.physical_unit
q2 = unit * pv
assert q2.unit == unit
assert q2.unit.physical_unit == pv.unit
assert q2.to_value(unit.physical_unit) == 100.
assert (q2._function_view / u.mag).to_value(1) == -5.
q3 = unit / 0.4
assert q3 == q1
def test_from_view(self):
# Cannot view a physical quantity as a function quantity, since the
# values would change.
q = [100., 1000.] * u.cm/u.s**2
with pytest.raises(TypeError):
q.view(u.Dex)
# But fine if we have the right magnitude.
q = [2., 3.] * u.dex
lq = q.view(u.Dex)
assert isinstance(lq, u.Dex)
assert lq.unit.physical_unit == u.dimensionless_unscaled
assert np.all(q == lq)
def test_using_quantity_class(self):
"""Check that we can use Quantity if we have subok=True"""
# following issue #5851
lu = u.dex(u.AA)
with pytest.raises(u.UnitTypeError):
u.Quantity(1., lu)
q = u.Quantity(1., lu, subok=True)
assert type(q) is lu._quantity_class
def test_conversion_to_and_from_physical_quantities():
"""Ensures we can convert from regular quantities."""
mst = [10., 12., 14.] * u.STmag
flux_lambda = mst.physical
mst_roundtrip = flux_lambda.to(u.STmag)
# check we return a logquantity; see #5178.
assert isinstance(mst_roundtrip, u.Magnitude)
assert mst_roundtrip.unit == mst.unit
assert_allclose(mst_roundtrip.value, mst.value)
wave = [4956.8, 4959.55, 4962.3] * u.AA
flux_nu = mst.to(u.Jy, equivalencies=u.spectral_density(wave))
mst_roundtrip2 = flux_nu.to(u.STmag, u.spectral_density(wave))
assert isinstance(mst_roundtrip2, u.Magnitude)
assert mst_roundtrip2.unit == mst.unit
assert_allclose(mst_roundtrip2.value, mst.value)
def test_quantity_decomposition():
lq = 10.*u.mag(u.Jy)
assert lq.decompose() == lq
assert lq.decompose().unit.physical_unit.bases == [u.kg, u.s]
assert lq.si == lq
assert lq.si.unit.physical_unit.bases == [u.kg, u.s]
assert lq.cgs == lq
assert lq.cgs.unit.physical_unit.bases == [u.g, u.s]
class TestLogQuantityViews(object):
def setup(self):
self.lq = u.Magnitude(np.arange(10.) * u.Jy)
self.lq2 = u.Magnitude(np.arange(5.))
def test_value_view(self):
lq_value = self.lq.value
assert type(lq_value) is np.ndarray
lq_value[2] = -1.
assert | np.all(self.lq.value == lq_value) | numpy.all |
# pvtrace is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# pvtrace is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
from external.transformations import translation_matrix, rotation_matrix
import external.transformations as tf
from Trace import Photon
from Geometry import Box, Cylinder, FinitePlane, transform_point, transform_direction, rotation_matrix_from_vector_alignment, norm
from Materials import Spectrum
def random_spherecial_vector():
# This method of calculating isotropic vectors is taken from GNU Scientific Library
LOOP = True
while LOOP:
x = -1. + 2. * np.random.uniform()
y = -1. + 2. * np.random.uniform()
s = x**2 + y**2
if s <= 1.0:
LOOP = False
z = -1. + 2. * s
a = 2 * np.sqrt(1 - s)
x = a * x
y = a * y
return np.array([x,y,z])
class SimpleSource(object):
"""A light source that will generate photons of a single colour, direction and position."""
def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, use_random_polarisation=False):
super(SimpleSource, self).__init__()
self.position = position
self.direction = direction
self.wavelength = wavelength
self.use_random_polarisation = use_random_polarisation
self.throw = 0
self.source_id = "SimpleSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.position = np.array(self.position)
photon.direction = np.array(self.direction)
photon.active = True
photon.wavelength = self.wavelength
# If use_polarisation is set generate a random polarisation vector of the photon
if self.use_random_polarisation:
# Randomise rotation angle around xy-plane, the transform from +z to the direction of the photon
vec = random_spherecial_vector()
vec[2] = 0.
vec = norm(vec)
R = rotation_matrix_from_vector_alignment(self.direction, [0,0,1])
photon.polarisation = transform_direction(vec, R)
else:
photon.polarisation = None
photon.id = self.throw
self.throw = self.throw + 1
return photon
class Laser(object):
"""A light source that will generate photons of a single colour, direction and position."""
def __init__(self, position=[0,0,0], direction=[0,0,1], wavelength=555, polarisation=None):
super(Laser, self).__init__()
self.position = np.array(position)
self.direction = np.array(direction)
self.wavelength = wavelength
assert polarisation != None, "Polarisation of the Laser is not set."
self.polarisation = np.array(polarisation)
self.throw = 0
self.source_id = "LaserSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.position = np.array(self.position)
photon.direction = np.array(self.direction)
photon.active = True
photon.wavelength = self.wavelength
photon.polarisation = self.polarisation
photon.id = self.throw
self.throw = self.throw + 1
return photon
class PlanarSource(object):
"""A box that emits photons from the top surface (normal), sampled from the spectrum."""
def __init__(self, spectrum=None, wavelength=555, direction=(0,0,1), length=0.05, width=0.05):
super(PlanarSource, self).__init__()
self.spectrum = spectrum
self.wavelength = wavelength
self.plane = FinitePlane(length=length, width=width)
self.length = length
self.width = width
# direction is the direction that photons are fired out of the plane in the GLOBAL FRAME.
# i.e. this is passed directly to the photon to set is's direction
self.direction = direction
self.throw = 0
self.source_id = "PlanarSource_" + str(id(self))
def translate(self, translation):
self.plane.append_transform(tf.translation_matrix(translation))
def rotate(self, angle, axis):
self.plane.append_transform(tf.rotation_matrix(angle, axis))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.id = self.throw
self.throw = self.throw + 1
# Create a point which is on the surface of the finite plane in it's local frame
x = np.random.uniform(0., self.length)
y = np.random.uniform(0., self.width)
local_point = (x, y, 0.)
# Transform the direciton
photon.position = transform_point(local_point, self.plane.transform)
photon.direction = self.direction
photon.active = True
if self.spectrum != None:
photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform())
else:
photon.wavelength = self.wavelength
return photon
class LensSource(object):
"""
A source where photons generated in a plane are focused on a line with space tolerance given by variable "focussize".
The focus line should be perpendicular to the plane normal and aligned with the z-axis.
"""
def __init__(self, spectrum = None, wavelength = 555, linepoint=(0,0,0), linedirection=(0,0,1), focussize = 0, planeorigin = (-1,-1,-1), planeextent = (-1,1,1)):
super(LensSource, self).__init__()
self.spectrum = spectrum
self.wavelength = wavelength
self.planeorigin = planeorigin
self.planeextent = planeextent
self.linepoint = np.array(linepoint)
self.linedirection = np.array(linedirection)
self.focussize = focussize
self.throw = 0
self.source_id = "LensSource_" + str(id(self))
def photon(self):
photon = Photon()
photon.source = self.source_id
photon.id = self.throw
self.throw = self.throw + 1
# Position
x = np.random.uniform(self.planeorigin[0],self.planeextent[0])
y = np.random.uniform(self.planeorigin[1],self.planeextent[1])
z = np.random.uniform(self.planeorigin[2],self.planeextent[2])
photon.position = np.array((x,y,z))
# Direction
focuspoint = np.array((0.,0.,0.))
focuspoint[0] = self.linepoint[0] + np.random.uniform(-self.focussize,self.focussize)
focuspoint[1] = self.linepoint[1] + np.random.uniform(-self.focussize,self.focussize)
focuspoint[2] = photon.position[2]
direction = focuspoint - photon.position
modulus = (direction[0]**2+direction[1]**2+direction[2]**2)**0.5
photon.direction = direction/modulus
# Wavelength
if self.spectrum != None:
photon.wavelength = self.spectrum.wavelength_at_probability(np.random.uniform())
else:
photon.wavelength = self.wavelength
return photon
class LensSourceAngle(object):
"""
A source where photons generated in a plane are focused on a line with space tolerance given by variable "focussize".
The focus line should be perpendicular to the plane normal and aligned with the z-axis.
For this lense an additional z-boost is added (Angle of incidence in z-direction).
"""
def __init__(self, spectrum = None, wavelength = 555, linepoint=(0,0,0), linedirection=(0,0,1), angle = 0, focussize = 0, planeorigin = (-1,-1,-1), planeextent = (-1,1,1)):
super(LensSourceAngle, self).__init__()
self.spectrum = spectrum
self.wavelength = wavelength
self.planeorigin = planeorigin
self.planeextent = planeextent
self.linepoint = np.array(linepoint)
self.linedirection = np.array(linedirection)
self.focussize = focussize
self.angle = angle
self.throw = 0
self.source_id = "LensSourceAngle_" + str(id(self))
def photon(self):
photon = Photon()
photon.id = self.throw
self.throw = self.throw + 1
# Position
x = | np.random.uniform(self.planeorigin[0],self.planeextent[0]) | numpy.random.uniform |
import numpy as np
import sys
import os
from PIL import Image
from visu.helper_functions import save_image
from scipy.spatial.transform import Rotation as R
from helper import re_quat
import copy
import torch
import numpy as np
import k3d
class Visualizer():
def __init__(self, p_visu, writer=None):
if p_visu[-1] != '/':
p_visu = p_visu + '/'
self.p_visu = p_visu
self.writer = writer
if not os.path.exists(self.p_visu):
os.makedirs(self.p_visu)
def plot_estimated_pose(self, tag, epoch, img, points, trans=[[0, 0, 0]], rot_mat=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], cam_cx=0, cam_cy=0, cam_fx=0, cam_fy=0, store=False, jupyter=False, w=2):
"""
tag := tensorboard tag
epoch := tensorboard epoche
store := ture -> stores the image to standard path
path := != None creats the path and store to it path/tag.png
img:= original_image, [widht,height,RGB]
points:= points of the object model [length,x,y,z]
trans: [1,3]
rot: [3,3]
"""
img_d = copy.deepcopy(img)
points = np.dot(points, rot_mat.T)
points = np.add(points, trans[0, :])
for i in range(0, points.shape[0]):
p_x = points[i, 0]
p_y = points[i, 1]
p_z = points[i, 2]
u = int(((p_x / p_z) * cam_fx) + cam_cx)
v = int(((p_y / p_z) * cam_fy) + cam_cy)
try:
img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0
img_d[v - w:v + w + 1, u - w:u + w + 1, 1] = 255
img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0
except:
#print("out of bounce")
pass
if jupyter:
display(Image.fromarray(img_d))
if store:
#store_ar = (img_d* 255).round().astype(np.uint8)
#print("IMAGE D:" ,img_d,img_d.shape )
save_image(img_d, tag=str(epoch) + tag, p_store=self.p_visu)
if self.writer is not None:
self.writer.add_image(tag, img_d.astype(
np.uint8), global_step=epoch, dataformats='HWC')
def plot_bounding_box(self, tag, epoch, img, rmin=0, rmax=0, cmin=0, cmax=0, str_width=2, store=False, jupyter=False, b=None):
"""
tag := tensorboard tag
epoch := tensorboard epoche
store := ture -> stores the image to standard path
path := != None creats the path and store to it path/tag.png
img:= original_image, [widht,height,RGB]
"""
if isinstance(b, dict):
rmin = b['rmin']
rmax = b['rmax']
cmin = b['cmin']
cmax = b['cmax']
# ToDo check Input data
img_d = np.array(copy.deepcopy(img))
c = [0, 0, 255]
rmin_mi = max(0, rmin - str_width)
rmin_ma = min(img_d.shape[0], rmin + str_width)
rmax_mi = max(0, rmax - str_width)
rmax_ma = min(img_d.shape[0], rmax + str_width)
cmin_mi = max(0, cmin - str_width)
cmin_ma = min(img_d.shape[1], cmin + str_width)
cmax_mi = max(0, cmax - str_width)
cmax_ma = min(img_d.shape[1], cmax + str_width)
img_d[rmin_mi:rmin_ma, cmin:cmax, :] = c
img_d[rmax_mi:rmax_ma, cmin:cmax, :] = c
img_d[rmin:rmax, cmin_mi:cmin_ma, :] = c
img_d[rmin:rmax, cmax_mi:cmax_ma, :] = c
print("STORE", store)
img_d = img_d.astype(np.uint8)
if store:
#store_ar = (img_d* 255).round().astype(np.uint8)
save_image(img_d, tag=str(epoch) + tag, p_store=self.p_visu)
if jupyter:
display(Image.fromarray(img_d))
if self.writer is not None:
self.writer.add_image(tag, img_d.astype(
np.uint8), global_step=epoch, dataformats='HWC')
def plot_pcd(x, point_size=0.005, c='g'):
"""
x: point_nr,3
"""
if c == 'b':
k = 245
elif c == 'g':
k = 25811000
elif c == 'r':
k = 11801000
elif c == 'black':
k = 2580
else:
k = 2580
colors = np.ones(x.shape[0]) * k
plot = k3d.plot(name='points')
plt_points = k3d.points(x, colors.astype(np.uint32), point_size=point_size)
plot += plt_points
plt_points.shader = '3d'
plot.display()
def plot_two_pcd(x, y, point_size=0.005, c1='g', c2='r'):
if c1 == 'b':
k = 245
elif c1 == 'g':
k = 25811000
elif c1 == 'r':
k = 11801000
elif c1 == 'black':
k = 2580
else:
k = 2580
if c2 == 'b':
k2 = 245
elif c2 == 'g':
k2 = 25811000
elif c2 == 'r':
k2 = 11801000
elif c2 == 'black':
k2 = 2580
else:
k2 = 2580
col1 = np.ones(x.shape[0]) * k
col2 = np.ones(y.shape[0]) * k2
plot = k3d.plot(name='points')
plt_points = k3d.points(x, col1.astype(np.uint32), point_size=point_size)
plot += plt_points
plt_points = k3d.points(y, col2.astype(np.uint32), point_size=point_size)
plot += plt_points
plt_points.shader = '3d'
plot.display()
class SequenceVisualizer():
def __init__(self, seq_data, images_path, output_path=None):
self.seq_data = seq_data
self.images_path = images_path
self.output_path = output_path
def plot_points_on_image(self, seq_no, frame_no, jupyter=False, store=False, pose_type='filtered'):
seq_data = self.seq_data
images_path = self.images_path
output_path = self.output_path
frame = seq_data[seq_no][frame_no]
unique_desig = frame['dl_dict']['unique_desig'][0]
if pose_type == 'ground_truth':
# ground truth
t = frame['dl_dict']['gt_trans'].reshape(1, 3)
rot_quat = re_quat(copy.deepcopy(
frame['dl_dict']['gt_rot_wxyz'][0]), 'wxyz')
rot = R.from_quat(rot_quat).as_matrix()
elif pose_type == 'filtered':
# filter pred
t = np.array(frame['filter_pred']['t']).reshape(1, 3)
rot_quat = re_quat(copy.deepcopy(
frame['filter_pred']['r_wxyz']), 'wxyz')
rot = R.from_quat(rot_quat).as_matrix()
elif pose_type == 'final_pred_obs':
# final pred
t = np.array(frame['final_pred_obs']['t']).reshape(1, 3)
rot_quat = re_quat(copy.deepcopy(
frame['final_pred_obs']['r_wxyz']), 'wxyz')
rot = R.from_quat(rot_quat).as_matrix()
else:
raise Exception('Pose type not implemented.')
w = 2
if type(unique_desig) != str:
im = np.array(Image.open(
images_path + unique_desig[0] + '-color.png')) # ycb
else:
im = np.array(Image.open(
images_path + unique_desig + '.png')) # laval
img_d = copy.deepcopy(im)
dl_dict = frame['dl_dict']
points = copy.deepcopy(
seq_data[seq_no][0]['dl_dict']['model_points'][0, :, :])
points = np.dot(points, rot.T)
points = | np.add(points, t[0, :]) | numpy.add |
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 28 12:10:11 2019
@author: Omer
"""
## File handler
## This file was initially intended purely to generate the matrices for the near earth code found in: https://public.ccsds.org/Pubs/131x1o2e2s.pdf
## The values from the above pdf were copied manually to a txt file, and it is the purpose of this file to parse it.
## The emphasis here is on correctness, I currently do not see a reason to generalise this file, since matrices will be saved in either json or some matrix friendly format.
import numpy as np
from scipy.linalg import circulant
#import matplotlib.pyplot as plt
import scipy.io
import common
import hashlib
import os
projectDir = os.environ.get('LDPC')
if projectDir == None:
import pathlib
projectDir = pathlib.Path(__file__).parent.absolute()
## <NAME>: added on 01/12/2020, need to make sure this doesn't break anything.
import sys
sys.path.insert(1, projectDir)
FILE_HANDLER_INT_DATA_TYPE = np.int32
GENERAL_CODE_MATRIX_DATA_TYPE = np.int32
NIBBLE_CONVERTER = np.array([8, 4, 2, 1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
def nibbleToHex(inputArray):
n = NIBBLE_CONVERTER.dot(inputArray)
if n == 10:
h = 'A'
elif n== 11:
h = 'B'
elif n== 12:
h = 'C'
elif n== 13:
h = 'D'
elif n== 14:
h = 'E'
elif n== 15:
h = 'F'
else:
h = str(n)
return h
def binaryArraytoHex(inputArray):
d1 = len(inputArray)
assert (d1 % 4 == 0)
outputArray = np.zeros(d1//4, dtype = str)
outputString = ''
for j in range(d1//4):
nibble = inputArray[4 * j : 4 * j + 4]
h = nibbleToHex(nibble)
outputArray[j] = h
outputString = outputString + h
return outputArray, outputString
def hexStringToBinaryArray(hexString):
outputBinary = np.array([], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
for i in hexString:
if i == '0':
nibble = np.array([0,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '1':
nibble = np.array([0,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '2':
nibble = np.array([0,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '3':
nibble = np.array([0,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '4':
nibble = np.array([0,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '5':
nibble = np.array([0,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '6':
nibble = np.array([0,1,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '7':
nibble = np.array([0,1,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '8':
nibble = np.array([1,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '9':
nibble = np.array([1,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'A':
nibble = np.array([1,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'B':
nibble = np.array([1,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'C':
nibble = np.array([1,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'D':
nibble = | np.array([1,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) | numpy.array |
"""Routines for numerical differentiation."""
from __future__ import division
import numpy as np
from numpy.linalg import norm
from scipy.sparse.linalg import LinearOperator
from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find
from ._group_columns import group_dense, group_sparse
EPS = np.finfo(np.float64).eps
def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub):
"""Adjust final difference scheme to the presence of bounds.
Parameters
----------
x0 : ndarray, shape (n,)
Point at which we wish to estimate derivative.
h : ndarray, shape (n,)
Desired finite difference steps.
num_steps : int
Number of `h` steps in one direction required to implement finite
difference scheme. For example, 2 means that we need to evaluate
f(x0 + 2 * h) or f(x0 - 2 * h)
scheme : {'1-sided', '2-sided'}
Whether steps in one or both directions are required. In other
words '1-sided' applies to forward and backward schemes, '2-sided'
applies to center schemes.
lb : ndarray, shape (n,)
Lower bounds on independent variables.
ub : ndarray, shape (n,)
Upper bounds on independent variables.
Returns
-------
h_adjusted : ndarray, shape (n,)
Adjusted step sizes. Step size decreases only if a sign flip or
switching to one-sided scheme doesn't allow to take a full step.
use_one_sided : ndarray of bool, shape (n,)
Whether to switch to one-sided scheme. Informative only for
``scheme='2-sided'``.
"""
if scheme == '1-sided':
use_one_sided = np.ones_like(h, dtype=bool)
elif scheme == '2-sided':
h = np.abs(h)
use_one_sided = np.zeros_like(h, dtype=bool)
else:
raise ValueError("`scheme` must be '1-sided' or '2-sided'.")
if np.all((lb == -np.inf) & (ub == np.inf)):
return h, use_one_sided
h_total = h * num_steps
h_adjusted = h.copy()
lower_dist = x0 - lb
upper_dist = ub - x0
if scheme == '1-sided':
x = x0 + h_total
violated = (x < lb) | (x > ub)
fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist)
h_adjusted[violated & fitting] *= -1
forward = (upper_dist >= lower_dist) & ~fitting
h_adjusted[forward] = upper_dist[forward] / num_steps
backward = (upper_dist < lower_dist) & ~fitting
h_adjusted[backward] = -lower_dist[backward] / num_steps
elif scheme == '2-sided':
central = (lower_dist >= h_total) & (upper_dist >= h_total)
forward = (upper_dist >= lower_dist) & ~central
h_adjusted[forward] = np.minimum(
h[forward], 0.5 * upper_dist[forward] / num_steps)
use_one_sided[forward] = True
backward = (upper_dist < lower_dist) & ~central
h_adjusted[backward] = -np.minimum(
h[backward], 0.5 * lower_dist[backward] / num_steps)
use_one_sided[backward] = True
min_dist = np.minimum(upper_dist, lower_dist) / num_steps
adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist))
h_adjusted[adjusted_central] = min_dist[adjusted_central]
use_one_sided[adjusted_central] = False
return h_adjusted, use_one_sided
relative_step = {"2-point": EPS**0.5,
"3-point": EPS**(1/3),
"cs": EPS**0.5}
def _compute_absolute_step(rel_step, x0, method):
if rel_step is None:
rel_step = relative_step[method]
sign_x0 = (x0 >= 0).astype(float) * 2 - 1
return rel_step * sign_x0 * np.maximum(1.0, np.abs(x0))
def _prepare_bounds(bounds, x0):
lb, ub = [np.asarray(b, dtype=float) for b in bounds]
if lb.ndim == 0:
lb = np.resize(lb, x0.shape)
if ub.ndim == 0:
ub = np.resize(ub, x0.shape)
return lb, ub
def group_columns(A, order=0):
"""Group columns of a 2-D matrix for sparse finite differencing [1]_.
Two columns are in the same group if in each row at least one of them
has zero. A greedy sequential algorithm is used to construct groups.
Parameters
----------
A : array_like or sparse matrix, shape (m, n)
Matrix of which to group columns.
order : int, iterable of int with shape (n,) or None
Permutation array which defines the order of columns enumeration.
If int or None, a random permutation is used with `order` used as
a random seed. Default is 0, that is use a random permutation but
guarantee repeatability.
Returns
-------
groups : ndarray of int, shape (n,)
Contains values from 0 to n_groups-1, where n_groups is the number
of found groups. Each value ``groups[i]`` is an index of a group to
which ith column assigned. The procedure was helpful only if
n_groups is significantly less than n.
References
----------
.. [1] <NAME>, <NAME>, and <NAME>, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13 (1974), pp. 117-120.
"""
if issparse(A):
A = csc_matrix(A)
else:
A = np.atleast_2d(A)
A = (A != 0).astype(np.int32)
if A.ndim != 2:
raise ValueError("`A` must be 2-dimensional.")
m, n = A.shape
if order is None or np.isscalar(order):
rng = np.random.RandomState(order)
order = rng.permutation(n)
else:
order = np.asarray(order)
if order.shape != (n,):
raise ValueError("`order` has incorrect shape.")
A = A[:, order]
if issparse(A):
groups = group_sparse(m, n, A.indices, A.indptr)
else:
groups = group_dense(m, n, A)
groups[order] = groups.copy()
return groups
def approx_derivative(fun, x0, method='3-point', rel_step=None, f0=None,
bounds=(-np.inf, np.inf), sparsity=None,
as_linear_operator=False, args=(), kwargs={}):
"""Compute finite difference approximation of the derivatives of a
vector-valued function.
If a function maps from R^n to R^m, its derivatives form m-by-n matrix
called the Jacobian, where an element (i, j) is a partial derivative of
f[i] with respect to x[j].
Parameters
----------
fun : callable
Function of which to estimate the derivatives. The argument x
passed to this function is ndarray of shape (n,) (never a scalar
even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
x0 : array_like of shape (n,) or float
Point at which to estimate the derivatives. Float will be converted
to a 1-D array.
method : {'3-point', '2-point', 'cs'}, optional
Finite difference method to use:
- '2-point' - use the first order accuracy forward or backward
difference.
- '3-point' - use central difference in interior points and the
second order accuracy forward or backward difference
near the boundary.
- 'cs' - use a complex-step finite difference scheme. This assumes
that the user function is real-valued and can be
analytically continued to the complex plane. Otherwise,
produces bogus results.
rel_step : None or array_like, optional
Relative step size to use. The absolute step size is computed as
``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to
fit into the bounds. For ``method='3-point'`` the sign of `h` is
ignored. If None (default) then step is selected automatically,
see Notes.
f0 : None or array_like, optional
If not None it is assumed to be equal to ``fun(x0)``, in this case
the ``fun(x0)`` is not called. Default is None.
bounds : tuple of array_like, optional
Lower and upper bounds on independent variables. Defaults to no bounds.
Each bound must match the size of `x0` or be a scalar, in the latter
case the bound will be the same for all variables. Use it to limit the
range of function evaluation. Bounds checking is not implemented
when `as_linear_operator` is True.
sparsity : {None, array_like, sparse matrix, 2-tuple}, optional
Defines a sparsity structure of the Jacobian matrix. If the Jacobian
matrix is known to have only few non-zero elements in each row, then
it's possible to estimate its several columns by a single function
evaluation [3]_. To perform such economic computations two ingredients
are required:
* structure : array_like or sparse matrix of shape (m, n). A zero
element means that a corresponding element of the Jacobian
identically equals to zero.
* groups : array_like of shape (n,). A column grouping for a given
sparsity structure, use `group_columns` to obtain it.
A single array or a sparse matrix is interpreted as a sparsity
structure, and groups are computed inside the function. A tuple is
interpreted as (structure, groups). If None (default), a standard
dense differencing will be used.
Note, that sparse differencing makes sense only for large Jacobian
matrices where each row contains few non-zero elements.
as_linear_operator : bool, optional
When True the function returns an `scipy.sparse.linalg.LinearOperator`.
Otherwise it returns a dense array or a sparse matrix depending on
`sparsity`. The linear operator provides an efficient way of computing
``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow
direct access to individual elements of the matrix. By default
`as_linear_operator` is False.
args, kwargs : tuple and dict, optional
Additional arguments passed to `fun`. Both empty by default.
The calling signature is ``fun(x, *args, **kwargs)``.
Returns
-------
J : {ndarray, sparse matrix, LinearOperator}
Finite difference approximation of the Jacobian matrix.
If `as_linear_operator` is True returns a LinearOperator
with shape (m, n). Otherwise it returns a dense array or sparse
matrix depending on how `sparsity` is defined. If `sparsity`
is None then a ndarray with shape (m, n) is returned. If
`sparsity` is not None returns a csr_matrix with shape (m, n).
For sparse matrices and linear operators it is always returned as
a 2-D structure, for ndarrays, if m=1 it is returned
as a 1-D gradient array with shape (n,).
See Also
--------
check_derivative : Check correctness of a function computing derivatives.
Notes
-----
If `rel_step` is not provided, it assigned to ``EPS**(1/s)``, where EPS is
machine epsilon for float64 numbers, s=2 for '2-point' method and s=3 for
'3-point' method. Such relative step approximately minimizes a sum of
truncation and round-off errors, see [1]_.
A finite difference scheme for '3-point' method is selected automatically.
The well-known central difference scheme is used for points sufficiently
far from the boundary, and 3-point forward or backward scheme is used for
points near the boundary. Both schemes have the second-order accuracy in
terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point
forward and backward difference schemes.
For dense differencing when m=1 Jacobian is returned with a shape (n,),
on the other hand when n=1 Jacobian is returned with a shape (m, 1).
Our motivation is the following: a) It handles a case of gradient
computation (m=1) in a conventional way. b) It clearly separates these two
different cases. b) In all cases np.atleast_2d can be called to get 2-D
Jacobian with correct dimensions.
References
----------
.. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific
Computing. 3rd edition", sec. 5.7.
.. [2] <NAME>, <NAME>, and <NAME>, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13 (1974), pp. 117-120.
.. [3] <NAME>, "Generation of Finite Difference Formulas on
Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988.
Examples
--------
>>> import numpy as np
>>> from scipy.optimize import approx_derivative
>>>
>>> def f(x, c1, c2):
... return np.array([x[0] * np.sin(c1 * x[1]),
... x[0] * np.cos(c2 * x[1])])
...
>>> x0 = np.array([1.0, 0.5 * np.pi])
>>> approx_derivative(f, x0, args=(1, 2))
array([[ 1., 0.],
[-1., 0.]])
Bounds can be used to limit the region of function evaluation.
In the example below we compute left and right derivative at point 1.0.
>>> def g(x):
... return x**2 if x >= 1 else x
...
>>> x0 = 1.0
>>> approx_derivative(g, x0, bounds=(-np.inf, 1.0))
array([ 1.])
>>> approx_derivative(g, x0, bounds=(1.0, np.inf))
array([ 2.])
"""
if method not in ['2-point', '3-point', 'cs']:
raise ValueError("Unknown method '%s'. " % method)
x0 = np.atleast_1d(x0)
if x0.ndim > 1:
raise ValueError("`x0` must have at most 1 dimension.")
lb, ub = _prepare_bounds(bounds, x0)
if lb.shape != x0.shape or ub.shape != x0.shape:
raise ValueError("Inconsistent shapes between bounds and `x0`.")
if as_linear_operator and not (np.all(np.isinf(lb))
and np.all(np.isinf(ub))):
raise ValueError("Bounds not supported when "
"`as_linear_operator` is True.")
def fun_wrapped(x):
f = np.atleast_1d(fun(x, *args, **kwargs))
if f.ndim > 1:
raise RuntimeError("`fun` return value has "
"more than 1 dimension.")
return f
if f0 is None:
f0 = fun_wrapped(x0)
else:
f0 = np.atleast_1d(f0)
if f0.ndim > 1:
raise ValueError("`f0` passed has more than 1 dimension.")
if np.any((x0 < lb) | (x0 > ub)):
raise ValueError("`x0` violates bound constraints.")
if as_linear_operator:
if rel_step is None:
rel_step = relative_step[method]
return _linear_operator_difference(fun_wrapped, x0,
f0, rel_step, method)
else:
h = _compute_absolute_step(rel_step, x0, method)
if method == '2-point':
h, use_one_sided = _adjust_scheme_to_bounds(
x0, h, 1, '1-sided', lb, ub)
elif method == '3-point':
h, use_one_sided = _adjust_scheme_to_bounds(
x0, h, 1, '2-sided', lb, ub)
elif method == 'cs':
use_one_sided = False
if sparsity is None:
return _dense_difference(fun_wrapped, x0, f0, h,
use_one_sided, method)
else:
if not issparse(sparsity) and len(sparsity) == 2:
structure, groups = sparsity
else:
structure = sparsity
groups = group_columns(sparsity)
if issparse(structure):
structure = csc_matrix(structure)
else:
structure = np.atleast_2d(structure)
groups = | np.atleast_1d(groups) | numpy.atleast_1d |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * | np.ones_like(min_dash_1) | numpy.ones_like |
'''
<NAME>
set up :2020-1-9
intergrate img and label into one file
-- fiducial1024_v1
'''
import argparse
import sys, os
import pickle
import random
import collections
import json
import numpy as np
import scipy.io as io
import scipy.misc as m
import matplotlib.pyplot as plt
import glob
import math
import time
import threading
import multiprocessing as mp
from multiprocessing import Pool
import re
import cv2
# sys.path.append('/lustre/home/gwxie/hope/project/dewarp/datasets/') # /lustre/home/gwxie/program/project/unwarp/perturbed_imgaes/GAN
import utils
def getDatasets(dir):
return os.listdir(dir)
class perturbed(utils.BasePerturbed):
def __init__(self, path, bg_path, save_path, save_suffix):
self.path = path
self.bg_path = bg_path
self.save_path = save_path
self.save_suffix = save_suffix
def save_img(self, m, n, fold_curve='fold', repeat_time=4, fiducial_points = 16, relativeShift_position='relativeShift_v2'):
origin_img = cv2.imread(self.path, flags=cv2.IMREAD_COLOR)
save_img_shape = [512*2, 480*2] # 320
# reduce_value = np.random.choice([2**4, 2**5, 2**6, 2**7, 2**8], p=[0.01, 0.1, 0.4, 0.39, 0.1])
reduce_value = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.02, 0.18, 0.2, 0.3, 0.1, 0.1, 0.08, 0.02])
# reduce_value = np.random.choice([8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.01, 0.02, 0.2, 0.4, 0.19, 0.18])
# reduce_value = np.random.choice([16, 24, 32, 40, 48, 64], p=[0.01, 0.1, 0.2, 0.4, 0.2, 0.09])
base_img_shrink = save_img_shape[0] - reduce_value
# enlarge_img_shrink = [1024, 768]
# enlarge_img_shrink = [896, 672] # 420
enlarge_img_shrink = [512*4, 480*4] # 420
# enlarge_img_shrink = [896*2, 768*2] # 420
# enlarge_img_shrink = [896, 768] # 420
# enlarge_img_shrink = [768, 576] # 420
# enlarge_img_shrink = [640, 480] # 420
''''''
im_lr = origin_img.shape[0]
im_ud = origin_img.shape[1]
reduce_value_v2 = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 28*2, 32*2, 48*2], p=[0.02, 0.18, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1])
# reduce_value_v2 = np.random.choice([16, 24, 28, 32, 48, 64], p=[0.01, 0.1, 0.2, 0.3, 0.25, 0.14])
if im_lr > im_ud:
im_ud = min(int(im_ud / im_lr * base_img_shrink), save_img_shape[1] - reduce_value_v2)
im_lr = save_img_shape[0] - reduce_value
else:
base_img_shrink = save_img_shape[1] - reduce_value
im_lr = min(int(im_lr / im_ud * base_img_shrink), save_img_shape[0] - reduce_value_v2)
im_ud = base_img_shrink
if round(im_lr / im_ud, 2) < 0.5 or round(im_ud / im_lr, 2) < 0.5:
repeat_time = min(repeat_time, 8)
edge_padding = 3
im_lr -= im_lr % (fiducial_points-1) - (2*edge_padding) # im_lr % (fiducial_points-1) - 1
im_ud -= im_ud % (fiducial_points-1) - (2*edge_padding) # im_ud % (fiducial_points-1) - 1
im_hight = np.linspace(edge_padding, im_lr - edge_padding, fiducial_points, dtype=np.int64)
im_wide = np.linspace(edge_padding, im_ud - edge_padding, fiducial_points, dtype=np.int64)
# im_lr -= im_lr % (fiducial_points-1) - (1+2*edge_padding) # im_lr % (fiducial_points-1) - 1
# im_ud -= im_ud % (fiducial_points-1) - (1+2*edge_padding) # im_ud % (fiducial_points-1) - 1
# im_hight = np.linspace(edge_padding, im_lr - (1+edge_padding), fiducial_points, dtype=np.int64)
# im_wide = np.linspace(edge_padding, im_ud - (1+edge_padding), fiducial_points, dtype=np.int64)
im_x, im_y = np.meshgrid(im_hight, im_wide)
segment_x = (im_lr) // (fiducial_points-1)
segment_y = (im_ud) // (fiducial_points-1)
# plt.plot(im_x, im_y,
# color='limegreen',
# marker='.',
# linestyle='')
# plt.grid(True)
# plt.show()
self.origin_img = cv2.resize(origin_img, (im_ud, im_lr), interpolation=cv2.INTER_CUBIC)
perturbed_bg_ = getDatasets(self.bg_path)
perturbed_bg_img_ = self.bg_path+random.choice(perturbed_bg_)
perturbed_bg_img = cv2.imread(perturbed_bg_img_, flags=cv2.IMREAD_COLOR)
mesh_shape = self.origin_img.shape[:2]
self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 256, dtype=np.float32)#np.zeros_like(perturbed_bg_img)
# self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 0, dtype=np.int16)#np.zeros_like(perturbed_bg_img)
self.new_shape = self.synthesis_perturbed_img.shape[:2]
perturbed_bg_img = cv2.resize(perturbed_bg_img, (save_img_shape[1], save_img_shape[0]), cv2.INPAINT_TELEA)
origin_pixel_position = np.argwhere(np.zeros(mesh_shape, dtype=np.uint32) == 0).reshape(mesh_shape[0], mesh_shape[1], 2)
pixel_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(self.new_shape[0], self.new_shape[1], 2)
self.perturbed_xy_ = np.zeros((self.new_shape[0], self.new_shape[1], 2))
# self.perturbed_xy_ = pixel_position.copy().astype(np.float32)
# fiducial_points_grid = origin_pixel_position[im_x, im_y]
self.synthesis_perturbed_label = np.zeros((self.new_shape[0], self.new_shape[1], 2))
x_min, y_min, x_max, y_max = self.adjust_position_v2(0, 0, mesh_shape[0], mesh_shape[1], save_img_shape)
origin_pixel_position += [x_min, y_min]
x_min, y_min, x_max, y_max = self.adjust_position(0, 0, mesh_shape[0], mesh_shape[1])
x_shift = random.randint(-enlarge_img_shrink[0]//16, enlarge_img_shrink[0]//16)
y_shift = random.randint(-enlarge_img_shrink[1]//16, enlarge_img_shrink[1]//16)
x_min += x_shift
x_max += x_shift
y_min += y_shift
y_max += y_shift
'''im_x,y'''
im_x += x_min
im_y += y_min
self.synthesis_perturbed_img[x_min:x_max, y_min:y_max] = self.origin_img
self.synthesis_perturbed_label[x_min:x_max, y_min:y_max] = origin_pixel_position
synthesis_perturbed_img_map = self.synthesis_perturbed_img.copy()
synthesis_perturbed_label_map = self.synthesis_perturbed_label.copy()
foreORbackground_label = np.full((mesh_shape), 1, dtype=np.int16)
foreORbackground_label_map = np.full((self.new_shape), 0, dtype=np.int16)
foreORbackground_label_map[x_min:x_max, y_min:y_max] = foreORbackground_label
# synthesis_perturbed_img_map = self.pad(self.synthesis_perturbed_img.copy(), x_min, y_min, x_max, y_max)
# synthesis_perturbed_label_map = self.pad(synthesis_perturbed_label_map, x_min, y_min, x_max, y_max)
'''*****************************************************************'''
is_normalizationFun_mixture = self.is_perform(0.2, 0.8)
# if not is_normalizationFun_mixture:
normalizationFun_0_1 = False
# normalizationFun_0_1 = self.is_perform(0.5, 0.5)
if fold_curve == 'fold':
fold_curve_random = True
# is_normalizationFun_mixture = False
normalizationFun_0_1 = self.is_perform(0.2, 0.8)
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
fold_curve_random = self.is_perform(0.1, 0.9) # False # self.is_perform(0.01, 0.99)
alpha_perturbed = random.randint(80, 160) / 100
# is_normalizationFun_mixture = False # self.is_perform(0.01, 0.99)
synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 256)
# synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 0, dtype=np.int16)
synthesis_perturbed_label = np.zeros_like(self.synthesis_perturbed_label)
alpha_perturbed_change = self.is_perform(0.5, 0.5)
p_pp_choice = self.is_perform(0.8, 0.2) if fold_curve == 'fold' else self.is_perform(0.1, 0.9)
for repeat_i in range(repeat_time):
if alpha_perturbed_change:
if fold_curve == 'fold':
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
alpha_perturbed = random.randint(80, 160) / 100
''''''
linspace_x = [0, (self.new_shape[0] - im_lr) // 2 - 1,
self.new_shape[0] - (self.new_shape[0] - im_lr) // 2 - 1, self.new_shape[0] - 1]
linspace_y = [0, (self.new_shape[1] - im_ud) // 2 - 1,
self.new_shape[1] - (self.new_shape[1] - im_ud) // 2 - 1, self.new_shape[1] - 1]
linspace_x_seq = [1, 2, 3]
linspace_y_seq = [1, 2, 3]
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_p = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
if ((r_x == 1 or r_x == 3) and (r_y == 1 or r_y == 3)) and p_pp_choice:
linspace_x_seq.remove(r_x)
linspace_y_seq.remove(r_y)
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_pp = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
# perturbed_p, perturbed_pp = np.array(
# [random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10]) \
# , np.array([random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10])
# perturbed_p, perturbed_pp = np.array(
# [random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10]) \
# , np.array([random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10])
''''''
perturbed_vp = perturbed_pp - perturbed_p
perturbed_vp_norm = np.linalg.norm(perturbed_vp)
perturbed_distance_vertex_and_line = np.dot((perturbed_p - pixel_position), perturbed_vp) / perturbed_vp_norm
''''''
# perturbed_v = np.array([random.randint(-3000, 3000) / 100, random.randint(-3000, 3000) / 100])
# perturbed_v = np.array([random.randint(-4000, 4000) / 100, random.randint(-4000, 4000) / 100])
if fold_curve == 'fold' and self.is_perform(0.6, 0.4): # self.is_perform(0.3, 0.7):
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
perturbed_v = np.array([random.randint(-10000, 10000) / 100, random.randint(-10000, 10000) / 100])
# perturbed_v = np.array([random.randint(-11000, 11000) / 100, random.randint(-11000, 11000) / 100])
else:
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
# perturbed_v = np.array([random.randint(-16000, 16000) / 100, random.randint(-16000, 16000) / 100])
perturbed_v = np.array([random.randint(-8000, 8000) / 100, random.randint(-8000, 8000) / 100])
# perturbed_v = np.array([random.randint(-3500, 3500) / 100, random.randint(-3500, 3500) / 100])
# perturbed_v = np.array([random.randint(-600, 600) / 10, random.randint(-600, 600) / 10])
''''''
if fold_curve == 'fold':
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
''''''
if fold_curve_random:
# omega_perturbed = (alpha_perturbed+0.2) / (perturbed_d + alpha_perturbed)
# omega_perturbed = alpha_perturbed**perturbed_d
omega_perturbed = alpha_perturbed / (perturbed_d + alpha_perturbed)
else:
omega_perturbed = 1 - perturbed_d ** alpha_perturbed
'''shadow'''
if self.is_perform(0.6, 0.4):
synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] = np.minimum(np.maximum(synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] - np.int16(np.round(omega_perturbed[x_min:x_max, y_min:y_max].repeat(3).reshape(x_max-x_min, y_max-y_min, 3) * abs(np.linalg.norm(perturbed_v//2))*np.array([0.4-random.random()*0.1, 0.4-random.random()*0.1, 0.4-random.random()*0.1]))), 0), 255)
''''''
if relativeShift_position in ['position', 'relativeShift_v2']:
self.perturbed_xy_ += np.array([omega_perturbed * perturbed_v[0], omega_perturbed * perturbed_v[1]]).transpose(1, 2, 0)
else:
print('relativeShift_position error')
exit()
'''
flat_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(
self.new_shape[0] * self.new_shape[1], 2)
vtx, wts = self.interp_weights(self.perturbed_xy_.reshape(self.new_shape[0] * self.new_shape[1], 2), flat_position)
wts_sum = np.abs(wts).sum(-1)
# flat_img.reshape(flat_shape[0] * flat_shape[1], 3)[:] = interpolate(pixel, vtx, wts)
wts = wts[wts_sum <= 1, :]
vtx = vtx[wts_sum <= 1, :]
synthesis_perturbed_img.reshape(self.new_shape[0] * self.new_shape[1], 3)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_img_map.reshape(self.new_shape[0] * self.new_shape[1], 3), vtx, wts)
synthesis_perturbed_label.reshape(self.new_shape[0] * self.new_shape[1], 2)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_label_map.reshape(self.new_shape[0] * self.new_shape[1], 2), vtx, wts)
foreORbackground_label = np.zeros(self.new_shape)
foreORbackground_label.reshape(self.new_shape[0] * self.new_shape[1], 1)[wts_sum <= 1, :] = self.interpolate(foreORbackground_label_map.reshape(self.new_shape[0] * self.new_shape[1], 1), vtx, wts)
foreORbackground_label[foreORbackground_label < 0.99] = 0
foreORbackground_label[foreORbackground_label >= 0.99] = 1
# synthesis_perturbed_img = np.around(synthesis_perturbed_img).astype(np.uint8)
synthesis_perturbed_label[:, :, 0] *= foreORbackground_label
synthesis_perturbed_label[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 0] *= foreORbackground_label
synthesis_perturbed_img[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 2] *= foreORbackground_label
self.synthesis_perturbed_img = synthesis_perturbed_img
self.synthesis_perturbed_label = synthesis_perturbed_label
'''
'''perspective'''
perspective_shreshold = random.randint(26, 36)*10 # 280
x_min_per, y_min_per, x_max_per, y_max_per = self.adjust_position(perspective_shreshold, perspective_shreshold, self.new_shape[0]-perspective_shreshold, self.new_shape[1]-perspective_shreshold)
pts1 = np.float32([[x_min_per, y_min_per], [x_max_per, y_min_per], [x_min_per, y_max_per], [x_max_per, y_max_per]])
e_1_ = x_max_per - x_min_per
e_2_ = y_max_per - y_min_per
e_3_ = e_2_
e_4_ = e_1_
perspective_shreshold_h = e_1_*0.02
perspective_shreshold_w = e_2_*0.02
a_min_, a_max_ = 70, 110
# if self.is_perform(1, 0):
if fold_curve == 'curve' and self.is_perform(0.5, 0.5):
if self.is_perform(0.5, 0.5):
while True:
pts2 = np.around(
np.float32([[x_min_per - (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_min_per + (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold]])) # right
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
else:
while True:
pts2 = np.around(
np.float32([[x_min_per + (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_min_per - (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold]]))
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
else:
while True:
pts2 = np.around(np.float32([[x_min_per+(random.random()-0.5)*perspective_shreshold, y_min_per+(random.random()-0.5)*perspective_shreshold],
[x_max_per+(random.random()-0.5)*perspective_shreshold, y_min_per+(random.random()-0.5)*perspective_shreshold],
[x_min_per+(random.random()-0.5)*perspective_shreshold, y_max_per+(random.random()-0.5)*perspective_shreshold],
[x_max_per+(random.random()-0.5)*perspective_shreshold, y_max_per+(random.random()-0.5)*perspective_shreshold]]))
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
M = cv2.getPerspectiveTransform(pts1, pts2)
one = np.ones((self.new_shape[0], self.new_shape[1], 1), dtype=np.int16)
matr = np.dstack((pixel_position, one))
new = np.dot(M, matr.reshape(-1, 3).T).T.reshape(self.new_shape[0], self.new_shape[1], 3)
x = new[:, :, 0]/new[:, :, 2]
y = new[:, :, 1]/new[:, :, 2]
perturbed_xy_ = np.dstack((x, y))
# perturbed_xy_round_int = np.around(cv2.bilateralFilter(perturbed_xy_round_int, 9, 75, 75))
# perturbed_xy_round_int = np.around(cv2.blur(perturbed_xy_, (17, 17)))
# perturbed_xy_round_int = cv2.blur(perturbed_xy_round_int, (17, 17))
# perturbed_xy_round_int = cv2.GaussianBlur(perturbed_xy_round_int, (7, 7), 0)
perturbed_xy_ = perturbed_xy_-np.min(perturbed_xy_.T.reshape(2, -1), 1)
# perturbed_xy_round_int = np.around(perturbed_xy_round_int-np.min(perturbed_xy_round_int.T.reshape(2, -1), 1)).astype(np.int16)
self.perturbed_xy_ += perturbed_xy_
'''perspective end'''
'''to img'''
flat_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(
self.new_shape[0] * self.new_shape[1], 2)
# self.perturbed_xy_ = cv2.blur(self.perturbed_xy_, (7, 7))
self.perturbed_xy_ = cv2.GaussianBlur(self.perturbed_xy_, (7, 7), 0)
'''get fiducial points'''
fiducial_points_coordinate = self.perturbed_xy_[im_x, im_y]
vtx, wts = self.interp_weights(self.perturbed_xy_.reshape(self.new_shape[0] * self.new_shape[1], 2), flat_position)
wts_sum = np.abs(wts).sum(-1)
# flat_img.reshape(flat_shape[0] * flat_shape[1], 3)[:] = interpolate(pixel, vtx, wts)
wts = wts[wts_sum <= 1, :]
vtx = vtx[wts_sum <= 1, :]
synthesis_perturbed_img.reshape(self.new_shape[0] * self.new_shape[1], 3)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_img_map.reshape(self.new_shape[0] * self.new_shape[1], 3), vtx, wts)
synthesis_perturbed_label.reshape(self.new_shape[0] * self.new_shape[1], 2)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_label_map.reshape(self.new_shape[0] * self.new_shape[1], 2), vtx, wts)
foreORbackground_label = np.zeros(self.new_shape)
foreORbackground_label.reshape(self.new_shape[0] * self.new_shape[1], 1)[wts_sum <= 1, :] = self.interpolate(foreORbackground_label_map.reshape(self.new_shape[0] * self.new_shape[1], 1), vtx, wts)
foreORbackground_label[foreORbackground_label < 0.99] = 0
foreORbackground_label[foreORbackground_label >= 0.99] = 1
self.synthesis_perturbed_img = synthesis_perturbed_img
self.synthesis_perturbed_label = synthesis_perturbed_label
self.foreORbackground_label = foreORbackground_label
'''draw fiducial points
stepSize = 0
fiducial_points_synthesis_perturbed_img = self.synthesis_perturbed_img.copy()
for l in fiducial_points_coordinate.astype(np.int64).reshape(-1,2):
cv2.circle(fiducial_points_synthesis_perturbed_img, (l[1] + math.ceil(stepSize / 2), l[0] + math.ceil(stepSize / 2)), 5, (0, 0, 255), -1)
cv2.imwrite('/lustre/home/gwxie/program/project/unwarp/unwarp_perturbed/TPS/img/cv_TPS_large.jpg', fiducial_points_synthesis_perturbed_img)
'''
'''clip'''
perturbed_x_min, perturbed_y_min, perturbed_x_max, perturbed_y_max = -1, -1, self.new_shape[0], self.new_shape[1]
for x in range(self.new_shape[0] // 2, perturbed_x_max):
if np.sum(self.synthesis_perturbed_img[x, :]) == 768 * self.new_shape[1] and perturbed_x_max - 1 > x:
perturbed_x_max = x
break
for x in range(self.new_shape[0] // 2, perturbed_x_min, -1):
if np.sum(self.synthesis_perturbed_img[x, :]) == 768 * self.new_shape[1] and x > 0:
perturbed_x_min = x
break
for y in range(self.new_shape[1] // 2, perturbed_y_max):
if np.sum(self.synthesis_perturbed_img[:, y]) == 768 * self.new_shape[0] and perturbed_y_max - 1 > y:
perturbed_y_max = y
break
for y in range(self.new_shape[1] // 2, perturbed_y_min, -1):
if np.sum(self.synthesis_perturbed_img[:, y]) == 768 * self.new_shape[0] and y > 0:
perturbed_y_min = y
break
if perturbed_x_min == 0 or perturbed_x_max == self.new_shape[0] or perturbed_y_min == self.new_shape[1] or perturbed_y_max == self.new_shape[1]:
raise Exception('clip error')
if perturbed_x_max - perturbed_x_min < im_lr//2 or perturbed_y_max - perturbed_y_min < im_ud//2:
raise Exception('clip error')
perfix_ = self.save_suffix+'_'+str(m)+'_'+str(n)
is_shrink = False
if perturbed_x_max - perturbed_x_min > save_img_shape[0] or perturbed_y_max - perturbed_y_min > save_img_shape[1]:
is_shrink = True
synthesis_perturbed_img = cv2.resize(self.synthesis_perturbed_img[perturbed_x_min:perturbed_x_max, perturbed_y_min:perturbed_y_max, :].copy(), (im_ud, im_lr), interpolation=cv2.INTER_LINEAR)
synthesis_perturbed_label = cv2.resize(self.synthesis_perturbed_label[perturbed_x_min:perturbed_x_max, perturbed_y_min:perturbed_y_max, :].copy(), (im_ud, im_lr), interpolation=cv2.INTER_LINEAR)
foreORbackground_label = cv2.resize(self.foreORbackground_label[perturbed_x_min:perturbed_x_max, perturbed_y_min:perturbed_y_max].copy(), (im_ud, im_lr), interpolation=cv2.INTER_LINEAR)
foreORbackground_label[foreORbackground_label < 0.99] = 0
foreORbackground_label[foreORbackground_label >= 0.99] = 1
'''shrink fiducial points'''
center_x_l, center_y_l = perturbed_x_min + (perturbed_x_max - perturbed_x_min) // 2, perturbed_y_min + (perturbed_y_max - perturbed_y_min) // 2
fiducial_points_coordinate_copy = fiducial_points_coordinate.copy()
shrink_x = im_lr/(perturbed_x_max - perturbed_x_min)
shrink_y = im_ud/(perturbed_y_max - perturbed_y_min)
fiducial_points_coordinate *= [shrink_x, shrink_y]
center_x_l *= shrink_x
center_y_l *= shrink_y
# fiducial_points_coordinate[1:, 1:] *= [shrink_x, shrink_y]
# fiducial_points_coordinate[1:, :1, 0] *= shrink_x
# fiducial_points_coordinate[:1, 1:, 1] *= shrink_y
# perturbed_x_min_copy, perturbed_y_min_copy, perturbed_x_max_copy, perturbed_y_max_copy = perturbed_x_min, perturbed_y_min, perturbed_x_max, perturbed_y_max
perturbed_x_min, perturbed_y_min, perturbed_x_max, perturbed_y_max = self.adjust_position_v2(0, 0, im_lr, im_ud, self.new_shape)
self.synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 256)
self.synthesis_perturbed_label = | np.zeros_like(self.synthesis_perturbed_label) | numpy.zeros_like |
import argparse
import json
import numpy as np
import pandas as pd
import os
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,f1_score
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import backend as K
from keras.utils.vis_utils import plot_model
from sklearn.externals import joblib
import time
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def get_embeddings(sentences_list,layer_json):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:return: Dictionary with key each sentence of the sentences_list and as value the embedding
'''
sentences = dict()#dict with key the index of each line of the sentences_list.txt and as value the sentence
embeddings = dict()##dict with key the index of each sentence and as value the its embedding
sentence_emb = dict()#key:sentence,value:its embedding
with open(sentences_list,'r') as file:
for index,line in enumerate(file):
sentences[index] = line.strip()
with open(layer_json, 'r',encoding='utf-8') as f:
for line in f:
embeddings[json.loads(line)['linex_index']] = np.asarray(json.loads(line)['features'])
for key,value in sentences.items():
sentence_emb[value] = embeddings[key]
return sentence_emb
def train_classifier(sentences_list,layer_json,dataset_csv,filename):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:param filename: The path of the pickle file that the model will be stored
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = np.asarray(label)
print(errors)
features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1)
features = | np.column_stack([features, length]) | numpy.column_stack |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cntk as C
import numpy as np
from .common import floatx, epsilon, image_dim_ordering, image_data_format
from collections import defaultdict
from contextlib import contextmanager
import warnings
C.set_global_option('align_axis', 1)
b_any = any
dev = C.device.use_default_device()
if dev.type() == 0:
warnings.warn(
'CNTK backend warning: GPU is not detected. '
'CNTK\'s CPU version is not fully optimized,'
'please run with GPU to get better performance.')
# A learning phase is a bool tensor used to run Keras models in
# either train mode (learning_phase == 1) or test mode (learning_phase == 0).
# LEARNING_PHASE_PLACEHOLDER is the placeholder for dynamic learning phase
_LEARNING_PHASE_PLACEHOLDER = C.constant(shape=(), dtype=np.float32, value=1.0, name='_keras_learning_phase')
# static learning phase flag, if it is not 0 or 1, we will go with dynamic learning phase tensor.
_LEARNING_PHASE = -1
_UID_PREFIXES = defaultdict(int)
# cntk doesn't support gradient as symbolic op, to hook up with keras model,
# we will create gradient as a constant placeholder, here use this global
# map to keep the mapping from grad placeholder to parameter
grad_parameter_dict = {}
NAME_SCOPE_STACK = []
@contextmanager
def name_scope(name):
global NAME_SCOPE_STACK
NAME_SCOPE_STACK.append(name)
yield
NAME_SCOPE_STACK.pop()
def get_uid(prefix=''):
_UID_PREFIXES[prefix] += 1
return _UID_PREFIXES[prefix]
def learning_phase():
# If _LEARNING_PHASE is not 0 or 1, return dynamic learning phase tensor
return _LEARNING_PHASE if _LEARNING_PHASE in {0, 1} else _LEARNING_PHASE_PLACEHOLDER
def set_learning_phase(value):
global _LEARNING_PHASE
if value not in {0, 1}:
raise ValueError('CNTK Backend: Set learning phase '
'with value %s is not supported, '
'expected 0 or 1.' % value)
_LEARNING_PHASE = value
def clear_session():
"""Reset learning phase flag for cntk backend.
"""
global _LEARNING_PHASE
global _LEARNING_PHASE_PLACEHOLDER
_LEARNING_PHASE = -1
_LEARNING_PHASE_PLACEHOLDER.value = np.asarray(1.0)
def in_train_phase(x, alt, training=None):
global _LEARNING_PHASE
if training is None:
training = learning_phase()
uses_learning_phase = True
else:
uses_learning_phase = False
# CNTK currently don't support cond op, so here we use
# element_select approach as workaround. It may have
# perf issue, will resolve it later with cntk cond op.
if callable(x) and isinstance(x, C.cntk_py.Function) is False:
x = x()
if callable(alt) and isinstance(alt, C.cntk_py.Function) is False:
alt = alt()
if training is True:
x._uses_learning_phase = uses_learning_phase
return x
else:
# if _LEARNING_PHASE is static
if isinstance(training, int) or isinstance(training, bool):
result = x if training == 1 or training is True else alt
else:
result = C.element_select(training, x, alt)
result._uses_learning_phase = uses_learning_phase
return result
def in_test_phase(x, alt, training=None):
return in_train_phase(alt, x, training=training)
def _convert_string_dtype(dtype):
# cntk only support float32 and float64
if dtype == 'float32':
return np.float32
elif dtype == 'float64':
return np.float64
else:
# cntk only running with float,
# try to cast to float to run the model
return np.float32
def _convert_dtype_string(dtype):
if dtype == np.float32:
return 'float32'
elif dtype == np.float64:
return 'float64'
else:
raise ValueError('CNTK Backend: Unsupported dtype: %s. '
'CNTK only supports float32 and '
'float64.' % dtype)
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if name is None:
name = ''
if isinstance(
value,
C.variables.Constant) or isinstance(
value,
C.variables.Parameter):
value = value.value
# we don't support init parameter with symbolic op, so eval it first as
# workaround
if isinstance(value, C.cntk_py.Function):
value = eval(value)
shape = value.shape if hasattr(value, 'shape') else ()
if hasattr(value, 'dtype') and value.dtype != dtype and len(shape) > 0:
value = value.astype(dtype)
# TODO: remove the conversion when cntk supports int32, int64
# https://docs.microsoft.com/en-us/python/api/cntk.variables.parameter
dtype = 'float32' if 'int' in str(dtype) else dtype
v = C.parameter(shape=shape,
init=value,
dtype=dtype,
name=_prepare_name(name, 'variable'))
v._keras_shape = v.shape
v._uses_learning_phase = False
v.constraint = constraint
return v
def bias_add(x, bias, data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
dims = len(x.shape)
if dims > 0 and x.shape[0] == C.InferredDimension:
dims -= 1
bias_dims = len(bias.shape)
if bias_dims != 1 and bias_dims != dims:
raise ValueError('Unexpected bias dimensions %d, '
'expected 1 or %d dimensions' % (bias_dims, dims))
if dims == 4:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1, 1, 1)
else:
shape = (bias.shape[3],) + bias.shape[:3]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, 1, 1, bias.shape[0])
else:
shape = bias.shape
elif dims == 3:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1, 1)
else:
shape = (bias.shape[2],) + bias.shape[:2]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, 1, bias.shape[0])
else:
shape = bias.shape
elif dims == 2:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1)
else:
shape = (bias.shape[1],) + bias.shape[:1]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, bias.shape[0])
else:
shape = bias.shape
else:
shape = bias.shape
return x + reshape(bias, shape)
def eval(x):
if isinstance(x, C.cntk_py.Function):
return x.eval()
elif isinstance(x, C.variables.Constant) or isinstance(x, C.variables.Parameter):
return x.value
else:
raise ValueError('CNTK Backend: `eval` method on '
'`%s` type is not supported. '
'CNTK only supports `eval` with '
'`Function`, `Constant` or '
'`Parameter`.' % type(x))
def placeholder(
shape=None,
ndim=None,
dtype=None,
sparse=False,
name=None,
dynamic_axis_num=1):
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
dynamic_dimension = C.FreeDimension if _get_cntk_version() >= 2.2 else C.InferredDimension
cntk_shape = [dynamic_dimension if s is None else s for s in shape]
cntk_shape = tuple(cntk_shape)
if dynamic_axis_num > len(cntk_shape):
raise ValueError('CNTK backend: creating placeholder with '
'%d dimension is not supported, at least '
'%d dimensions are needed.'
% (len(cntk_shape, dynamic_axis_num)))
if name is None:
name = ''
cntk_shape = cntk_shape[dynamic_axis_num:]
x = C.input(
shape=cntk_shape,
dtype=_convert_string_dtype(dtype),
is_sparse=sparse,
name=name)
x._keras_shape = shape
x._uses_learning_phase = False
x._cntk_placeholder = True
return x
def is_placeholder(x):
"""Returns whether `x` is a placeholder.
# Arguments
x: A candidate placeholder.
# Returns
Boolean.
"""
return hasattr(x, '_cntk_placeholder') and x._cntk_placeholder
def is_keras_tensor(x):
if not is_tensor(x):
raise ValueError('Unexpectedly found an instance of type `' +
str(type(x)) + '`. '
'Expected a symbolic tensor instance.')
return hasattr(x, '_keras_history')
def is_tensor(x):
return isinstance(x, (C.variables.Constant,
C.variables.Variable,
C.variables.Parameter,
C.ops.functions.Function))
def shape(x):
shape = list(int_shape(x))
num_dynamic = _get_dynamic_axis_num(x)
non_dyn_shape = []
for i in range(len(x.shape)):
if shape[i + num_dynamic] is None:
non_dyn_shape.append(x.shape[i])
else:
non_dyn_shape.append(shape[i + num_dynamic])
return shape[:num_dynamic] + non_dyn_shape
def is_sparse(tensor):
return tensor.is_sparse
def int_shape(x):
if hasattr(x, '_keras_shape'):
return x._keras_shape
shape = x.shape
if hasattr(x, 'dynamic_axes'):
dynamic_shape = [None for a in x.dynamic_axes]
shape = tuple(dynamic_shape) + shape
return shape
def ndim(x):
shape = int_shape(x)
return len(shape)
def _prepare_name(name, default):
prefix = '_'.join(NAME_SCOPE_STACK)
if name is None or name == '':
return prefix + '/' + default
return prefix + '/' + name
def constant(value, dtype=None, shape=None, name=None):
if dtype is None:
dtype = floatx()
if shape is None:
shape = ()
np_value = value * np.ones(shape)
const = C.constant(np_value,
dtype=dtype,
name=_prepare_name(name, 'constant'))
const._keras_shape = const.shape
const._uses_learning_phase = False
return const
def random_binomial(shape, p=0.0, dtype=None, seed=None):
# use numpy workaround now
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e7)
np.random.seed(seed)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
size = 1
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
size *= _
binomial = np.random.binomial(1, p, size).astype(dtype).reshape(shape)
return variable(value=binomial, dtype=dtype)
def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None):
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
return random_uniform_variable(shape, minval, maxval, dtype, seed)
def random_uniform_variable(shape, low, high,
dtype=None, name=None, seed=None):
if dtype is None:
dtype = floatx()
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e3)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
if name is None:
name = ''
scale = (high - low) / 2
p = C.parameter(
shape,
init=C.initializer.uniform(
scale,
seed=seed),
dtype=dtype,
name=name)
return variable(value=p.value + low + scale)
def random_normal_variable(
shape,
mean,
scale,
dtype=None,
name=None,
seed=None):
if dtype is None:
dtype = floatx()
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e7)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
if name is None:
name = ''
return C.parameter(
shape=shape,
init=C.initializer.normal(
scale=scale,
seed=seed),
dtype=dtype,
name=name)
def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
if dtype is None:
dtype = floatx()
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
# how to apply mean and stddev
return random_normal_variable(shape=shape, mean=mean, scale=1.0, seed=seed)
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
if seed is None:
seed = np.random.randint(1, 10e6)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
return C.parameter(
shape, init=C.initializer.truncated_normal(
stddev, seed=seed), dtype=dtype)
def dtype(x):
return _convert_dtype_string(x.dtype)
def zeros(shape, dtype=None, name=None):
if dtype is None:
dtype = floatx()
ctype = _convert_string_dtype(dtype)
return variable(value=np.zeros(shape, ctype), dtype=dtype, name=name)
def ones(shape, dtype=None, name=None):
if dtype is None:
dtype = floatx()
ctype = _convert_string_dtype(dtype)
return variable(value= | np.ones(shape, ctype) | numpy.ones |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * | np.ones(100) | numpy.ones |
import time
import h5py
import hdbscan
import numpy as np
import torch
from sklearn.cluster import MeanShift
from pytorch3dunet.datasets.hdf5 import SliceBuilder
from pytorch3dunet.unet3d.utils import get_logger
from pytorch3dunet.unet3d.utils import unpad
logger = get_logger('UNet3DPredictor')
class _AbstractPredictor:
def __init__(self, model, loader, output_file, config, **kwargs):
self.model = model
self.loader = loader
self.output_file = output_file
self.config = config
self.predictor_config = kwargs
@staticmethod
def _volume_shape(dataset):
# TODO: support multiple internal datasets
raw = dataset.raws[0]
if raw.ndim == 3:
return raw.shape
else:
return raw.shape[1:]
@staticmethod
def _get_output_dataset_names(number_of_datasets, prefix='predictions'):
if number_of_datasets == 1:
return [prefix]
else:
return [f'{prefix}{i}' for i in range(number_of_datasets)]
def predict(self):
raise NotImplementedError
class StandardPredictor(_AbstractPredictor):
"""
Applies the model on the given dataset and saves the result in the `output_file` in the H5 format.
Predictions from the network are kept in memory. If the results from the network don't fit in into RAM
use `LazyPredictor` instead.
The output dataset names inside the H5 is given by `des_dataset_name` config argument. If the argument is
not present in the config 'predictions{n}' is used as a default dataset name, where `n` denotes the number
of the output head from the network.
Args:
model (Unet3D): trained 3D UNet model used for prediction
data_loader (torch.utils.data.DataLoader): input data loader
output_file (str): path to the output H5 file
config (dict): global config dict
"""
def __init__(self, model, loader, output_file, config, **kwargs):
super().__init__(model, loader, output_file, config, **kwargs)
def predict(self):
out_channels = self.config['model'].get('out_channels')
if out_channels is None:
out_channels = self.config['model']['dt_out_channels']
prediction_channel = self.config.get('prediction_channel', None)
if prediction_channel is not None:
logger.info(f"Using only channel '{prediction_channel}' from the network output")
device = self.config['device']
output_heads = self.config['model'].get('output_heads', 1)
logger.info(f'Running prediction on {len(self.loader)} batches...')
# dimensionality of the the output predictions
volume_shape = self._volume_shape(self.loader.dataset)
if prediction_channel is None:
prediction_maps_shape = (out_channels,) + volume_shape
else:
# single channel prediction map
prediction_maps_shape = (1,) + volume_shape
logger.info(f'The shape of the output prediction maps (CDHW): {prediction_maps_shape}')
avoid_block_artifacts = self.predictor_config.get('avoid_block_artifacts', True)
logger.info(f'Avoid block artifacts: {avoid_block_artifacts}')
# create destination H5 file
h5_output_file = h5py.File(self.output_file, 'w')
# allocate prediction and normalization arrays
logger.info('Allocating prediction and normalization arrays...')
prediction_maps, normalization_masks = self._allocate_prediction_maps(prediction_maps_shape,
output_heads, h5_output_file)
# Sets the module in evaluation mode explicitly (necessary for batchnorm/dropout layers if present)
self.model.eval()
# Set the `testing=true` flag otherwise the final Softmax/Sigmoid won't be applied!
self.model.testing = True
# Run predictions on the entire input dataset
with torch.no_grad():
for batch, indices in self.loader:
# send batch to device
batch = batch.to(device)
# forward pass
predictions = self.model(batch)
# wrap predictions into a list if there is only one output head from the network
if output_heads == 1:
predictions = [predictions]
# for each output head
for prediction, prediction_map, normalization_mask in zip(predictions, prediction_maps,
normalization_masks):
# convert to numpy array
prediction = prediction.cpu().numpy()
# for each batch sample
for pred, index in zip(prediction, indices):
# save patch index: (C,D,H,W)
if prediction_channel is None:
channel_slice = slice(0, out_channels)
else:
channel_slice = slice(0, 1)
index = (channel_slice,) + index
if prediction_channel is not None:
# use only the 'prediction_channel'
logger.info(f"Using channel '{prediction_channel}'...")
pred = np.expand_dims(pred[prediction_channel], axis=0)
logger.info(f'Saving predictions for slice:{index}...')
if avoid_block_artifacts:
# unpad in order to avoid block artifacts in the output probability maps
u_prediction, u_index = unpad(pred, index, volume_shape)
# accumulate probabilities into the output prediction array
prediction_map[u_index] += u_prediction
# count voxel visits for normalization
normalization_mask[u_index] += 1
else:
# accumulate probabilities into the output prediction array
prediction_map[index] += pred
# count voxel visits for normalization
normalization_mask[index] += 1
# save results to
self._save_results(prediction_maps, normalization_masks, output_heads, h5_output_file, self.loader.dataset)
# close the output H5 file
h5_output_file.close()
def _allocate_prediction_maps(self, output_shape, output_heads, output_file):
# initialize the output prediction arrays
prediction_maps = [np.zeros(output_shape, dtype='float32') for _ in range(output_heads)]
# initialize normalization mask in order to average out probabilities of overlapping patches
normalization_masks = [np.zeros(output_shape, dtype='uint8') for _ in range(output_heads)]
return prediction_maps, normalization_masks
def _save_results(self, prediction_maps, normalization_masks, output_heads, output_file, dataset):
# save probability maps
prediction_datasets = self._get_output_dataset_names(output_heads, prefix='predictions')
for prediction_map, normalization_mask, prediction_dataset in zip(prediction_maps, normalization_masks,
prediction_datasets):
prediction_map = prediction_map / normalization_mask
if dataset.mirror_padding:
pad_width = dataset.pad_width
logger.info(f'Dataset loaded with mirror padding, pad_width: {pad_width}. Cropping before saving...')
prediction_map = prediction_map[:, pad_width:-pad_width, pad_width:-pad_width, pad_width:-pad_width]
logger.info(f'Saving predictions to: {output_file}/{prediction_dataset}...')
output_file.create_dataset(prediction_dataset, data=prediction_map, compression="gzip")
class LazyPredictor(StandardPredictor):
"""
Applies the model on the given dataset and saves the result in the `output_file` in the H5 format.
Predicted patches are directly saved into the H5 and they won't be stored in memory. Since this predictor
is slower than the `StandardPredictor` it should only be used when the predicted volume does not fit into RAM.
The output dataset names inside the H5 is given by `des_dataset_name` config argument. If the argument is
not present in the config 'predictions{n}' is used as a default dataset name, where `n` denotes the number
of the output head from the network.
Args:
model (Unet3D): trained 3D UNet model used for prediction
data_loader (torch.utils.data.DataLoader): input data loader
output_file (str): path to the output H5 file
config (dict): global config dict
"""
def __init__(self, model, loader, output_file, config, **kwargs):
super().__init__(model, loader, output_file, config, **kwargs)
def _allocate_prediction_maps(self, output_shape, output_heads, output_file):
# allocate datasets for probability maps
prediction_datasets = self._get_output_dataset_names(output_heads, prefix='predictions')
prediction_maps = [
output_file.create_dataset(dataset_name, shape=output_shape, dtype='float32', chunks=True,
compression='gzip')
for dataset_name in prediction_datasets]
# allocate datasets for normalization masks
normalization_datasets = self._get_output_dataset_names(output_heads, prefix='normalization')
normalization_masks = [
output_file.create_dataset(dataset_name, shape=output_shape, dtype='uint8', chunks=True,
compression='gzip')
for dataset_name in normalization_datasets]
return prediction_maps, normalization_masks
def _save_results(self, prediction_maps, normalization_masks, output_heads, output_file, dataset):
if dataset.mirror_padding:
logger.warn(
f'Mirror padding unsupported in LazyPredictor. Output predictions will be padded with pad_width: {dataset.pad_width}')
prediction_datasets = self._get_output_dataset_names(output_heads, prefix='predictions')
normalization_datasets = self._get_output_dataset_names(output_heads, prefix='normalization')
# normalize the prediction_maps inside the H5
for prediction_map, normalization_mask, prediction_dataset, normalization_dataset in zip(prediction_maps,
normalization_masks,
prediction_datasets,
normalization_datasets):
# split the volume into 4 parts and load each into the memory separately
logger.info(f'Normalizing {prediction_dataset}...')
z, y, x = prediction_map.shape[1:]
# take slices which are 1/27 of the original volume
patch_shape = (z // 3, y // 3, x // 3)
for index in SliceBuilder._build_slices(prediction_map, patch_shape=patch_shape, stride_shape=patch_shape):
logger.info(f'Normalizing slice: {index}')
prediction_map[index] /= normalization_mask[index]
# make sure to reset the slice that has been visited already in order to avoid 'double' normalization
# when the patches overlap with each other
normalization_mask[index] = 1
logger.info(f'Deleting {normalization_dataset}...')
del output_file[normalization_dataset]
class EmbeddingsPredictor(_AbstractPredictor):
"""
Applies the embedding model on the given dataset and saves the result in the `output_file` in the H5 format.
The resulting volume is the segmentation itself (not the embedding vectors) obtained by clustering embeddings
with HDBSCAN or MeanShift algorithm patch by patch and then stitching the patches together.
"""
def __init__(self, model, loader, output_file, config, clustering, iou_threshold=0.7, noise_label=-1, **kwargs):
super().__init__(model, loader, output_file, config, **kwargs)
self.iou_threshold = iou_threshold
self.noise_label = noise_label
self.clustering = clustering
assert clustering in ['hdbscan', 'meanshift'], 'Only HDBSCAN and MeanShift are supported'
logger.info(f'IoU threshold: {iou_threshold}')
self.clustering_name = clustering
self.clustering = self._get_clustering(clustering, kwargs)
def predict(self):
device = self.config['device']
output_heads = self.config['model'].get('output_heads', 1)
logger.info(f'Running prediction on {len(self.loader)} patches...')
# dimensionality of the the output segmentation
volume_shape = self._volume_shape(self.loader.dataset)
logger.info(f'The shape of the output segmentation (DHW): {volume_shape}')
logger.info('Allocating segmentation array...')
# initialize the output prediction arrays
output_segmentations = [np.zeros(volume_shape, dtype='int32') for _ in range(output_heads)]
# initialize visited_voxels arrays
visited_voxels_arrays = [np.zeros(volume_shape, dtype='uint8') for _ in range(output_heads)]
# Sets the module in evaluation mode explicitly
self.model.eval()
self.model.testing = True
# Run predictions on the entire input dataset
with torch.no_grad():
for batch, indices in self.loader:
# logger.info(f'Predicting embeddings for slice:{index}')
# send batch to device
batch = batch.to(device)
# forward pass
embeddings = self.model(batch)
# wrap predictions into a list if there is only one output head from the network
if output_heads == 1:
embeddings = [embeddings]
for prediction, output_segmentation, visited_voxels_array in zip(embeddings, output_segmentations,
visited_voxels_arrays):
# convert to numpy array
prediction = prediction.cpu().numpy()
# iterate sequentially because of the current simple stitching that we're using
for pred, index in zip(prediction, indices):
# convert embeddings to segmentation with hdbscan clustering
segmentation = self._embeddings_to_segmentation(pred)
# stitch patches
self._merge_segmentation(segmentation, index, output_segmentation, visited_voxels_array)
# save results
with h5py.File(self.output_file, 'w') as output_file:
prediction_datasets = self._get_output_dataset_names(output_heads,
prefix=f'segmentation/{self.clustering_name}')
for output_segmentation, prediction_dataset in zip(output_segmentations, prediction_datasets):
logger.info(f'Saving predictions to: {output_file}/{prediction_dataset}...')
output_file.create_dataset(prediction_dataset, data=output_segmentation, compression="gzip")
def _embeddings_to_segmentation(self, embeddings):
"""
Cluster embeddings vectors with HDBSCAN and return the segmented volume.
Args:
embeddings (ndarray): 4D (CDHW) embeddings tensor
Returns:
3D (DHW) segmentation
"""
# shape of the output segmentation
output_shape = embeddings.shape[1:]
# reshape (C, D, H, W) -> (C, D * H * W) and transpose -> (D * H * W, C)
flattened_embeddings = embeddings.reshape(embeddings.shape[0], -1).transpose()
logger.info('Clustering embeddings...')
# perform clustering and reshape in order to get the segmentation volume
start = time.time()
clusters = self.clustering.fit_predict(flattened_embeddings).reshape(output_shape)
logger.info(
f'Number of clusters found by {self.clustering}: {np.max(clusters)}. Duration: {time.time() - start} sec.')
return clusters
def _merge_segmentation(self, segmentation, index, output_segmentation, visited_voxels_array):
"""
Given the `segmentation` patch, its `index` in the `output_segmentation` array and the array visited voxels
merge the segmented patch (`segmentation`) into the `output_segmentation`
Args:
segmentation (ndarray): segmented patch
index (tuple): position of the patch inside `output_segmentation` volume
output_segmentation (ndarray): current state of the output segmentation
visited_voxels_array (ndarray): array of voxels visited so far (same size as `output_segmentation`); visited
voxels will be marked by a number greater than 0
"""
index = tuple(index)
# get new unassigned label
max_label = np.max(output_segmentation) + 1
# make sure there are no clashes between current segmentation patch and the output_segmentation
# but keep the noise label
noise_mask = segmentation == self.noise_label
segmentation += int(max_label)
segmentation[noise_mask] = self.noise_label
# get the overlap mask in the current patch
overlap_mask = visited_voxels_array[index] > 0
# get the new labels inside the overlap_mask
new_labels = np.unique(segmentation[overlap_mask])
merged_labels = self._merge_labels(output_segmentation[index], new_labels, segmentation)
# relabel new segmentation with the merged labels
for current_label, new_label in merged_labels:
segmentation[segmentation == new_label] = current_label
# update the output_segmentation
output_segmentation[index] = segmentation
# visit the patch
visited_voxels_array[index] += 1
def _merge_labels(self, current_segmentation, new_labels, new_segmentation):
def _most_frequent_label(labels):
unique, counts = | np.unique(labels, return_counts=True) | numpy.unique |
# coding: utf-8
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Test the Logarithmic Units and Quantities
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
from ...extern import six
from ...extern.six.moves import zip
import pickle
import itertools
import pytest
import numpy as np
from numpy.testing.utils import assert_allclose
from ...tests.helper import assert_quantity_allclose
from ... import units as u, constants as c
lu_units = [u.dex, u.mag, u.decibel]
lu_subclasses = [u.DexUnit, u.MagUnit, u.DecibelUnit]
lq_subclasses = [u.Dex, u.Magnitude, u.Decibel]
pu_sample = (u.dimensionless_unscaled, u.m, u.g/u.s**2, u.Jy)
class TestLogUnitCreation(object):
def test_logarithmic_units(self):
"""Check logarithmic units are set up correctly."""
assert u.dB.to(u.dex) == 0.1
assert u.dex.to(u.mag) == -2.5
assert u.mag.to(u.dB) == -4
@pytest.mark.parametrize('lu_unit, lu_cls', zip(lu_units, lu_subclasses))
def test_callable_units(self, lu_unit, lu_cls):
assert isinstance(lu_unit, u.UnitBase)
assert callable(lu_unit)
assert lu_unit._function_unit_class is lu_cls
@pytest.mark.parametrize('lu_unit', lu_units)
def test_equality_to_normal_unit_for_dimensionless(self, lu_unit):
lu = lu_unit()
assert lu == lu._default_function_unit # eg, MagUnit() == u.mag
assert lu._default_function_unit == lu # and u.mag == MagUnit()
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_call_units(self, lu_unit, physical_unit):
"""Create a LogUnit subclass using the callable unit and physical unit,
and do basic check that output is right."""
lu1 = lu_unit(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
def test_call_invalid_unit(self):
with pytest.raises(TypeError):
u.mag([])
with pytest.raises(ValueError):
u.mag(u.mag())
@pytest.mark.parametrize('lu_cls, physical_unit', itertools.product(
lu_subclasses + [u.LogUnit], pu_sample))
def test_subclass_creation(self, lu_cls, physical_unit):
"""Create a LogUnit subclass object for given physical unit,
and do basic check that output is right."""
lu1 = lu_cls(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
lu2 = lu_cls(physical_unit,
function_unit=2*lu1._default_function_unit)
assert lu2.physical_unit == physical_unit
assert lu2.function_unit == u.Unit(2*lu2._default_function_unit)
with pytest.raises(ValueError):
lu_cls(physical_unit, u.m)
def test_predefined_magnitudes():
assert_quantity_allclose((-21.1*u.STmag).physical,
1.*u.erg/u.cm**2/u.s/u.AA)
assert_quantity_allclose((-48.6*u.ABmag).physical,
1.*u.erg/u.cm**2/u.s/u.Hz)
assert_quantity_allclose((0*u.M_bol).physical, c.L_bol0)
assert_quantity_allclose((0*u.m_bol).physical,
c.L_bol0/(4.*np.pi*(10.*c.pc)**2))
def test_predefined_reinitialisation():
assert u.mag('ST') == u.STmag
assert u.mag('AB') == u.ABmag
assert u.mag('Bol') == u.M_bol
assert u.mag('bol') == u.m_bol
def test_predefined_string_roundtrip():
"""Ensure roundtripping; see #5015"""
with u.magnitude_zero_points.enable():
assert u.Unit(u.STmag.to_string()) == u.STmag
assert u.Unit(u.ABmag.to_string()) == u.ABmag
assert u.Unit(u.M_bol.to_string()) == u.M_bol
assert u.Unit(u.m_bol.to_string()) == u.m_bol
def test_inequality():
"""Check __ne__ works (regresssion for #5342)."""
lu1 = u.mag(u.Jy)
lu2 = u.dex(u.Jy)
lu3 = u.mag(u.Jy**2)
lu4 = lu3 - lu1
assert lu1 != lu2
assert lu1 != lu3
assert lu1 == lu4
class TestLogUnitStrings(object):
def test_str(self):
"""Do some spot checks that str, repr, etc. work as expected."""
lu1 = u.mag(u.Jy)
assert str(lu1) == 'mag(Jy)'
assert repr(lu1) == 'Unit("mag(Jy)")'
assert lu1.to_string('generic') == 'mag(Jy)'
with pytest.raises(ValueError):
lu1.to_string('fits')
lu2 = u.dex()
assert str(lu2) == 'dex'
assert repr(lu2) == 'Unit("dex(1)")'
assert lu2.to_string() == 'dex(1)'
lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag)
assert str(lu3) == '2 mag(Jy)'
assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
assert lu3.to_string() == '2 mag(Jy)'
lu4 = u.mag(u.ct)
assert lu4.to_string('generic') == 'mag(ct)'
assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
'\\mathrm{ct} \\right)}$')
assert lu4._repr_latex_() == lu4.to_string('latex')
class TestLogUnitConversion(object):
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_physical_unit_conversion(self, lu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to their non-log counterparts."""
lu1 = lu_unit(physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(physical_unit, 0.) == 1.
assert physical_unit.is_equivalent(lu1)
assert physical_unit.to(lu1, 1.) == 0.
pu = u.Unit(8.*physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(pu, 0.) == 0.125
assert pu.is_equivalent(lu1)
assert_allclose(pu.to(lu1, 0.125), 0., atol=1.e-15)
# Check we round-trip.
value = np.linspace(0., 10., 6)
assert_allclose(pu.to(lu1, lu1.to(pu, value)), value, atol=1.e-15)
# And that we're not just returning True all the time.
pu2 = u.g
assert not lu1.is_equivalent(pu2)
with pytest.raises(u.UnitsError):
lu1.to(pu2)
assert not pu2.is_equivalent(lu1)
with pytest.raises(u.UnitsError):
pu2.to(lu1)
@pytest.mark.parametrize('lu_unit', lu_units)
def test_container_unit_conversion(self, lu_unit):
"""Check that conversion to logarithmic units (u.mag, u.dB, u.dex)
is only possible when the physical unit is dimensionless."""
values = np.linspace(0., 10., 6)
lu1 = lu_unit(u.dimensionless_unscaled)
assert lu1.is_equivalent(lu1.function_unit)
assert_allclose(lu1.to(lu1.function_unit, values), values)
lu2 = lu_unit(u.Jy)
assert not lu2.is_equivalent(lu2.function_unit)
with pytest.raises(u.UnitsError):
lu2.to(lu2.function_unit, values)
@pytest.mark.parametrize(
'flu_unit, tlu_unit, physical_unit',
itertools.product(lu_units, lu_units, pu_sample))
def test_subclass_conversion(self, flu_unit, tlu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to each other if they correspond to equivalent physical units."""
values = np.linspace(0., 10., 6)
flu = flu_unit(physical_unit)
tlu = tlu_unit(physical_unit)
assert flu.is_equivalent(tlu)
assert_allclose(flu.to(tlu), flu.function_unit.to(tlu.function_unit))
assert_allclose(flu.to(tlu, values),
values * flu.function_unit.to(tlu.function_unit))
tlu2 = tlu_unit(u.Unit(100.*physical_unit))
assert flu.is_equivalent(tlu2)
# Check that we round-trip.
assert_allclose(flu.to(tlu2, tlu2.to(flu, values)), values, atol=1.e-15)
tlu3 = tlu_unit(physical_unit.to_system(u.si)[0])
assert flu.is_equivalent(tlu3)
assert_allclose(flu.to(tlu3, tlu3.to(flu, values)), values, atol=1.e-15)
tlu4 = tlu_unit(u.g)
assert not flu.is_equivalent(tlu4)
with pytest.raises(u.UnitsError):
flu.to(tlu4, values)
def test_unit_decomposition(self):
lu = u.mag(u.Jy)
assert lu.decompose() == u.mag(u.Jy.decompose())
assert lu.decompose().physical_unit.bases == [u.kg, u.s]
assert lu.si == u.mag(u.Jy.si)
assert lu.si.physical_unit.bases == [u.kg, u.s]
assert lu.cgs == u.mag(u.Jy.cgs)
assert lu.cgs.physical_unit.bases == [u.g, u.s]
def test_unit_multiple_possible_equivalencies(self):
lu = u.mag(u.Jy)
assert lu.is_equivalent(pu_sample)
class TestLogUnitArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other units is only
possible when the physical unit is dimensionless, and that this
turns the unit into a normal one."""
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 * u.m
with pytest.raises(u.UnitsError):
u.m * lu1
with pytest.raises(u.UnitsError):
lu1 / lu1
for unit in (u.dimensionless_unscaled, u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lu1 / unit
lu2 = u.mag(u.dimensionless_unscaled)
with pytest.raises(u.UnitsError):
lu2 * lu1
with pytest.raises(u.UnitsError):
lu2 / lu1
# But dimensionless_unscaled can be cancelled.
assert lu2 / lu2 == u.dimensionless_unscaled
# With dimensionless, normal units are OK, but we return a plain unit.
tf = lu2 * u.m
tr = u.m * lu2
for t in (tf, tr):
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lu2.physical_unit)
# Now we essentially have a LogUnit with a prefactor of 100,
# so should be equivalent again.
t = tf / u.cm
with u.set_enabled_equivalencies(u.logarithmic()):
assert t.is_equivalent(lu2.function_unit)
assert_allclose(t.to(u.dimensionless_unscaled, np.arange(3.)/100.),
lu2.to(lu2.physical_unit, np.arange(3.)))
# If we effectively remove lu1, a normal unit should be returned.
t2 = tf / lu2
assert not isinstance(t2, type(lu2))
assert t2 == u.m
t3 = tf / lu2.function_unit
assert not isinstance(t3, type(lu2))
assert t3 == u.m
# For completeness, also ensure non-sensical operations fail
with pytest.raises(TypeError):
lu1 * object()
with pytest.raises(TypeError):
slice(None) * lu1
with pytest.raises(TypeError):
lu1 / []
with pytest.raises(TypeError):
1 / lu1
@pytest.mark.parametrize('power', (2, 0.5, 1, 0))
def test_raise_to_power(self, power):
"""Check that raising LogUnits to some power is only possible when the
physical unit is dimensionless, and that conversion is turned off when
the resulting logarithmic unit (such as mag**2) is incompatible."""
lu1 = u.mag(u.Jy)
if power == 0:
assert lu1 ** power == u.dimensionless_unscaled
elif power == 1:
assert lu1 ** power == lu1
else:
with pytest.raises(u.UnitsError):
lu1 ** power
# With dimensionless, though, it works, but returns a normal unit.
lu2 = u.mag(u.dimensionless_unscaled)
t = lu2**power
if power == 0:
assert t == u.dimensionless_unscaled
elif power == 1:
assert t == lu2
else:
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit**power
# also check we roundtrip
t2 = t**(1./power)
assert t2 == lu2.function_unit
with u.set_enabled_equivalencies(u.logarithmic()):
assert_allclose(t2.to(u.dimensionless_unscaled, np.arange(3.)),
lu2.to(lu2.physical_unit, np.arange(3.)))
@pytest.mark.parametrize('other', pu_sample)
def test_addition_subtraction_to_normal_units_fails(self, other):
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 + other
with pytest.raises(u.UnitsError):
lu1 - other
with pytest.raises(u.UnitsError):
other - lu1
def test_addition_subtraction_to_non_units_fails(self):
lu1 = u.mag(u.Jy)
with pytest.raises(TypeError):
lu1 + 1.
with pytest.raises(TypeError):
lu1 - [1., 2., 3.]
@pytest.mark.parametrize(
'other', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag)))
def test_addition_subtraction(self, other):
"""Check physical units are changed appropriately"""
lu1 = u.mag(u.Jy)
other_pu = getattr(other, 'physical_unit', u.dimensionless_unscaled)
lu_sf = lu1 + other
assert lu_sf.is_equivalent(lu1.physical_unit * other_pu)
lu_sr = other + lu1
assert lu_sr.is_equivalent(lu1.physical_unit * other_pu)
lu_df = lu1 - other
assert lu_df.is_equivalent(lu1.physical_unit / other_pu)
lu_dr = other - lu1
assert lu_dr.is_equivalent(other_pu / lu1.physical_unit)
def test_complicated_addition_subtraction(self):
"""for fun, a more complicated example of addition and subtraction"""
dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2))
lu_dm = u.mag(dm0)
lu_absST = u.STmag - lu_dm
assert lu_absST.is_equivalent(u.erg/u.s/u.AA)
def test_neg_pos(self):
lu1 = u.mag(u.Jy)
neg_lu = -lu1
assert neg_lu != lu1
assert neg_lu.physical_unit == u.Jy**-1
assert -neg_lu == lu1
pos_lu = +lu1
assert pos_lu is not lu1
assert pos_lu == lu1
def test_pickle():
lu1 = u.dex(u.cm/u.s**2)
s = pickle.dumps(lu1)
lu2 = pickle.loads(s)
assert lu1 == lu2
def test_hashable():
lu1 = u.dB(u.mW)
lu2 = u.dB(u.m)
lu3 = u.dB(u.mW)
assert hash(lu1) != hash(lu2)
assert hash(lu1) == hash(lu3)
luset = {lu1, lu2, lu3}
assert len(luset) == 2
class TestLogQuantityCreation(object):
@pytest.mark.parametrize('lq, lu', zip(lq_subclasses + [u.LogQuantity],
lu_subclasses + [u.LogUnit]))
def test_logarithmic_quantities(self, lq, lu):
"""Check logarithmic quantities are all set up correctly"""
assert lq._unit_class == lu
assert type(lu()._quantity_class(1.)) is lq
@pytest.mark.parametrize('lq_cls, physical_unit',
itertools.product(lq_subclasses, pu_sample))
def test_subclass_creation(self, lq_cls, physical_unit):
"""Create LogQuantity subclass objects for some physical units,
and basic check on transformations"""
value = np.arange(1., 10.)
log_q = lq_cls(value * physical_unit)
assert log_q.unit.physical_unit == physical_unit
assert log_q.unit.function_unit == log_q.unit._default_function_unit
assert_allclose(log_q.physical.value, value)
with pytest.raises(ValueError):
lq_cls(value, physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_different_units(self, unit):
q = u.Magnitude(1.23, unit)
assert q.unit.function_unit == getattr(unit, 'function_unit', unit)
assert q.unit.physical_unit is getattr(unit, 'physical_unit',
u.dimensionless_unscaled)
@pytest.mark.parametrize('value, unit', (
(1.*u.mag(u.Jy), None),
(1.*u.dex(u.Jy), None),
(1.*u.mag(u.W/u.m**2/u.Hz), u.mag(u.Jy)),
(1.*u.dex(u.W/u.m**2/u.Hz), u.mag(u.Jy))))
def test_function_values(self, value, unit):
lq = u.Magnitude(value, unit)
assert lq == value
assert lq.unit.function_unit == u.mag
assert lq.unit.physical_unit == getattr(unit, 'physical_unit',
value.unit.physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag(), u.mag(u.Jy), u.mag(u.m), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_indirect_creation(self, unit):
q1 = 2.5 * unit
assert isinstance(q1, u.Magnitude)
assert q1.value == 2.5
assert q1.unit == unit
pv = 100. * unit.physical_unit
q2 = unit * pv
assert q2.unit == unit
assert q2.unit.physical_unit == pv.unit
assert q2.to_value(unit.physical_unit) == 100.
assert (q2._function_view / u.mag).to_value(1) == -5.
q3 = unit / 0.4
assert q3 == q1
def test_from_view(self):
# Cannot view a physical quantity as a function quantity, since the
# values would change.
q = [100., 1000.] * u.cm/u.s**2
with pytest.raises(TypeError):
q.view(u.Dex)
# But fine if we have the right magnitude.
q = [2., 3.] * u.dex
lq = q.view(u.Dex)
assert isinstance(lq, u.Dex)
assert lq.unit.physical_unit == u.dimensionless_unscaled
assert | np.all(q == lq) | numpy.all |
"""Routines for numerical differentiation."""
from __future__ import division
import numpy as np
from numpy.linalg import norm
from scipy.sparse.linalg import LinearOperator
from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find
from ._group_columns import group_dense, group_sparse
EPS = np.finfo(np.float64).eps
def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub):
"""Adjust final difference scheme to the presence of bounds.
Parameters
----------
x0 : ndarray, shape (n,)
Point at which we wish to estimate derivative.
h : ndarray, shape (n,)
Desired finite difference steps.
num_steps : int
Number of `h` steps in one direction required to implement finite
difference scheme. For example, 2 means that we need to evaluate
f(x0 + 2 * h) or f(x0 - 2 * h)
scheme : {'1-sided', '2-sided'}
Whether steps in one or both directions are required. In other
words '1-sided' applies to forward and backward schemes, '2-sided'
applies to center schemes.
lb : ndarray, shape (n,)
Lower bounds on independent variables.
ub : ndarray, shape (n,)
Upper bounds on independent variables.
Returns
-------
h_adjusted : ndarray, shape (n,)
Adjusted step sizes. Step size decreases only if a sign flip or
switching to one-sided scheme doesn't allow to take a full step.
use_one_sided : ndarray of bool, shape (n,)
Whether to switch to one-sided scheme. Informative only for
``scheme='2-sided'``.
"""
if scheme == '1-sided':
use_one_sided = np.ones_like(h, dtype=bool)
elif scheme == '2-sided':
h = np.abs(h)
use_one_sided = np.zeros_like(h, dtype=bool)
else:
raise ValueError("`scheme` must be '1-sided' or '2-sided'.")
if np.all((lb == -np.inf) & (ub == np.inf)):
return h, use_one_sided
h_total = h * num_steps
h_adjusted = h.copy()
lower_dist = x0 - lb
upper_dist = ub - x0
if scheme == '1-sided':
x = x0 + h_total
violated = (x < lb) | (x > ub)
fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist)
h_adjusted[violated & fitting] *= -1
forward = (upper_dist >= lower_dist) & ~fitting
h_adjusted[forward] = upper_dist[forward] / num_steps
backward = (upper_dist < lower_dist) & ~fitting
h_adjusted[backward] = -lower_dist[backward] / num_steps
elif scheme == '2-sided':
central = (lower_dist >= h_total) & (upper_dist >= h_total)
forward = (upper_dist >= lower_dist) & ~central
h_adjusted[forward] = np.minimum(
h[forward], 0.5 * upper_dist[forward] / num_steps)
use_one_sided[forward] = True
backward = (upper_dist < lower_dist) & ~central
h_adjusted[backward] = -np.minimum(
h[backward], 0.5 * lower_dist[backward] / num_steps)
use_one_sided[backward] = True
min_dist = np.minimum(upper_dist, lower_dist) / num_steps
adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist))
h_adjusted[adjusted_central] = min_dist[adjusted_central]
use_one_sided[adjusted_central] = False
return h_adjusted, use_one_sided
relative_step = {"2-point": EPS**0.5,
"3-point": EPS**(1/3),
"cs": EPS**0.5}
def _compute_absolute_step(rel_step, x0, method):
if rel_step is None:
rel_step = relative_step[method]
sign_x0 = (x0 >= 0).astype(float) * 2 - 1
return rel_step * sign_x0 * np.maximum(1.0, np.abs(x0))
def _prepare_bounds(bounds, x0):
lb, ub = [np.asarray(b, dtype=float) for b in bounds]
if lb.ndim == 0:
lb = np.resize(lb, x0.shape)
if ub.ndim == 0:
ub = np.resize(ub, x0.shape)
return lb, ub
def group_columns(A, order=0):
"""Group columns of a 2-D matrix for sparse finite differencing [1]_.
Two columns are in the same group if in each row at least one of them
has zero. A greedy sequential algorithm is used to construct groups.
Parameters
----------
A : array_like or sparse matrix, shape (m, n)
Matrix of which to group columns.
order : int, iterable of int with shape (n,) or None
Permutation array which defines the order of columns enumeration.
If int or None, a random permutation is used with `order` used as
a random seed. Default is 0, that is use a random permutation but
guarantee repeatability.
Returns
-------
groups : ndarray of int, shape (n,)
Contains values from 0 to n_groups-1, where n_groups is the number
of found groups. Each value ``groups[i]`` is an index of a group to
which ith column assigned. The procedure was helpful only if
n_groups is significantly less than n.
References
----------
.. [1] <NAME>, <NAME>, and <NAME>, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13 (1974), pp. 117-120.
"""
if issparse(A):
A = csc_matrix(A)
else:
A = | np.atleast_2d(A) | numpy.atleast_2d |
import copy
import functools
import itertools
import numbers
import warnings
from collections import defaultdict
from datetime import timedelta
from distutils.version import LooseVersion
from typing import (
Any,
Dict,
Hashable,
Mapping,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
)
import numpy as np
import pandas as pd
import xarray as xr # only for Dataset and DataArray
from . import arithmetic, common, dtypes, duck_array_ops, indexing, nputils, ops, utils
from .indexing import (
BasicIndexer,
OuterIndexer,
PandasIndexAdapter,
VectorizedIndexer,
as_indexable,
)
from .npcompat import IS_NEP18_ACTIVE
from .options import _get_keep_attrs
from .pycompat import (
cupy_array_type,
dask_array_type,
integer_types,
is_duck_dask_array,
)
from .utils import (
OrderedSet,
_default,
decode_numpy_dict_values,
drop_dims_from_indexers,
either_dict_or_kwargs,
ensure_us_time_resolution,
infix_dims,
is_duck_array,
)
NON_NUMPY_SUPPORTED_ARRAY_TYPES = (
(
indexing.ExplicitlyIndexed,
pd.Index,
)
+ dask_array_type
+ cupy_array_type
)
# https://github.com/python/mypy/issues/224
BASIC_INDEXING_TYPES = integer_types + (slice,) # type: ignore
VariableType = TypeVar("VariableType", bound="Variable")
"""Type annotation to be used when methods of Variable return self or a copy of self.
When called from an instance of a subclass, e.g. IndexVariable, mypy identifies the
output as an instance of the subclass.
Usage::
class Variable:
def f(self: VariableType, ...) -> VariableType:
...
"""
class MissingDimensionsError(ValueError):
"""Error class used when we can't safely guess a dimension name."""
# inherits from ValueError for backward compatibility
# TODO: move this to an xarray.exceptions module?
def as_variable(obj, name=None) -> "Union[Variable, IndexVariable]":
"""Convert an object into a Variable.
Parameters
----------
obj : object
Object to convert into a Variable.
- If the object is already a Variable, return a shallow copy.
- Otherwise, if the object has 'dims' and 'data' attributes, convert
it into a new Variable.
- If all else fails, attempt to convert the object into a Variable by
unpacking it into the arguments for creating a new Variable.
name : str, optional
If provided:
- `obj` can be a 1D array, which is assumed to label coordinate values
along a dimension of this given name.
- Variables with name matching one of their dimensions are converted
into `IndexVariable` objects.
Returns
-------
var : Variable
The newly created variable.
"""
from .dataarray import DataArray
# TODO: consider extending this method to automatically handle Iris and
if isinstance(obj, DataArray):
# extract the primary Variable from DataArrays
obj = obj.variable
if isinstance(obj, Variable):
obj = obj.copy(deep=False)
elif isinstance(obj, tuple):
try:
obj = Variable(*obj)
except (TypeError, ValueError) as error:
# use .format() instead of % because it handles tuples consistently
raise error.__class__(
"Could not convert tuple of form "
"(dims, data[, attrs, encoding]): "
"{} to Variable.".format(obj)
)
elif utils.is_scalar(obj):
obj = Variable([], obj)
elif isinstance(obj, (pd.Index, IndexVariable)) and obj.name is not None:
obj = Variable(obj.name, obj)
elif isinstance(obj, (set, dict)):
raise TypeError("variable {!r} has invalid type {!r}".format(name, type(obj)))
elif name is not None:
data = as_compatible_data(obj)
if data.ndim != 1:
raise MissingDimensionsError(
"cannot set variable %r with %r-dimensional data "
"without explicit dimension names. Pass a tuple of "
"(dims, data) instead." % (name, data.ndim)
)
obj = Variable(name, data, fastpath=True)
else:
raise TypeError(
"unable to convert object into a variable without an "
"explicit list of dimensions: %r" % obj
)
if name is not None and name in obj.dims:
# convert the Variable into an Index
if obj.ndim != 1:
raise MissingDimensionsError(
"%r has more than 1-dimension and the same name as one of its "
"dimensions %r. xarray disallows such variables because they "
"conflict with the coordinates used to label "
"dimensions." % (name, obj.dims)
)
obj = obj.to_index_variable()
return obj
def _maybe_wrap_data(data):
"""
Put pandas.Index and numpy.ndarray arguments in adapter objects to ensure
they can be indexed properly.
NumpyArrayAdapter, PandasIndexAdapter and LazilyOuterIndexedArray should
all pass through unmodified.
"""
if isinstance(data, pd.Index):
return PandasIndexAdapter(data)
return data
def _possibly_convert_objects(values):
"""Convert arrays of datetime.datetime and datetime.timedelta objects into
datetime64 and timedelta64, according to the pandas convention. Also used for
validating that datetime64 and timedelta64 objects are within the valid date
range for ns precision, as pandas will raise an error if they are not.
"""
return np.asarray(pd.Series(values.ravel())).reshape(values.shape)
def as_compatible_data(data, fastpath=False):
"""Prepare and wrap data to put in a Variable.
- If data does not have the necessary attributes, convert it to ndarray.
- If data has dtype=datetime64, ensure that it has ns precision. If it's a
pandas.Timestamp, convert it to datetime64.
- If data is already a pandas or xarray object (other than an Index), just
use the values.
Finally, wrap it up with an adapter if necessary.
"""
if fastpath and getattr(data, "ndim", 0) > 0:
# can't use fastpath (yet) for scalars
return _maybe_wrap_data(data)
if isinstance(data, Variable):
return data.data
if isinstance(data, NON_NUMPY_SUPPORTED_ARRAY_TYPES):
return _maybe_wrap_data(data)
if isinstance(data, tuple):
data = utils.to_0d_object_array(data)
if isinstance(data, pd.Timestamp):
# TODO: convert, handle datetime objects, too
data = np.datetime64(data.value, "ns")
if isinstance(data, timedelta):
data = np.timedelta64(getattr(data, "value", data), "ns")
# we don't want nested self-described arrays
data = getattr(data, "values", data)
if isinstance(data, np.ma.MaskedArray):
mask = np.ma.getmaskarray(data)
if mask.any():
dtype, fill_value = dtypes.maybe_promote(data.dtype)
data = np.asarray(data, dtype=dtype)
data[mask] = fill_value
else:
data = np.asarray(data)
if not isinstance(data, np.ndarray):
if hasattr(data, "__array_function__"):
if IS_NEP18_ACTIVE:
return data
else:
raise TypeError(
"Got an NumPy-like array type providing the "
"__array_function__ protocol but NEP18 is not enabled. "
"Check that numpy >= v1.16 and that the environment "
'variable "NUMPY_EXPERIMENTAL_ARRAY_FUNCTION" is set to '
'"1"'
)
# validate whether the data is valid data types.
data = | np.asarray(data) | numpy.asarray |
import matplotlib.pyplot as plt
import numpy as np
from fears.utils import results_manager, plotter, dir_manager
import os
suffix = '07212021_0001'
data_folder = 'results_' + suffix
exp_info_file = 'experiment_info_' + suffix + '.p'
exp_folders,exp_info = results_manager.get_experiment_results(data_folder,
exp_info_file)
max_cells = exp_info.populations[0].max_cells
n_sims = exp_info.n_sims
k_abs = exp_info.slopes
exp_folders.reverse()
k_abs = np.flip(k_abs)
fig,ax = plt.subplots(nrows=2,ncols=2,figsize=(4,4))
pop = exp_info.populations[0]
ax = ax.reshape((len(k_abs),))
axnum = 0
tc_axes=[]
drug_axes=[]
for exp in exp_folders:
k_abs_t = exp[exp.find('=')+1:]
k_abs_t = float(k_abs_t)
num = np.argwhere(k_abs == k_abs_t)
num = num[0,0]
# generate timecourse axes
tcax = ax[axnum]
# da = tcax.twinx()
sim_files = os.listdir(path=exp)
sim_files = sorted(sim_files)
survive_count = 0
counts_total = None
k=0
while k < len(sim_files):
# for sim in sim_files:
sim = sim_files[k]
sim = exp + os.sep + sim
data = results_manager.get_data(sim)
dc = data[:,-1]
data = data[:,0:-1]
# data = data/np.max(data)
data_t = data[-1,:]
# check to see if any genotypes are at least 10% of the max cell count
if any(data_t >= 1):
survive_count += 1
if counts_total is None:
counts_total = data
else:
counts_total += data
# data = data/np.max(data)
# exp_info.populations[num].counts_log_scale = True
data = data/max_cells
if k==0:
drug_kwargs = {'alpha':0.7,
'color':'black',
'linewidth':2,
'label':'Drug Concentration ($\u03BC$M)'
}
tcax,drug_ax = plotter.plot_timecourse_to_axes(exp_info.populations[num],
data,
tcax,
drug_curve=dc,
drug_ax_sci_notation=True,
drug_kwargs=drug_kwargs,
legend_labels=False,
grayscale=True,
color='gray',
linewidth=1,
labelsize=12,
alpha=0.7
)
drug_ax.set_ylabel('')
drug_axes.append( drug_ax )
else:
tcax,da = plotter.plot_timecourse_to_axes(exp_info.populations[num],
data,
tcax,
grayscale=True,
color='gray',
legend_labels=False,
linewidth=2,
labelsize=12,
alpha=0.2
)
# drug_ax.set_ylim(0,10**4)
k+=1
if survive_count > 0:
counts_avg = counts_total/survive_count
# counts_avg = counts_avg/np.max(counts_avg)
# counts_avg = counts_total
counts_avg = counts_avg/ | np.max(counts_avg) | numpy.max |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[1].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
print(f'DFA fluctuation with 11 knots: {np.round(np.var(time_series - imfs_51[3, :]), 3)}')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[2].set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$', r'$5\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[2].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[2].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
plt.savefig('jss_figures/DFA_different_trends.png')
plt.show()
# plot 6b
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences Zoomed Region', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[0].set_ylim(-5.5, 5.5)
axs[0].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].set_ylim(-5.5, 5.5)
axs[1].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([np.pi, (3 / 2) * np.pi])
axs[2].set_xticklabels([r'$\pi$', r'$\frac{3}{2}\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].set_ylim(-5.5, 5.5)
axs[2].set_xlim(0.95 * np.pi, 1.55 * np.pi)
plt.savefig('jss_figures/DFA_different_trends_zoomed.png')
plt.show()
hs_ouputs = hilbert_spectrum(time, imfs_51, hts_51, ifs_51, max_frequency=12, plot=False)
# plot 6c
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Simple Sinusoidal Time Seres with Added Noise', 50))
x_hs, y, z = hs_ouputs
z_min, z_max = 0, np.abs(z).max()
ax.pcolormesh(x_hs, y, np.abs(z), cmap='gist_rainbow', vmin=z_min, vmax=z_max)
ax.plot(x_hs[0, :], 8 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 8$', Linewidth=3)
ax.plot(x_hs[0, :], 4 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 4$', Linewidth=3)
ax.plot(x_hs[0, :], 2 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 2$', Linewidth=3)
ax.set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi])
ax.set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$'])
plt.ylabel(r'Frequency (rad.s$^{-1}$)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.85, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/DFA_hilbert_spectrum.png')
plt.show()
# plot 6c
time = np.linspace(0, 5 * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 51)
fluc = Fluctuation(time=time, time_series=time_series)
max_unsmoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='maxima', smooth=False)
max_smoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='maxima', smooth=True)
min_unsmoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='minima', smooth=False)
min_smoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='minima', smooth=True)
util = Utility(time=time, time_series=time_series)
maxima = util.max_bool_func_1st_order_fd()
minima = util.min_bool_func_1st_order_fd()
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title(textwrap.fill('Plot Demonstrating Unsmoothed Extrema Envelopes if Schoenberg–Whitney Conditions are Not Satisfied', 50))
plt.plot(time, time_series, label='Time series', zorder=2, LineWidth=2)
plt.scatter(time[maxima], time_series[maxima], c='r', label='Maxima', zorder=10)
plt.scatter(time[minima], time_series[minima], c='b', label='Minima', zorder=10)
plt.plot(time, max_unsmoothed[0], label=textwrap.fill('Unsmoothed maxima envelope', 10), c='darkorange')
plt.plot(time, max_smoothed[0], label=textwrap.fill('Smoothed maxima envelope', 10), c='red')
plt.plot(time, min_unsmoothed[0], label=textwrap.fill('Unsmoothed minima envelope', 10), c='cyan')
plt.plot(time, min_smoothed[0], label=textwrap.fill('Smoothed minima envelope', 10), c='blue')
for knot in knots[:-1]:
plt.plot(knot * np.ones(101), np.linspace(-3.0, -2.0, 101), '--', c='grey', zorder=1)
plt.plot(knots[-1] * np.ones(101), np.linspace(-3.0, -2.0, 101), '--', c='grey', label='Knots', zorder=1)
plt.xticks((0, 1 * np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi),
(r'$0$', r'$\pi$', r'2$\pi$', r'3$\pi$', r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
plt.xlim(-0.25 * np.pi, 5.25 * np.pi)
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Schoenberg_Whitney_Conditions.png')
plt.show()
# plot 7
a = 0.25
width = 0.2
time = np.linspace((0 + a) * np.pi, (5 - a) * np.pi, 1001)
knots = np.linspace((0 + a) * np.pi, (5 - a) * np.pi, 11)
time_series = np.cos(time) + | np.cos(5 * time) | numpy.cos |
# coding: utf-8
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Test the Logarithmic Units and Quantities
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
from ...extern import six
from ...extern.six.moves import zip
import pickle
import itertools
import pytest
import numpy as np
from numpy.testing.utils import assert_allclose
from ...tests.helper import assert_quantity_allclose
from ... import units as u, constants as c
lu_units = [u.dex, u.mag, u.decibel]
lu_subclasses = [u.DexUnit, u.MagUnit, u.DecibelUnit]
lq_subclasses = [u.Dex, u.Magnitude, u.Decibel]
pu_sample = (u.dimensionless_unscaled, u.m, u.g/u.s**2, u.Jy)
class TestLogUnitCreation(object):
def test_logarithmic_units(self):
"""Check logarithmic units are set up correctly."""
assert u.dB.to(u.dex) == 0.1
assert u.dex.to(u.mag) == -2.5
assert u.mag.to(u.dB) == -4
@pytest.mark.parametrize('lu_unit, lu_cls', zip(lu_units, lu_subclasses))
def test_callable_units(self, lu_unit, lu_cls):
assert isinstance(lu_unit, u.UnitBase)
assert callable(lu_unit)
assert lu_unit._function_unit_class is lu_cls
@pytest.mark.parametrize('lu_unit', lu_units)
def test_equality_to_normal_unit_for_dimensionless(self, lu_unit):
lu = lu_unit()
assert lu == lu._default_function_unit # eg, MagUnit() == u.mag
assert lu._default_function_unit == lu # and u.mag == MagUnit()
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_call_units(self, lu_unit, physical_unit):
"""Create a LogUnit subclass using the callable unit and physical unit,
and do basic check that output is right."""
lu1 = lu_unit(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
def test_call_invalid_unit(self):
with pytest.raises(TypeError):
u.mag([])
with pytest.raises(ValueError):
u.mag(u.mag())
@pytest.mark.parametrize('lu_cls, physical_unit', itertools.product(
lu_subclasses + [u.LogUnit], pu_sample))
def test_subclass_creation(self, lu_cls, physical_unit):
"""Create a LogUnit subclass object for given physical unit,
and do basic check that output is right."""
lu1 = lu_cls(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
lu2 = lu_cls(physical_unit,
function_unit=2*lu1._default_function_unit)
assert lu2.physical_unit == physical_unit
assert lu2.function_unit == u.Unit(2*lu2._default_function_unit)
with pytest.raises(ValueError):
lu_cls(physical_unit, u.m)
def test_predefined_magnitudes():
assert_quantity_allclose((-21.1*u.STmag).physical,
1.*u.erg/u.cm**2/u.s/u.AA)
assert_quantity_allclose((-48.6*u.ABmag).physical,
1.*u.erg/u.cm**2/u.s/u.Hz)
assert_quantity_allclose((0*u.M_bol).physical, c.L_bol0)
assert_quantity_allclose((0*u.m_bol).physical,
c.L_bol0/(4.*np.pi*(10.*c.pc)**2))
def test_predefined_reinitialisation():
assert u.mag('ST') == u.STmag
assert u.mag('AB') == u.ABmag
assert u.mag('Bol') == u.M_bol
assert u.mag('bol') == u.m_bol
def test_predefined_string_roundtrip():
"""Ensure roundtripping; see #5015"""
with u.magnitude_zero_points.enable():
assert u.Unit(u.STmag.to_string()) == u.STmag
assert u.Unit(u.ABmag.to_string()) == u.ABmag
assert u.Unit(u.M_bol.to_string()) == u.M_bol
assert u.Unit(u.m_bol.to_string()) == u.m_bol
def test_inequality():
"""Check __ne__ works (regresssion for #5342)."""
lu1 = u.mag(u.Jy)
lu2 = u.dex(u.Jy)
lu3 = u.mag(u.Jy**2)
lu4 = lu3 - lu1
assert lu1 != lu2
assert lu1 != lu3
assert lu1 == lu4
class TestLogUnitStrings(object):
def test_str(self):
"""Do some spot checks that str, repr, etc. work as expected."""
lu1 = u.mag(u.Jy)
assert str(lu1) == 'mag(Jy)'
assert repr(lu1) == 'Unit("mag(Jy)")'
assert lu1.to_string('generic') == 'mag(Jy)'
with pytest.raises(ValueError):
lu1.to_string('fits')
lu2 = u.dex()
assert str(lu2) == 'dex'
assert repr(lu2) == 'Unit("dex(1)")'
assert lu2.to_string() == 'dex(1)'
lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag)
assert str(lu3) == '2 mag(Jy)'
assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
assert lu3.to_string() == '2 mag(Jy)'
lu4 = u.mag(u.ct)
assert lu4.to_string('generic') == 'mag(ct)'
assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
'\\mathrm{ct} \\right)}$')
assert lu4._repr_latex_() == lu4.to_string('latex')
class TestLogUnitConversion(object):
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_physical_unit_conversion(self, lu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to their non-log counterparts."""
lu1 = lu_unit(physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(physical_unit, 0.) == 1.
assert physical_unit.is_equivalent(lu1)
assert physical_unit.to(lu1, 1.) == 0.
pu = u.Unit(8.*physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(pu, 0.) == 0.125
assert pu.is_equivalent(lu1)
assert_allclose(pu.to(lu1, 0.125), 0., atol=1.e-15)
# Check we round-trip.
value = np.linspace(0., 10., 6)
assert_allclose(pu.to(lu1, lu1.to(pu, value)), value, atol=1.e-15)
# And that we're not just returning True all the time.
pu2 = u.g
assert not lu1.is_equivalent(pu2)
with pytest.raises(u.UnitsError):
lu1.to(pu2)
assert not pu2.is_equivalent(lu1)
with pytest.raises(u.UnitsError):
pu2.to(lu1)
@pytest.mark.parametrize('lu_unit', lu_units)
def test_container_unit_conversion(self, lu_unit):
"""Check that conversion to logarithmic units (u.mag, u.dB, u.dex)
is only possible when the physical unit is dimensionless."""
values = np.linspace(0., 10., 6)
lu1 = lu_unit(u.dimensionless_unscaled)
assert lu1.is_equivalent(lu1.function_unit)
assert_allclose(lu1.to(lu1.function_unit, values), values)
lu2 = lu_unit(u.Jy)
assert not lu2.is_equivalent(lu2.function_unit)
with pytest.raises(u.UnitsError):
lu2.to(lu2.function_unit, values)
@pytest.mark.parametrize(
'flu_unit, tlu_unit, physical_unit',
itertools.product(lu_units, lu_units, pu_sample))
def test_subclass_conversion(self, flu_unit, tlu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to each other if they correspond to equivalent physical units."""
values = np.linspace(0., 10., 6)
flu = flu_unit(physical_unit)
tlu = tlu_unit(physical_unit)
assert flu.is_equivalent(tlu)
assert_allclose(flu.to(tlu), flu.function_unit.to(tlu.function_unit))
assert_allclose(flu.to(tlu, values),
values * flu.function_unit.to(tlu.function_unit))
tlu2 = tlu_unit(u.Unit(100.*physical_unit))
assert flu.is_equivalent(tlu2)
# Check that we round-trip.
assert_allclose(flu.to(tlu2, tlu2.to(flu, values)), values, atol=1.e-15)
tlu3 = tlu_unit(physical_unit.to_system(u.si)[0])
assert flu.is_equivalent(tlu3)
assert_allclose(flu.to(tlu3, tlu3.to(flu, values)), values, atol=1.e-15)
tlu4 = tlu_unit(u.g)
assert not flu.is_equivalent(tlu4)
with pytest.raises(u.UnitsError):
flu.to(tlu4, values)
def test_unit_decomposition(self):
lu = u.mag(u.Jy)
assert lu.decompose() == u.mag(u.Jy.decompose())
assert lu.decompose().physical_unit.bases == [u.kg, u.s]
assert lu.si == u.mag(u.Jy.si)
assert lu.si.physical_unit.bases == [u.kg, u.s]
assert lu.cgs == u.mag(u.Jy.cgs)
assert lu.cgs.physical_unit.bases == [u.g, u.s]
def test_unit_multiple_possible_equivalencies(self):
lu = u.mag(u.Jy)
assert lu.is_equivalent(pu_sample)
class TestLogUnitArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other units is only
possible when the physical unit is dimensionless, and that this
turns the unit into a normal one."""
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 * u.m
with pytest.raises(u.UnitsError):
u.m * lu1
with pytest.raises(u.UnitsError):
lu1 / lu1
for unit in (u.dimensionless_unscaled, u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lu1 / unit
lu2 = u.mag(u.dimensionless_unscaled)
with pytest.raises(u.UnitsError):
lu2 * lu1
with pytest.raises(u.UnitsError):
lu2 / lu1
# But dimensionless_unscaled can be cancelled.
assert lu2 / lu2 == u.dimensionless_unscaled
# With dimensionless, normal units are OK, but we return a plain unit.
tf = lu2 * u.m
tr = u.m * lu2
for t in (tf, tr):
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lu2.physical_unit)
# Now we essentially have a LogUnit with a prefactor of 100,
# so should be equivalent again.
t = tf / u.cm
with u.set_enabled_equivalencies(u.logarithmic()):
assert t.is_equivalent(lu2.function_unit)
assert_allclose(t.to(u.dimensionless_unscaled, np.arange(3.)/100.),
lu2.to(lu2.physical_unit, np.arange(3.)))
# If we effectively remove lu1, a normal unit should be returned.
t2 = tf / lu2
assert not isinstance(t2, type(lu2))
assert t2 == u.m
t3 = tf / lu2.function_unit
assert not isinstance(t3, type(lu2))
assert t3 == u.m
# For completeness, also ensure non-sensical operations fail
with pytest.raises(TypeError):
lu1 * object()
with pytest.raises(TypeError):
slice(None) * lu1
with pytest.raises(TypeError):
lu1 / []
with pytest.raises(TypeError):
1 / lu1
@pytest.mark.parametrize('power', (2, 0.5, 1, 0))
def test_raise_to_power(self, power):
"""Check that raising LogUnits to some power is only possible when the
physical unit is dimensionless, and that conversion is turned off when
the resulting logarithmic unit (such as mag**2) is incompatible."""
lu1 = u.mag(u.Jy)
if power == 0:
assert lu1 ** power == u.dimensionless_unscaled
elif power == 1:
assert lu1 ** power == lu1
else:
with pytest.raises(u.UnitsError):
lu1 ** power
# With dimensionless, though, it works, but returns a normal unit.
lu2 = u.mag(u.dimensionless_unscaled)
t = lu2**power
if power == 0:
assert t == u.dimensionless_unscaled
elif power == 1:
assert t == lu2
else:
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit**power
# also check we roundtrip
t2 = t**(1./power)
assert t2 == lu2.function_unit
with u.set_enabled_equivalencies(u.logarithmic()):
assert_allclose(t2.to(u.dimensionless_unscaled, np.arange(3.)),
lu2.to(lu2.physical_unit, np.arange(3.)))
@pytest.mark.parametrize('other', pu_sample)
def test_addition_subtraction_to_normal_units_fails(self, other):
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 + other
with pytest.raises(u.UnitsError):
lu1 - other
with pytest.raises(u.UnitsError):
other - lu1
def test_addition_subtraction_to_non_units_fails(self):
lu1 = u.mag(u.Jy)
with pytest.raises(TypeError):
lu1 + 1.
with pytest.raises(TypeError):
lu1 - [1., 2., 3.]
@pytest.mark.parametrize(
'other', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag)))
def test_addition_subtraction(self, other):
"""Check physical units are changed appropriately"""
lu1 = u.mag(u.Jy)
other_pu = getattr(other, 'physical_unit', u.dimensionless_unscaled)
lu_sf = lu1 + other
assert lu_sf.is_equivalent(lu1.physical_unit * other_pu)
lu_sr = other + lu1
assert lu_sr.is_equivalent(lu1.physical_unit * other_pu)
lu_df = lu1 - other
assert lu_df.is_equivalent(lu1.physical_unit / other_pu)
lu_dr = other - lu1
assert lu_dr.is_equivalent(other_pu / lu1.physical_unit)
def test_complicated_addition_subtraction(self):
"""for fun, a more complicated example of addition and subtraction"""
dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2))
lu_dm = u.mag(dm0)
lu_absST = u.STmag - lu_dm
assert lu_absST.is_equivalent(u.erg/u.s/u.AA)
def test_neg_pos(self):
lu1 = u.mag(u.Jy)
neg_lu = -lu1
assert neg_lu != lu1
assert neg_lu.physical_unit == u.Jy**-1
assert -neg_lu == lu1
pos_lu = +lu1
assert pos_lu is not lu1
assert pos_lu == lu1
def test_pickle():
lu1 = u.dex(u.cm/u.s**2)
s = pickle.dumps(lu1)
lu2 = pickle.loads(s)
assert lu1 == lu2
def test_hashable():
lu1 = u.dB(u.mW)
lu2 = u.dB(u.m)
lu3 = u.dB(u.mW)
assert hash(lu1) != hash(lu2)
assert hash(lu1) == hash(lu3)
luset = {lu1, lu2, lu3}
assert len(luset) == 2
class TestLogQuantityCreation(object):
@pytest.mark.parametrize('lq, lu', zip(lq_subclasses + [u.LogQuantity],
lu_subclasses + [u.LogUnit]))
def test_logarithmic_quantities(self, lq, lu):
"""Check logarithmic quantities are all set up correctly"""
assert lq._unit_class == lu
assert type(lu()._quantity_class(1.)) is lq
@pytest.mark.parametrize('lq_cls, physical_unit',
itertools.product(lq_subclasses, pu_sample))
def test_subclass_creation(self, lq_cls, physical_unit):
"""Create LogQuantity subclass objects for some physical units,
and basic check on transformations"""
value = np.arange(1., 10.)
log_q = lq_cls(value * physical_unit)
assert log_q.unit.physical_unit == physical_unit
assert log_q.unit.function_unit == log_q.unit._default_function_unit
assert_allclose(log_q.physical.value, value)
with pytest.raises(ValueError):
lq_cls(value, physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_different_units(self, unit):
q = u.Magnitude(1.23, unit)
assert q.unit.function_unit == getattr(unit, 'function_unit', unit)
assert q.unit.physical_unit is getattr(unit, 'physical_unit',
u.dimensionless_unscaled)
@pytest.mark.parametrize('value, unit', (
(1.*u.mag(u.Jy), None),
(1.*u.dex(u.Jy), None),
(1.*u.mag(u.W/u.m**2/u.Hz), u.mag(u.Jy)),
(1.*u.dex(u.W/u.m**2/u.Hz), u.mag(u.Jy))))
def test_function_values(self, value, unit):
lq = u.Magnitude(value, unit)
assert lq == value
assert lq.unit.function_unit == u.mag
assert lq.unit.physical_unit == getattr(unit, 'physical_unit',
value.unit.physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag(), u.mag(u.Jy), u.mag(u.m), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_indirect_creation(self, unit):
q1 = 2.5 * unit
assert isinstance(q1, u.Magnitude)
assert q1.value == 2.5
assert q1.unit == unit
pv = 100. * unit.physical_unit
q2 = unit * pv
assert q2.unit == unit
assert q2.unit.physical_unit == pv.unit
assert q2.to_value(unit.physical_unit) == 100.
assert (q2._function_view / u.mag).to_value(1) == -5.
q3 = unit / 0.4
assert q3 == q1
def test_from_view(self):
# Cannot view a physical quantity as a function quantity, since the
# values would change.
q = [100., 1000.] * u.cm/u.s**2
with pytest.raises(TypeError):
q.view(u.Dex)
# But fine if we have the right magnitude.
q = [2., 3.] * u.dex
lq = q.view(u.Dex)
assert isinstance(lq, u.Dex)
assert lq.unit.physical_unit == u.dimensionless_unscaled
assert np.all(q == lq)
def test_using_quantity_class(self):
"""Check that we can use Quantity if we have subok=True"""
# following issue #5851
lu = u.dex(u.AA)
with pytest.raises(u.UnitTypeError):
u.Quantity(1., lu)
q = u.Quantity(1., lu, subok=True)
assert type(q) is lu._quantity_class
def test_conversion_to_and_from_physical_quantities():
"""Ensures we can convert from regular quantities."""
mst = [10., 12., 14.] * u.STmag
flux_lambda = mst.physical
mst_roundtrip = flux_lambda.to(u.STmag)
# check we return a logquantity; see #5178.
assert isinstance(mst_roundtrip, u.Magnitude)
assert mst_roundtrip.unit == mst.unit
assert_allclose(mst_roundtrip.value, mst.value)
wave = [4956.8, 4959.55, 4962.3] * u.AA
flux_nu = mst.to(u.Jy, equivalencies=u.spectral_density(wave))
mst_roundtrip2 = flux_nu.to(u.STmag, u.spectral_density(wave))
assert isinstance(mst_roundtrip2, u.Magnitude)
assert mst_roundtrip2.unit == mst.unit
assert_allclose(mst_roundtrip2.value, mst.value)
def test_quantity_decomposition():
lq = 10.*u.mag(u.Jy)
assert lq.decompose() == lq
assert lq.decompose().unit.physical_unit.bases == [u.kg, u.s]
assert lq.si == lq
assert lq.si.unit.physical_unit.bases == [u.kg, u.s]
assert lq.cgs == lq
assert lq.cgs.unit.physical_unit.bases == [u.g, u.s]
class TestLogQuantityViews(object):
def setup(self):
self.lq = u.Magnitude(np.arange(10.) * u.Jy)
self.lq2 = u.Magnitude(np.arange(5.))
def test_value_view(self):
lq_value = self.lq.value
assert type(lq_value) is np.ndarray
lq_value[2] = -1.
assert np.all(self.lq.value == lq_value)
def test_function_view(self):
lq_fv = self.lq._function_view
assert type(lq_fv) is u.Quantity
assert lq_fv.unit is self.lq.unit.function_unit
lq_fv[3] = -2. * lq_fv.unit
assert np.all(self.lq.value == lq_fv.value)
def test_quantity_view(self):
# Cannot view as Quantity, since the unit cannot be represented.
with pytest.raises(TypeError):
self.lq.view(u.Quantity)
# But a dimensionless one is fine.
q2 = self.lq2.view(u.Quantity)
assert q2.unit is u.mag
assert np.all(q2.value == self.lq2.value)
lq3 = q2.view(u.Magnitude)
assert type(lq3.unit) is u.MagUnit
assert lq3.unit.physical_unit == u.dimensionless_unscaled
assert np.all(lq3 == self.lq2)
class TestLogQuantitySlicing(object):
def test_item_get_and_set(self):
lq1 = u.Magnitude(np.arange(1., 11.)*u.Jy)
assert lq1[9] == u.Magnitude(10.*u.Jy)
lq1[2] = 100.*u.Jy
assert lq1[2] == u.Magnitude(100.*u.Jy)
with pytest.raises(u.UnitsError):
lq1[2] = 100.*u.m
with pytest.raises(u.UnitsError):
lq1[2] = 100.*u.mag
with pytest.raises(u.UnitsError):
lq1[2] = u.Magnitude(100.*u.m)
assert lq1[2] == u.Magnitude(100.*u.Jy)
def test_slice_get_and_set(self):
lq1 = u.Magnitude(np.arange(1., 10.)*u.Jy)
lq1[2:4] = 100.*u.Jy
assert np.all(lq1[2:4] == u.Magnitude(100.*u.Jy))
with pytest.raises(u.UnitsError):
lq1[2:4] = 100.*u.m
with pytest.raises(u.UnitsError):
lq1[2:4] = 100.*u.mag
with pytest.raises(u.UnitsError):
lq1[2:4] = u.Magnitude(100.*u.m)
assert np.all(lq1[2] == u.Magnitude(100.*u.Jy))
class TestLogQuantityArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other quantities is only
possible when the physical unit is dimensionless, and that this turns
the result into a normal quantity."""
lq = u.Magnitude(np.arange(1., 11.)*u.Jy)
with pytest.raises(u.UnitsError):
lq * (1.*u.m)
with pytest.raises(u.UnitsError):
(1.*u.m) * lq
with pytest.raises(u.UnitsError):
lq / lq
for unit in (u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lq / unit
lq2 = u.Magnitude(np.arange(1, 11.))
with pytest.raises(u.UnitsError):
lq2 * lq
with pytest.raises(u.UnitsError):
lq2 / lq
with pytest.raises(u.UnitsError):
lq / lq2
# but dimensionless_unscaled can be cancelled
r = lq2 / u.Magnitude(2.)
assert r.unit == u.dimensionless_unscaled
assert np.all(r.value == lq2.value/2.)
# with dimensionless, normal units OK, but return normal quantities
tf = lq2 * u.m
tr = u.m * lq2
for t in (tf, tr):
assert not isinstance(t, type(lq2))
assert t.unit == lq2.unit.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lq2.unit.physical_unit)
t = tf / (50.*u.cm)
# now we essentially have the same quantity but with a prefactor of 2
assert t.unit.is_equivalent(lq2.unit.function_unit)
assert_allclose(t.to(lq2.unit.function_unit), lq2._function_view*2)
@pytest.mark.parametrize('power', (2, 0.5, 1, 0))
def test_raise_to_power(self, power):
"""Check that raising LogQuantities to some power is only possible when
the physical unit is dimensionless, and that conversion is turned off
when the resulting logarithmic unit (say, mag**2) is incompatible."""
lq = u.Magnitude(np.arange(1., 4.)*u.Jy)
if power == 0:
assert np.all(lq ** power == 1.)
elif power == 1:
assert | np.all(lq ** power == lq) | numpy.all |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot( | np.linspace(0.95 * np.pi, 1.55 * np.pi, 101) | numpy.linspace |
"""Routines for numerical differentiation."""
from __future__ import division
import numpy as np
from numpy.linalg import norm
from scipy.sparse.linalg import LinearOperator
from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find
from ._group_columns import group_dense, group_sparse
EPS = np.finfo(np.float64).eps
def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub):
"""Adjust final difference scheme to the presence of bounds.
Parameters
----------
x0 : ndarray, shape (n,)
Point at which we wish to estimate derivative.
h : ndarray, shape (n,)
Desired finite difference steps.
num_steps : int
Number of `h` steps in one direction required to implement finite
difference scheme. For example, 2 means that we need to evaluate
f(x0 + 2 * h) or f(x0 - 2 * h)
scheme : {'1-sided', '2-sided'}
Whether steps in one or both directions are required. In other
words '1-sided' applies to forward and backward schemes, '2-sided'
applies to center schemes.
lb : ndarray, shape (n,)
Lower bounds on independent variables.
ub : ndarray, shape (n,)
Upper bounds on independent variables.
Returns
-------
h_adjusted : ndarray, shape (n,)
Adjusted step sizes. Step size decreases only if a sign flip or
switching to one-sided scheme doesn't allow to take a full step.
use_one_sided : ndarray of bool, shape (n,)
Whether to switch to one-sided scheme. Informative only for
``scheme='2-sided'``.
"""
if scheme == '1-sided':
use_one_sided = np.ones_like(h, dtype=bool)
elif scheme == '2-sided':
h = np.abs(h)
use_one_sided = np.zeros_like(h, dtype=bool)
else:
raise ValueError("`scheme` must be '1-sided' or '2-sided'.")
if np.all((lb == -np.inf) & (ub == np.inf)):
return h, use_one_sided
h_total = h * num_steps
h_adjusted = h.copy()
lower_dist = x0 - lb
upper_dist = ub - x0
if scheme == '1-sided':
x = x0 + h_total
violated = (x < lb) | (x > ub)
fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist)
h_adjusted[violated & fitting] *= -1
forward = (upper_dist >= lower_dist) & ~fitting
h_adjusted[forward] = upper_dist[forward] / num_steps
backward = (upper_dist < lower_dist) & ~fitting
h_adjusted[backward] = -lower_dist[backward] / num_steps
elif scheme == '2-sided':
central = (lower_dist >= h_total) & (upper_dist >= h_total)
forward = (upper_dist >= lower_dist) & ~central
h_adjusted[forward] = np.minimum(
h[forward], 0.5 * upper_dist[forward] / num_steps)
use_one_sided[forward] = True
backward = (upper_dist < lower_dist) & ~central
h_adjusted[backward] = -np.minimum(
h[backward], 0.5 * lower_dist[backward] / num_steps)
use_one_sided[backward] = True
min_dist = np.minimum(upper_dist, lower_dist) / num_steps
adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist))
h_adjusted[adjusted_central] = min_dist[adjusted_central]
use_one_sided[adjusted_central] = False
return h_adjusted, use_one_sided
relative_step = {"2-point": EPS**0.5,
"3-point": EPS**(1/3),
"cs": EPS**0.5}
def _compute_absolute_step(rel_step, x0, method):
if rel_step is None:
rel_step = relative_step[method]
sign_x0 = (x0 >= 0).astype(float) * 2 - 1
return rel_step * sign_x0 * np.maximum(1.0, np.abs(x0))
def _prepare_bounds(bounds, x0):
lb, ub = [np.asarray(b, dtype=float) for b in bounds]
if lb.ndim == 0:
lb = np.resize(lb, x0.shape)
if ub.ndim == 0:
ub = np.resize(ub, x0.shape)
return lb, ub
def group_columns(A, order=0):
"""Group columns of a 2-D matrix for sparse finite differencing [1]_.
Two columns are in the same group if in each row at least one of them
has zero. A greedy sequential algorithm is used to construct groups.
Parameters
----------
A : array_like or sparse matrix, shape (m, n)
Matrix of which to group columns.
order : int, iterable of int with shape (n,) or None
Permutation array which defines the order of columns enumeration.
If int or None, a random permutation is used with `order` used as
a random seed. Default is 0, that is use a random permutation but
guarantee repeatability.
Returns
-------
groups : ndarray of int, shape (n,)
Contains values from 0 to n_groups-1, where n_groups is the number
of found groups. Each value ``groups[i]`` is an index of a group to
which ith column assigned. The procedure was helpful only if
n_groups is significantly less than n.
References
----------
.. [1] <NAME>, <NAME>, and <NAME>, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13 (1974), pp. 117-120.
"""
if issparse(A):
A = csc_matrix(A)
else:
A = np.atleast_2d(A)
A = (A != 0).astype(np.int32)
if A.ndim != 2:
raise ValueError("`A` must be 2-dimensional.")
m, n = A.shape
if order is None or np.isscalar(order):
rng = np.random.RandomState(order)
order = rng.permutation(n)
else:
order = np.asarray(order)
if order.shape != (n,):
raise ValueError("`order` has incorrect shape.")
A = A[:, order]
if issparse(A):
groups = group_sparse(m, n, A.indices, A.indptr)
else:
groups = group_dense(m, n, A)
groups[order] = groups.copy()
return groups
def approx_derivative(fun, x0, method='3-point', rel_step=None, f0=None,
bounds=(-np.inf, np.inf), sparsity=None,
as_linear_operator=False, args=(), kwargs={}):
"""Compute finite difference approximation of the derivatives of a
vector-valued function.
If a function maps from R^n to R^m, its derivatives form m-by-n matrix
called the Jacobian, where an element (i, j) is a partial derivative of
f[i] with respect to x[j].
Parameters
----------
fun : callable
Function of which to estimate the derivatives. The argument x
passed to this function is ndarray of shape (n,) (never a scalar
even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
x0 : array_like of shape (n,) or float
Point at which to estimate the derivatives. Float will be converted
to a 1-D array.
method : {'3-point', '2-point', 'cs'}, optional
Finite difference method to use:
- '2-point' - use the first order accuracy forward or backward
difference.
- '3-point' - use central difference in interior points and the
second order accuracy forward or backward difference
near the boundary.
- 'cs' - use a complex-step finite difference scheme. This assumes
that the user function is real-valued and can be
analytically continued to the complex plane. Otherwise,
produces bogus results.
rel_step : None or array_like, optional
Relative step size to use. The absolute step size is computed as
``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to
fit into the bounds. For ``method='3-point'`` the sign of `h` is
ignored. If None (default) then step is selected automatically,
see Notes.
f0 : None or array_like, optional
If not None it is assumed to be equal to ``fun(x0)``, in this case
the ``fun(x0)`` is not called. Default is None.
bounds : tuple of array_like, optional
Lower and upper bounds on independent variables. Defaults to no bounds.
Each bound must match the size of `x0` or be a scalar, in the latter
case the bound will be the same for all variables. Use it to limit the
range of function evaluation. Bounds checking is not implemented
when `as_linear_operator` is True.
sparsity : {None, array_like, sparse matrix, 2-tuple}, optional
Defines a sparsity structure of the Jacobian matrix. If the Jacobian
matrix is known to have only few non-zero elements in each row, then
it's possible to estimate its several columns by a single function
evaluation [3]_. To perform such economic computations two ingredients
are required:
* structure : array_like or sparse matrix of shape (m, n). A zero
element means that a corresponding element of the Jacobian
identically equals to zero.
* groups : array_like of shape (n,). A column grouping for a given
sparsity structure, use `group_columns` to obtain it.
A single array or a sparse matrix is interpreted as a sparsity
structure, and groups are computed inside the function. A tuple is
interpreted as (structure, groups). If None (default), a standard
dense differencing will be used.
Note, that sparse differencing makes sense only for large Jacobian
matrices where each row contains few non-zero elements.
as_linear_operator : bool, optional
When True the function returns an `scipy.sparse.linalg.LinearOperator`.
Otherwise it returns a dense array or a sparse matrix depending on
`sparsity`. The linear operator provides an efficient way of computing
``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow
direct access to individual elements of the matrix. By default
`as_linear_operator` is False.
args, kwargs : tuple and dict, optional
Additional arguments passed to `fun`. Both empty by default.
The calling signature is ``fun(x, *args, **kwargs)``.
Returns
-------
J : {ndarray, sparse matrix, LinearOperator}
Finite difference approximation of the Jacobian matrix.
If `as_linear_operator` is True returns a LinearOperator
with shape (m, n). Otherwise it returns a dense array or sparse
matrix depending on how `sparsity` is defined. If `sparsity`
is None then a ndarray with shape (m, n) is returned. If
`sparsity` is not None returns a csr_matrix with shape (m, n).
For sparse matrices and linear operators it is always returned as
a 2-D structure, for ndarrays, if m=1 it is returned
as a 1-D gradient array with shape (n,).
See Also
--------
check_derivative : Check correctness of a function computing derivatives.
Notes
-----
If `rel_step` is not provided, it assigned to ``EPS**(1/s)``, where EPS is
machine epsilon for float64 numbers, s=2 for '2-point' method and s=3 for
'3-point' method. Such relative step approximately minimizes a sum of
truncation and round-off errors, see [1]_.
A finite difference scheme for '3-point' method is selected automatically.
The well-known central difference scheme is used for points sufficiently
far from the boundary, and 3-point forward or backward scheme is used for
points near the boundary. Both schemes have the second-order accuracy in
terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point
forward and backward difference schemes.
For dense differencing when m=1 Jacobian is returned with a shape (n,),
on the other hand when n=1 Jacobian is returned with a shape (m, 1).
Our motivation is the following: a) It handles a case of gradient
computation (m=1) in a conventional way. b) It clearly separates these two
different cases. b) In all cases np.atleast_2d can be called to get 2-D
Jacobian with correct dimensions.
References
----------
.. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific
Computing. 3rd edition", sec. 5.7.
.. [2] <NAME>, <NAME>, and <NAME>, "On the estimation of
sparse Jacobian matrices", Journal of the Institute of Mathematics
and its Applications, 13 (1974), pp. 117-120.
.. [3] <NAME>, "Generation of Finite Difference Formulas on
Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988.
Examples
--------
>>> import numpy as np
>>> from scipy.optimize import approx_derivative
>>>
>>> def f(x, c1, c2):
... return np.array([x[0] * np.sin(c1 * x[1]),
... x[0] * np.cos(c2 * x[1])])
...
>>> x0 = np.array([1.0, 0.5 * np.pi])
>>> approx_derivative(f, x0, args=(1, 2))
array([[ 1., 0.],
[-1., 0.]])
Bounds can be used to limit the region of function evaluation.
In the example below we compute left and right derivative at point 1.0.
>>> def g(x):
... return x**2 if x >= 1 else x
...
>>> x0 = 1.0
>>> approx_derivative(g, x0, bounds=(-np.inf, 1.0))
array([ 1.])
>>> approx_derivative(g, x0, bounds=(1.0, np.inf))
array([ 2.])
"""
if method not in ['2-point', '3-point', 'cs']:
raise ValueError("Unknown method '%s'. " % method)
x0 = np.atleast_1d(x0)
if x0.ndim > 1:
raise ValueError("`x0` must have at most 1 dimension.")
lb, ub = _prepare_bounds(bounds, x0)
if lb.shape != x0.shape or ub.shape != x0.shape:
raise ValueError("Inconsistent shapes between bounds and `x0`.")
if as_linear_operator and not (np.all(np.isinf(lb))
and np.all(np.isinf(ub))):
raise ValueError("Bounds not supported when "
"`as_linear_operator` is True.")
def fun_wrapped(x):
f = np.atleast_1d(fun(x, *args, **kwargs))
if f.ndim > 1:
raise RuntimeError("`fun` return value has "
"more than 1 dimension.")
return f
if f0 is None:
f0 = fun_wrapped(x0)
else:
f0 = np.atleast_1d(f0)
if f0.ndim > 1:
raise ValueError("`f0` passed has more than 1 dimension.")
if np.any((x0 < lb) | (x0 > ub)):
raise ValueError("`x0` violates bound constraints.")
if as_linear_operator:
if rel_step is None:
rel_step = relative_step[method]
return _linear_operator_difference(fun_wrapped, x0,
f0, rel_step, method)
else:
h = _compute_absolute_step(rel_step, x0, method)
if method == '2-point':
h, use_one_sided = _adjust_scheme_to_bounds(
x0, h, 1, '1-sided', lb, ub)
elif method == '3-point':
h, use_one_sided = _adjust_scheme_to_bounds(
x0, h, 1, '2-sided', lb, ub)
elif method == 'cs':
use_one_sided = False
if sparsity is None:
return _dense_difference(fun_wrapped, x0, f0, h,
use_one_sided, method)
else:
if not issparse(sparsity) and len(sparsity) == 2:
structure, groups = sparsity
else:
structure = sparsity
groups = group_columns(sparsity)
if issparse(structure):
structure = csc_matrix(structure)
else:
structure = np.atleast_2d(structure)
groups = np.atleast_1d(groups)
return _sparse_difference(fun_wrapped, x0, f0, h,
use_one_sided, structure,
groups, method)
def _linear_operator_difference(fun, x0, f0, h, method):
m = f0.size
n = x0.size
if method == '2-point':
def matvec(p):
if np.array_equal(p, np.zeros_like(p)):
return np.zeros(m)
dx = h / norm(p)
x = x0 + dx*p
df = fun(x) - f0
return df / dx
elif method == '3-point':
def matvec(p):
if np.array_equal(p, np.zeros_like(p)):
return np.zeros(m)
dx = 2*h / norm(p)
x1 = x0 - (dx/2)*p
x2 = x0 + (dx/2)*p
f1 = fun(x1)
f2 = fun(x2)
df = f2 - f1
return df / dx
elif method == 'cs':
def matvec(p):
if np.array_equal(p, np.zeros_like(p)):
return np.zeros(m)
dx = h / norm(p)
x = x0 + dx*p*1.j
f1 = fun(x)
df = f1.imag
return df / dx
else:
raise RuntimeError("Never be here.")
return LinearOperator((m, n), matvec)
def _dense_difference(fun, x0, f0, h, use_one_sided, method):
m = f0.size
n = x0.size
J_transposed = np.empty((n, m))
h_vecs = np.diag(h)
for i in range(h.size):
if method == '2-point':
x = x0 + h_vecs[i]
dx = x[i] - x0[i] # Recompute dx as exactly representable number.
df = fun(x) - f0
elif method == '3-point' and use_one_sided[i]:
x1 = x0 + h_vecs[i]
x2 = x0 + 2 * h_vecs[i]
dx = x2[i] - x0[i]
f1 = fun(x1)
f2 = fun(x2)
df = -3.0 * f0 + 4 * f1 - f2
elif method == '3-point' and not use_one_sided[i]:
x1 = x0 - h_vecs[i]
x2 = x0 + h_vecs[i]
dx = x2[i] - x1[i]
f1 = fun(x1)
f2 = fun(x2)
df = f2 - f1
elif method == 'cs':
f1 = fun(x0 + h_vecs[i]*1.j)
df = f1.imag
dx = h_vecs[i, i]
else:
raise RuntimeError("Never be here.")
J_transposed[i] = df / dx
if m == 1:
J_transposed = np.ravel(J_transposed)
return J_transposed.T
def _sparse_difference(fun, x0, f0, h, use_one_sided,
structure, groups, method):
m = f0.size
n = x0.size
row_indices = []
col_indices = []
fractions = []
n_groups = np.max(groups) + 1
for group in range(n_groups):
# Perturb variables which are in the same group simultaneously.
e = np.equal(group, groups)
h_vec = h * e
if method == '2-point':
x = x0 + h_vec
dx = x - x0
df = fun(x) - f0
# The result is written to columns which correspond to perturbed
# variables.
cols, = | np.nonzero(e) | numpy.nonzero |
from __future__ import division
from math import sqrt as sqrt
from itertools import product as product
import torch
import numpy as np
import cv2
from lib.utils.visualize_utils import TBWriter
def vis(func):
"""tensorboard visualization if has writer as input"""
def wrapper(*args, **kw):
return func(*args, **kw) if kw['tb_writer'] is not None else None
return wrapper
class PriorBoxBase(object):
"""Compute priorbox coordinates in center-offset form for each source
feature map.
"""
def __init__(self, cfg):
super(PriorBoxBase, self).__init__()
self.image_size = cfg.MODEL.IMAGE_SIZE
self._steps = cfg.MODEL.STEPS
self._cfg_list = []
self._prior_cfg = {}
self._clip = cfg.MODEL.CLIP
self._variance = cfg.MODEL.VARIANCE
for v in self._variance:
if v <= 0:
raise ValueError('Variances must be greater than 0')
def _setup(self, cfg):
num_feat = len(self._steps)
for item in self._cfg_list:
if item not in cfg.MODEL:
raise Exception("wrong anchor config!")
if len(cfg.MODEL[item]) != num_feat and len(cfg.MODEL[item]) != 0:
raise Exception("config {} length does not match step length!".format(item))
self._prior_cfg[item] = cfg.MODEL[item]
@property
def num_priors(self):
"""allow prior num calculation before knowing feature map size"""
assert self._prior_cfg is not {}
return [int(len(self._create_prior(0, 0, k)) / 4) for k in range(len(self._steps))]
def _create_prior(self, cx, cy, k):
raise NotImplementedError
@vis
def _image_proc(self, image=None, tb_writer=None):
# TODO test with image
if isinstance(image, type(None)):
image = np.ones((self.image_size[1], self.image_size[0], 3))
elif isinstance(image, str):
image = cv2.imread(image, -1)
image = cv2.resize(image, (self.image_size[1], self.image_size[0]))
return image
@vis
def _prior_vis(self, anchor, image_ori, feat_idx, tb_writer=None):
# TODO add output path to the signature
writer = tb_writer.writer
prior_num = self.num_priors[feat_idx]
# transform coordinates
scale = [self.image_size[1], self.image_size[0], self.image_size[1], self.image_size[0]]
bboxs = np.array(anchor).reshape((-1, 4))
box_centers = bboxs[:, :2] * scale[:2] # [x, y]
# bboxs: [xmin, ymin, xmax, ymax]
bboxs = | np.hstack((bboxs[:, :2] - bboxs[:, 2:4] / 2, bboxs[:, :2] + bboxs[:, 2:4] / 2)) | numpy.hstack |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cntk as C
import numpy as np
from .common import floatx, epsilon, image_dim_ordering, image_data_format
from collections import defaultdict
from contextlib import contextmanager
import warnings
C.set_global_option('align_axis', 1)
b_any = any
dev = C.device.use_default_device()
if dev.type() == 0:
warnings.warn(
'CNTK backend warning: GPU is not detected. '
'CNTK\'s CPU version is not fully optimized,'
'please run with GPU to get better performance.')
# A learning phase is a bool tensor used to run Keras models in
# either train mode (learning_phase == 1) or test mode (learning_phase == 0).
# LEARNING_PHASE_PLACEHOLDER is the placeholder for dynamic learning phase
_LEARNING_PHASE_PLACEHOLDER = C.constant(shape=(), dtype=np.float32, value=1.0, name='_keras_learning_phase')
# static learning phase flag, if it is not 0 or 1, we will go with dynamic learning phase tensor.
_LEARNING_PHASE = -1
_UID_PREFIXES = defaultdict(int)
# cntk doesn't support gradient as symbolic op, to hook up with keras model,
# we will create gradient as a constant placeholder, here use this global
# map to keep the mapping from grad placeholder to parameter
grad_parameter_dict = {}
NAME_SCOPE_STACK = []
@contextmanager
def name_scope(name):
global NAME_SCOPE_STACK
NAME_SCOPE_STACK.append(name)
yield
NAME_SCOPE_STACK.pop()
def get_uid(prefix=''):
_UID_PREFIXES[prefix] += 1
return _UID_PREFIXES[prefix]
def learning_phase():
# If _LEARNING_PHASE is not 0 or 1, return dynamic learning phase tensor
return _LEARNING_PHASE if _LEARNING_PHASE in {0, 1} else _LEARNING_PHASE_PLACEHOLDER
def set_learning_phase(value):
global _LEARNING_PHASE
if value not in {0, 1}:
raise ValueError('CNTK Backend: Set learning phase '
'with value %s is not supported, '
'expected 0 or 1.' % value)
_LEARNING_PHASE = value
def clear_session():
"""Reset learning phase flag for cntk backend.
"""
global _LEARNING_PHASE
global _LEARNING_PHASE_PLACEHOLDER
_LEARNING_PHASE = -1
_LEARNING_PHASE_PLACEHOLDER.value = np.asarray(1.0)
def in_train_phase(x, alt, training=None):
global _LEARNING_PHASE
if training is None:
training = learning_phase()
uses_learning_phase = True
else:
uses_learning_phase = False
# CNTK currently don't support cond op, so here we use
# element_select approach as workaround. It may have
# perf issue, will resolve it later with cntk cond op.
if callable(x) and isinstance(x, C.cntk_py.Function) is False:
x = x()
if callable(alt) and isinstance(alt, C.cntk_py.Function) is False:
alt = alt()
if training is True:
x._uses_learning_phase = uses_learning_phase
return x
else:
# if _LEARNING_PHASE is static
if isinstance(training, int) or isinstance(training, bool):
result = x if training == 1 or training is True else alt
else:
result = C.element_select(training, x, alt)
result._uses_learning_phase = uses_learning_phase
return result
def in_test_phase(x, alt, training=None):
return in_train_phase(alt, x, training=training)
def _convert_string_dtype(dtype):
# cntk only support float32 and float64
if dtype == 'float32':
return np.float32
elif dtype == 'float64':
return np.float64
else:
# cntk only running with float,
# try to cast to float to run the model
return np.float32
def _convert_dtype_string(dtype):
if dtype == np.float32:
return 'float32'
elif dtype == np.float64:
return 'float64'
else:
raise ValueError('CNTK Backend: Unsupported dtype: %s. '
'CNTK only supports float32 and '
'float64.' % dtype)
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
# Arguments
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
# Returns
A variable instance (with Keras metadata included).
"""
if dtype is None:
dtype = floatx()
if name is None:
name = ''
if isinstance(
value,
C.variables.Constant) or isinstance(
value,
C.variables.Parameter):
value = value.value
# we don't support init parameter with symbolic op, so eval it first as
# workaround
if isinstance(value, C.cntk_py.Function):
value = eval(value)
shape = value.shape if hasattr(value, 'shape') else ()
if hasattr(value, 'dtype') and value.dtype != dtype and len(shape) > 0:
value = value.astype(dtype)
# TODO: remove the conversion when cntk supports int32, int64
# https://docs.microsoft.com/en-us/python/api/cntk.variables.parameter
dtype = 'float32' if 'int' in str(dtype) else dtype
v = C.parameter(shape=shape,
init=value,
dtype=dtype,
name=_prepare_name(name, 'variable'))
v._keras_shape = v.shape
v._uses_learning_phase = False
v.constraint = constraint
return v
def bias_add(x, bias, data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
dims = len(x.shape)
if dims > 0 and x.shape[0] == C.InferredDimension:
dims -= 1
bias_dims = len(bias.shape)
if bias_dims != 1 and bias_dims != dims:
raise ValueError('Unexpected bias dimensions %d, '
'expected 1 or %d dimensions' % (bias_dims, dims))
if dims == 4:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1, 1, 1)
else:
shape = (bias.shape[3],) + bias.shape[:3]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, 1, 1, bias.shape[0])
else:
shape = bias.shape
elif dims == 3:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1, 1)
else:
shape = (bias.shape[2],) + bias.shape[:2]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, 1, bias.shape[0])
else:
shape = bias.shape
elif dims == 2:
if data_format == 'channels_first':
if bias_dims == 1:
shape = (bias.shape[0], 1)
else:
shape = (bias.shape[1],) + bias.shape[:1]
elif data_format == 'channels_last':
if bias_dims == 1:
shape = (1, bias.shape[0])
else:
shape = bias.shape
else:
shape = bias.shape
return x + reshape(bias, shape)
def eval(x):
if isinstance(x, C.cntk_py.Function):
return x.eval()
elif isinstance(x, C.variables.Constant) or isinstance(x, C.variables.Parameter):
return x.value
else:
raise ValueError('CNTK Backend: `eval` method on '
'`%s` type is not supported. '
'CNTK only supports `eval` with '
'`Function`, `Constant` or '
'`Parameter`.' % type(x))
def placeholder(
shape=None,
ndim=None,
dtype=None,
sparse=False,
name=None,
dynamic_axis_num=1):
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = tuple([None for _ in range(ndim)])
dynamic_dimension = C.FreeDimension if _get_cntk_version() >= 2.2 else C.InferredDimension
cntk_shape = [dynamic_dimension if s is None else s for s in shape]
cntk_shape = tuple(cntk_shape)
if dynamic_axis_num > len(cntk_shape):
raise ValueError('CNTK backend: creating placeholder with '
'%d dimension is not supported, at least '
'%d dimensions are needed.'
% (len(cntk_shape, dynamic_axis_num)))
if name is None:
name = ''
cntk_shape = cntk_shape[dynamic_axis_num:]
x = C.input(
shape=cntk_shape,
dtype=_convert_string_dtype(dtype),
is_sparse=sparse,
name=name)
x._keras_shape = shape
x._uses_learning_phase = False
x._cntk_placeholder = True
return x
def is_placeholder(x):
"""Returns whether `x` is a placeholder.
# Arguments
x: A candidate placeholder.
# Returns
Boolean.
"""
return hasattr(x, '_cntk_placeholder') and x._cntk_placeholder
def is_keras_tensor(x):
if not is_tensor(x):
raise ValueError('Unexpectedly found an instance of type `' +
str(type(x)) + '`. '
'Expected a symbolic tensor instance.')
return hasattr(x, '_keras_history')
def is_tensor(x):
return isinstance(x, (C.variables.Constant,
C.variables.Variable,
C.variables.Parameter,
C.ops.functions.Function))
def shape(x):
shape = list(int_shape(x))
num_dynamic = _get_dynamic_axis_num(x)
non_dyn_shape = []
for i in range(len(x.shape)):
if shape[i + num_dynamic] is None:
non_dyn_shape.append(x.shape[i])
else:
non_dyn_shape.append(shape[i + num_dynamic])
return shape[:num_dynamic] + non_dyn_shape
def is_sparse(tensor):
return tensor.is_sparse
def int_shape(x):
if hasattr(x, '_keras_shape'):
return x._keras_shape
shape = x.shape
if hasattr(x, 'dynamic_axes'):
dynamic_shape = [None for a in x.dynamic_axes]
shape = tuple(dynamic_shape) + shape
return shape
def ndim(x):
shape = int_shape(x)
return len(shape)
def _prepare_name(name, default):
prefix = '_'.join(NAME_SCOPE_STACK)
if name is None or name == '':
return prefix + '/' + default
return prefix + '/' + name
def constant(value, dtype=None, shape=None, name=None):
if dtype is None:
dtype = floatx()
if shape is None:
shape = ()
np_value = value * np.ones(shape)
const = C.constant(np_value,
dtype=dtype,
name=_prepare_name(name, 'constant'))
const._keras_shape = const.shape
const._uses_learning_phase = False
return const
def random_binomial(shape, p=0.0, dtype=None, seed=None):
# use numpy workaround now
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e7)
np.random.seed(seed)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
size = 1
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
size *= _
binomial = np.random.binomial(1, p, size).astype(dtype).reshape(shape)
return variable(value=binomial, dtype=dtype)
def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None):
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
return random_uniform_variable(shape, minval, maxval, dtype, seed)
def random_uniform_variable(shape, low, high,
dtype=None, name=None, seed=None):
if dtype is None:
dtype = floatx()
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e3)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
if name is None:
name = ''
scale = (high - low) / 2
p = C.parameter(
shape,
init=C.initializer.uniform(
scale,
seed=seed),
dtype=dtype,
name=name)
return variable(value=p.value + low + scale)
def random_normal_variable(
shape,
mean,
scale,
dtype=None,
name=None,
seed=None):
if dtype is None:
dtype = floatx()
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e7)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
if name is None:
name = ''
return C.parameter(
shape=shape,
init=C.initializer.normal(
scale=scale,
seed=seed),
dtype=dtype,
name=name)
def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
if dtype is None:
dtype = floatx()
for _ in shape:
if _ is None:
raise ValueError('CNTK Backend: randomness op with '
'dynamic shape is not supported now. '
'Please provide fixed dimension '
'instead of `None`.')
# how to apply mean and stddev
return random_normal_variable(shape=shape, mean=mean, scale=1.0, seed=seed)
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
if seed is None:
seed = np.random.randint(1, 10e6)
if dtype is None:
dtype = np.float32
else:
dtype = _convert_string_dtype(dtype)
return C.parameter(
shape, init=C.initializer.truncated_normal(
stddev, seed=seed), dtype=dtype)
def dtype(x):
return _convert_dtype_string(x.dtype)
def zeros(shape, dtype=None, name=None):
if dtype is None:
dtype = floatx()
ctype = _convert_string_dtype(dtype)
return variable(value=np.zeros(shape, ctype), dtype=dtype, name=name)
def ones(shape, dtype=None, name=None):
if dtype is None:
dtype = floatx()
ctype = _convert_string_dtype(dtype)
return variable(value=np.ones(shape, ctype), dtype=dtype, name=name)
def eye(size, dtype=None, name=None):
if dtype is None:
dtype = floatx()
return variable(np.eye(size), dtype, name)
def zeros_like(x, dtype=None, name=None):
return x * 0
def ones_like(x, dtype=None, name=None):
return zeros_like(x) + 1
def count_params(x):
for _ in x.shape:
if _ == C.InferredDimension or _ == C.FreeDimension:
raise ValueError('CNTK backend: `count_params` with dynamic '
'shape is not supported. Please provide '
'fixed dimension instead of `None`.')
return np.prod(int_shape(x))
def cast(x, dtype):
# cntk calculate everything in float, so don't need case from bool / int
return x
def dot(x, y):
if len(x.shape) > 2 or len(y.shape) > 2:
y_shape = int_shape(y)
if len(y_shape) > 2:
permutation = [len(y_shape) - 2]
permutation += list(range(len(y_shape) - 2))
permutation += [len(y_shape) - 1]
y = C.transpose(y, perm=permutation)
return C.times(x, y, len(y_shape) - 1)
else:
return C.times(x, y)
def batch_dot(x, y, axes=None):
x_shape = int_shape(x)
y_shape = int_shape(y)
if isinstance(axes, int):
axes = (axes, axes)
if axes is None:
# behaves like tf.batch_matmul as default
axes = [len(x_shape) - 1, len(y_shape) - 2]
if b_any([isinstance(a, (list, tuple)) for a in axes]):
raise ValueError('Multiple target dimensions are not supported. ' +
'Expected: None, int, (int, int), ' +
'Provided: ' + str(axes))
if len(x_shape) == 2 and len(y_shape) == 2:
if axes[0] == axes[1]:
result = sum(x * y, axis=axes[0], keepdims=True)
return result if axes[0] == 1 else transpose(result)
else:
return sum(x * transpose(y), axis=axes[0], keepdims=True)
else:
if len(y_shape) == 2:
y = expand_dims(y)
normalized_axis = []
normalized_axis.append(_normalize_axis(axes[0], x)[0])
normalized_axis.append(_normalize_axis(axes[1], y)[0])
# transpose
i = normalized_axis[0]
while i < len(x.shape) - 1:
x = C.swapaxes(x, i, i + 1)
i += 1
i = normalized_axis[1]
while i > 0:
y = C.swapaxes(y, i, i - 1)
i -= 1
result = C.times(x, y, output_rank=(len(y.shape) - 1)
if len(y.shape) > 1 else 1)
if len(y_shape) == 2:
result = squeeze(result, -1)
return result
def transpose(x):
return C.swapaxes(x, 0, 1)
def gather(reference, indices):
# There is a bug in cntk gather op which may cause crash.
# We have made a fix but not catched in CNTK 2.1 release.
# Will update with gather op in next release
if _get_cntk_version() >= 2.2:
return C.ops.gather(reference, indices)
else:
num_classes = reference.shape[0]
one_hot_matrix = C.ops.one_hot(indices, num_classes)
return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1)
def _remove_dims(x, axis, keepdims=False):
if keepdims is False and isinstance(axis, list):
# sequence axis is removed by default, so don't need reshape on it
reduce_axes = []
for a in axis:
if isinstance(a, C.Axis) is False:
reduce_axes.append(a)
return _reshape_dummy_dim(x, reduce_axes)
else:
if isinstance(axis, list):
has_seq = False
for a in axis:
if isinstance(a, C.Axis):
has_seq = True
break
if has_seq:
nones = _get_dynamic_axis_num(x)
x = expand_dims(x, nones)
return x
def max(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_max')
return _remove_dims(output, axis, keepdims)
def min(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_min')
return _remove_dims(output, axis, keepdims)
def sum(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_sum')
return _remove_dims(output, axis, keepdims)
def prod(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_prod')
return _remove_dims(output, axis, keepdims)
def logsumexp(x, axis=None, keepdims=False):
return log(sum(exp(x), axis=axis, keepdims=keepdims))
def var(x, axis=None, keepdims=False):
m = mean(x, axis, keepdims=True)
devs_squared = C.square(x - m)
return mean(devs_squared, axis=axis, keepdims=keepdims)
def std(x, axis=None, keepdims=False):
return C.sqrt(var(x, axis=axis, keepdims=keepdims))
def expand_dims(x, axis=-1):
shape = list(int_shape(x))
nones = _get_dynamic_axis_num(x)
index = axis if axis >= 0 else len(shape) + 1
shape.insert(index, 1)
new_shape = shape[nones:]
new_shape = tuple(
[C.InferredDimension if _ is None else _ for _ in new_shape])
result = C.reshape(x, new_shape)
if index < nones:
result._keras_shape = shape
return result
def squeeze(x, axis):
if isinstance(axis, tuple):
axis = list(axis)
if not isinstance(axis, list):
axis = [axis]
shape = list(int_shape(x))
_axis = []
for _ in axis:
if isinstance(_, int):
_axis.append(_ if _ >= 0 else _ + len(shape))
if len(_axis) == 0:
return x
nones = _get_dynamic_axis_num(x)
for _ in sorted(_axis, reverse=True):
del shape[_]
new_shape = shape[nones:]
new_shape = tuple([C.InferredDimension if _ == C.FreeDimension else _ for _ in new_shape])
return C.reshape(x, new_shape)
def tile(x, n):
if isinstance(n, int):
n = (n,)
elif isinstance(n, list):
n = tuple(n)
shape = int_shape(x)
num_dynamic_axis = _get_dynamic_axis_num(x)
# Padding the axis
if len(n) < len(shape):
n = tuple([1 for _ in range(len(shape) - len(n))]) + n
if len(n) != len(shape):
raise NotImplementedError
i = num_dynamic_axis
for i, rep in enumerate(n):
if i >= num_dynamic_axis and shape[i] is not None:
tmp = [x] * rep
x = C.splice(*tmp, axis=i - num_dynamic_axis)
i += 1
return x
def _normalize_axis(axis, x):
shape = int_shape(x)
ndim = len(shape)
nones = _get_dynamic_axis_num(x)
if nones > ndim:
raise ValueError('CNTK Backend: tensor with keras shape: `%s` has '
'%d cntk dynamic axis, this is not expected, please '
'double check the keras shape history.' % (str(shape), nones))
# Current cntk does not support shape like (1, batch). so using the workaround
# here to mapping the correct axis. Will remove this tricky after we add support
# in native cntk op
cntk_axis = []
dynamic_axis_index = 0
for i in range(ndim):
if shape[i] is None and dynamic_axis_index < nones:
cntk_axis.append(x.dynamic_axes[dynamic_axis_index])
dynamic_axis_index += 1
else:
cntk_axis.append(i - dynamic_axis_index)
if dynamic_axis_index < nones:
i = 0
while dynamic_axis_index < nones:
cntk_axis[i] = x.dynamic_axes[dynamic_axis_index]
i += 1
dynamic_axis_index += 1
while i < len(cntk_axis):
cntk_axis[i] -= nones
i += 1
if isinstance(axis, tuple):
_axis = list(axis)
elif isinstance(axis, int):
_axis = [axis]
elif isinstance(axis, list):
_axis = list(axis)
else:
_axis = axis
if isinstance(_axis, list):
for i, a in enumerate(_axis):
if a is not None and a < 0:
_axis[i] = (a % ndim)
if _axis[i] is not None:
_axis[i] = cntk_axis[_axis[i]]
else:
if _axis is None:
_axis = C.Axis.all_axes()
return _axis
def _reshape_dummy_dim(x, axis):
shape = list(x.shape)
_axis = [_ + len(shape) if _ < 0 else _ for _ in axis]
if shape.count(C.InferredDimension) > 1 or shape.count(C.FreeDimension) > 1:
result = x
for index in sorted(_axis, reverse=True):
result = C.reshape(result,
shape=(),
begin_axis=index,
end_axis=index + 1)
return result
else:
for index in sorted(_axis, reverse=True):
del shape[index]
shape = [C.InferredDimension if _ == C.FreeDimension else _ for _ in shape]
return C.reshape(x, shape)
def mean(x, axis=None, keepdims=False):
axis = _normalize_axis(axis, x)
output = _reduce_on_axis(x, axis, 'reduce_mean')
return _remove_dims(output, axis, keepdims)
def any(x, axis=None, keepdims=False):
reduce_result = sum(x, axis, keepdims=keepdims)
any_matrix = C.element_select(
reduce_result,
ones_like(reduce_result),
zeros_like(reduce_result))
if len(reduce_result.shape) == 0 and _get_dynamic_axis_num(x) == 0:
return C.reduce_sum(any_matrix)
else:
return any_matrix
def all(x, axis=None, keepdims=False):
reduce_result = prod(x, axis, keepdims=keepdims)
all_matrix = C.element_select(
reduce_result,
ones_like(reduce_result),
zeros_like(reduce_result))
if len(reduce_result.shape) == 0 and _get_dynamic_axis_num(x) == 0:
return C.reduce_sum(all_matrix)
else:
return all_matrix
def classification_error(target, output, axis=-1):
return C.ops.reduce_mean(
C.equal(
argmax(
output,
axis=-1),
argmax(
target,
axis=-1)),
axis=C.Axis.all_axes())
def argmax(x, axis=-1):
axis = [axis]
axis = _normalize_axis(axis, x)
output = C.ops.argmax(x, axis=axis[0])
return _reshape_dummy_dim(output, axis)
def argmin(x, axis=-1):
axis = [axis]
axis = _normalize_axis(axis, x)
output = C.ops.argmin(x, axis=axis[0])
return _reshape_dummy_dim(output, axis)
def square(x):
return C.square(x)
def abs(x):
return C.abs(x)
def sqrt(x):
return C.sqrt(x)
def exp(x):
return C.exp(x)
def log(x):
return C.log(x)
def round(x):
return C.round(x)
def sigmoid(x):
return C.sigmoid(x)
def sign(x):
return x / C.abs(x)
def pow(x, a):
return C.pow(x, a)
def clip(x, min_value, max_value):
if max_value is not None and max_value < min_value:
max_value = min_value
if max_value is None:
max_value = np.inf
if min_value is None:
min_value = -np.inf
return C.clip(x, min_value, max_value)
def binary_crossentropy(target, output, from_logits=False):
if from_logits:
output = C.sigmoid(output)
output = C.clip(output, epsilon(), 1.0 - epsilon())
output = -target * C.log(output) - (1.0 - target) * C.log(1.0 - output)
return output
def get_variable_shape(x):
return int_shape(x)
def update(x, new_x):
return C.assign(x, new_x)
def moving_average_update(variable, value, momentum):
return C.assign(variable, variable * momentum + value * (1. - momentum))
def update_add(x, increment):
result = x + increment
return C.assign(x, result)
def gradients(loss, variables):
# cntk does not support gradients as symbolic op,
# to hook up with keras model
# we will return a constant as place holder, the cntk learner will apply
# the gradient during training.
global grad_parameter_dict
if isinstance(variables, list) is False:
variables = [variables]
grads = []
for v in variables:
g = C.constant(0, shape=v.shape, name='keras_grad_placeholder')
grads.append(g)
grad_parameter_dict[g] = v
return grads
def equal(x, y):
return C.equal(x, y)
def not_equal(x, y):
return C.not_equal(x, y)
def greater(x, y):
return C.greater(x, y)
def greater_equal(x, y):
return C.greater_equal(x, y)
def less(x, y):
return C.less(x, y)
def less_equal(x, y):
return C.less_equal(x, y)
def maximum(x, y):
return C.element_max(x, y)
def minimum(x, y):
return C.element_min(x, y)
def sin(x):
return C.sin(x)
def cos(x):
return C.cos(x)
def normalize_batch_in_training(x, gamma, beta,
reduction_axes, epsilon=1e-3):
if gamma is None:
if beta is None:
gamma = ones_like(x)
else:
gamma = ones_like(beta)
if beta is None:
if gamma is None:
beta = zeros_like(x)
else:
beta = zeros_like(gamma)
mean, variant = _moments(x, _normalize_axis(reduction_axes, x))
if sorted(reduction_axes) == list(range(ndim(x)))[:-1]:
normalized = batch_normalization(
x, mean, variant, beta, gamma, epsilon)
else:
# need broadcasting
target_shape = []
x_shape = int_shape(x)
# skip the batch axis
for axis in range(1, ndim(x)):
if axis in reduction_axes:
target_shape.append(1)
if ndim(gamma) > axis:
gamma = C.reduce_mean(gamma, axis - 1)
beta = C.reduce_mean(beta, axis - 1)
else:
target_shape.append(x_shape[axis])
broadcast_mean = C.reshape(mean, target_shape)
broadcast_var = C.reshape(variant, target_shape)
broadcast_gamma = C.reshape(gamma, target_shape)
broadcast_beta = C.reshape(beta, target_shape)
normalized = batch_normalization(
x,
broadcast_mean,
broadcast_var,
broadcast_beta,
broadcast_gamma,
epsilon)
return normalized, mean, variant
def _moments(x, axes=None, shift=None, keep_dims=False):
_axes = tuple(axes)
if shift is None:
shift = x
# Compute true mean while keeping the dims for proper broadcasting.
for axis in _axes:
shift = C.reduce_mean(shift, axis=axis)
shift = C.stop_gradient(shift)
shifted_mean = C.minus(x, shift)
for axis in _axes:
shifted_mean = C.reduce_mean(shifted_mean, axis=axis)
variance_mean = C.square(C.minus(x, shift))
for axis in _axes:
variance_mean = C.reduce_mean(variance_mean, axis=axis)
variance = C.minus(variance_mean, C.square(shifted_mean))
mean = C.plus(shifted_mean, shift)
if not keep_dims:
mean = squeeze(mean, _axes)
variance = squeeze(variance, _axes)
return mean, variance
def batch_normalization(x, mean, var, beta, gamma, epsilon=1e-3):
# The mean / var / beta / gamma may be processed by broadcast
# so it may have an extra batch axis with 1, it is not needed
# in cntk, need to remove those dummy axis.
if ndim(mean) == ndim(x) and shape(mean)[0] == 1:
mean = _reshape_dummy_dim(mean, [0])
if ndim(var) == ndim(x) and shape(var)[0] == 1:
var = _reshape_dummy_dim(var, [0])
if gamma is None:
gamma = ones_like(var)
elif ndim(gamma) == ndim(x) and shape(gamma)[0] == 1:
gamma = _reshape_dummy_dim(gamma, [0])
if beta is None:
beta = zeros_like(mean)
elif ndim(beta) == ndim(x) and shape(beta)[0] == 1:
beta = _reshape_dummy_dim(beta, [0])
return (x - mean) / (C.sqrt(var) + epsilon) * gamma + beta
def concatenate(tensors, axis=-1):
if len(tensors) == 0:
return None
axis = [axis]
axis = _normalize_axis(axis, tensors[0])
return C.splice(*tensors, axis=axis[0])
def flatten(x):
return reshape(x, (-1,))
def reshape(x, shape):
shape = tuple([C.InferredDimension if _ == C.FreeDimension else _ for _ in shape])
if isinstance(x, C.variables.Parameter):
return C.reshape(x, shape)
else:
num_dynamic_axis = _get_dynamic_axis_num(x)
if num_dynamic_axis == 1 and len(shape) > 0 and shape[0] == -1:
# collapse axis with batch axis
if b_any(_ == C.InferredDimension for _ in x.shape) or b_any(
_ == C.FreeDimension for _ in x.shape):
warnings.warn(
'Warning: CNTK backend does not support '
'collapse of batch axis with inferred dimension. '
'The reshape did not take place.')
return x
return _reshape_batch(x, shape)
else:
# no collapse, then first need to padding the shape
if num_dynamic_axis >= len(shape):
i = 0
while i < len(shape):
if shape[i] is None or shape[i] == -1:
i += 1
else:
break
shape = tuple([-1 for _ in range(num_dynamic_axis - i)]) + shape
new_shape = list(shape)
new_shape = new_shape[num_dynamic_axis:]
new_shape = [C.InferredDimension if _ is None else _ for _ in new_shape]
return C.reshape(x, new_shape)
def permute_dimensions(x, pattern):
dims = len(int_shape(x))
num_dynamic_axis = _get_dynamic_axis_num(x)
if isinstance(pattern, list):
current_layout = [i for i in range(dims)]
else:
current_layout = tuple([i for i in range(dims)])
if num_dynamic_axis > 0 and pattern[:num_dynamic_axis] != current_layout[:num_dynamic_axis]:
raise ValueError('CNTK backend: the permute pattern %s '
'requested permute on dynamic axis, '
'which is not supported. Please do permute '
'on static axis.' % pattern)
axis = list(pattern)
axis = axis[num_dynamic_axis:]
axis = _normalize_axis(axis, x)
return C.transpose(x, axis)
def resize_images(x, height_factor, width_factor, data_format):
if data_format == 'channels_first':
output = repeat_elements(x, height_factor, axis=2)
output = repeat_elements(output, width_factor, axis=3)
return output
elif data_format == 'channels_last':
output = repeat_elements(x, height_factor, axis=1)
output = repeat_elements(output, width_factor, axis=2)
return output
else:
raise ValueError('CNTK Backend: Invalid data_format:', data_format)
def resize_volumes(x, depth_factor, height_factor, width_factor, data_format):
if data_format == 'channels_first':
output = repeat_elements(x, depth_factor, axis=2)
output = repeat_elements(output, height_factor, axis=3)
output = repeat_elements(output, width_factor, axis=4)
return output
elif data_format == 'channels_last':
output = repeat_elements(x, depth_factor, axis=1)
output = repeat_elements(output, height_factor, axis=2)
output = repeat_elements(output, width_factor, axis=3)
return output
else:
raise ValueError('CNTK Backend: Invalid data_format:', data_format)
def repeat_elements(x, rep, axis):
axis = _normalize_axis(axis, x)
axis = axis[0]
slices = []
shape = x.shape
i = 0
while i < shape[axis]:
tmp = C.ops.slice(x, axis, i, i + 1)
for _ in range(rep):
slices.append(tmp)
i += 1
return C.splice(*slices, axis=axis)
def repeat(x, n):
# this is a workaround for recurrent layer
# if n is inferred dimension,
# we can't figure out how to repeat it in cntk now
# return the same x to take cntk broadcast feature
# to make the recurrent layer work.
# need to be fixed in GA.
if n is C.InferredDimension or n is C.FreeDimension:
return x
index = 1 - _get_dynamic_axis_num(x)
if index < 0 or index > 1:
raise NotImplementedError
new_shape = list(x.shape)
new_shape.insert(index, 1)
new_shape = tuple(new_shape)
x = C.reshape(x, new_shape)
temp = [x] * n
return C.splice(*temp, axis=index)
def tanh(x):
return C.tanh(x)
def _static_rnn(step_function, inputs, initial_states,
go_backwards=False, mask=None, constants=None,
unroll=False, input_length=None):
shape = int_shape(inputs)
dims = len(shape)
uses_learning_phase = False
if dims < 3:
raise ValueError('Input should be at least 3D.')
# if the second axis is static axis, CNTK will do unroll by default
if shape[1] is None:
raise ValueError('CNTK Backend: the input of static rnn '
'has shape `%s`, the second axis '
'is not static. If you want to run '
'rnn with non-static axis, please try '
'dynamic rnn with sequence axis.' % shape)
if constants is None:
constants = []
if mask is not None:
mask_shape = int_shape(mask)
if len(mask_shape) == dims - 1:
mask = expand_dims(mask)
nones = _get_dynamic_axis_num(inputs)
states = tuple(initial_states)
outputs = []
time_axis = 1 - nones if nones > 0 else 1
if go_backwards:
i = shape[1] - 1
while i >= 0:
current = C.ops.slice(inputs, time_axis, i, i + 1)
# remove dummy dimension
current = squeeze(current, time_axis)
output, new_states = step_function(
current, tuple(states) + tuple(constants))
if getattr(output, '_uses_learning_phase', False):
uses_learning_phase = True
if mask is not None:
mask_slice = C.ops.slice(mask, time_axis, i, i + 1)
mask_slice = squeeze(mask_slice, time_axis)
if len(outputs) == 0:
prev_output = zeros_like(output)
else:
prev_output = outputs[-1]
output = C.ops.element_select(mask_slice, output, prev_output)
return_states = []
for s, n_s in zip(states, new_states):
return_states.append(
C.ops.element_select(
mask_slice, n_s, s))
new_states = return_states
outputs.append(output)
states = new_states
i -= 1
else:
i = 0
while i < shape[1]:
current = C.ops.slice(inputs, time_axis, i, i + 1)
# remove dummy dimension
current = squeeze(current, 1)
output, new_states = step_function(
current, tuple(states) + tuple(constants))
if getattr(output, '_uses_learning_phase', False):
uses_learning_phase = True
if mask is not None:
mask_slice = C.ops.slice(mask, time_axis, i, i + 1)
mask_slice = squeeze(mask_slice, 1)
if len(outputs) == 0:
prev_output = zeros_like(output)
else:
prev_output = outputs[-1]
output = C.ops.element_select(mask_slice, output, prev_output)
return_states = []
for s, n_s in zip(states, new_states):
return_states.append(
C.ops.element_select(
mask_slice, n_s, s))
new_states = return_states
outputs.append(output)
states = new_states[:len(states)]
i += 1
i = 1
# add the time_step axis back
final_output = expand_dims(outputs[0], 1)
last_output = outputs[0]
while i < len(outputs):
# add the time_step axis back
output_slice = expand_dims(outputs[i], 1)
final_output = C.splice(final_output, output_slice, axis=time_axis)
last_output = outputs[i]
i += 1
last_output._uses_learning_phase = uses_learning_phase
return last_output, final_output, states
def rnn(step_function, inputs, initial_states,
go_backwards=False, mask=None, constants=None,
unroll=False, input_length=None):
shape = int_shape(inputs)
dims = len(shape)
global uses_learning_phase
uses_learning_phase = False
if dims < 3:
raise ValueError('CNTK Backend: the input of rnn has only rank %d '
'Need at least rank 3 to run RNN.' % dims)
if _get_dynamic_axis_num(inputs) == 0 or unroll:
return _static_rnn(
step_function,
inputs,
initial_states,
go_backwards,
mask,
constants,
unroll,
input_length)
if constants is None:
constants = []
num_time_step = shape[1]
if num_time_step is None and not has_seq_axis(inputs):
num_time_step = inputs.shape[0]
initial = []
for s in initial_states:
if _get_dynamic_axis_num(s) == 0:
if hasattr(C, 'to_batch'):
initial.append(C.to_batch(s))
else:
initial.append(C.user_function(ConvertToBatch(s)))
else:
initial.append(s)
need_convert = not has_seq_axis(inputs)
if go_backwards and need_convert is False:
raise NotImplementedError('CNTK Backend: `go_backwards` is not supported with '
'variable-length sequences. Please specify a '
'static length for your sequences.')
rnn_inputs = inputs
if need_convert:
if go_backwards:
rnn_inputs = reverse(rnn_inputs, 1)
rnn_inputs = C.to_sequence(rnn_inputs)
rnn_constants = []
for constant in constants:
if isinstance(constant, list):
new_c = []
for c in constant:
if _get_dynamic_axis_num(c) == 1:
new_c.append(C.sequence.broadcast_as(c, rnn_inputs))
else:
new_c.append(c)
rnn_constants.append(new_c)
else:
if _get_dynamic_axis_num(constant) == 1:
rnn_constants.append(C.sequence.broadcast_as(constant, rnn_inputs))
else:
rnn_constants.append(constant)
else:
rnn_constants = constants
if mask is not None and not has_seq_axis(mask):
if go_backwards:
mask = reverse(mask, 1)
if len(int_shape(mask)) == 2:
mask = expand_dims(mask)
mask = C.to_sequence_like(mask, rnn_inputs)
states = tuple(initial)
with C.default_options(axis_offset=1):
def _recurrence(x, states, m):
# create place holder
place_holders = [C.placeholder(dynamic_axes=x.dynamic_axes) for _ in states]
past_values = []
for s, p in zip(states, place_holders):
past_values.append(C.sequence.past_value(p, s))
new_output, new_states = step_function(
x, tuple(past_values) + tuple(rnn_constants))
if getattr(new_output, '_uses_learning_phase', False):
global uses_learning_phase
uses_learning_phase = True
if m is not None:
new_states = [C.element_select(m, n, s) for n, s in zip(new_states, past_values)]
n_s = []
for o, p in zip(new_states, place_holders):
n_s.append(o.replace_placeholders({p: o.output}))
if len(n_s) > 0:
new_output = n_s[0]
return new_output, n_s
final_output, final_states = _recurrence(rnn_inputs, states, mask)
last_output = C.sequence.last(final_output)
last_states = [C.sequence.last(s) for s in final_states]
if need_convert:
final_output = C.sequence.unpack(final_output, 0, no_mask_output=True)
if num_time_step is not None and num_time_step is not C.FreeDimension:
final_output = _reshape_sequence(final_output, num_time_step)
f_stats = []
for l_s, i_s in zip(last_states, initial_states):
if _get_dynamic_axis_num(i_s) == 0 and _get_dynamic_axis_num(l_s) == 1:
if hasattr(C, 'unpack_batch'):
f_stats.append(C.unpack_batch(l_s))
else:
f_stats.append(C.user_function(ConvertToStatic(l_s, batch_size=i_s.shape[0])))
else:
f_stats.append(l_s)
last_output._uses_learning_phase = uses_learning_phase
return last_output, final_output, f_stats
def has_seq_axis(x):
return hasattr(x, 'dynamic_axes') and len(x.dynamic_axes) > 1
def l2_normalize(x, axis=None):
axis = [axis]
axis = _normalize_axis(axis, x)
norm = C.sqrt(C.reduce_sum(C.square(x), axis=axis[0]))
return x / norm
def hard_sigmoid(x):
x = (0.2 * x) + 0.5
x = C.clip(x, 0.0, 1.0)
return x
def conv1d(x, kernel, strides=1, padding='valid',
data_format=None, dilation_rate=1):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if padding == 'causal':
# causal (dilated) convolution:
left_pad = dilation_rate * (kernel.shape[0] - 1)
x = temporal_padding(x, (left_pad, 0))
padding = 'valid'
if data_format == 'channels_last':
x = C.swapaxes(x, 0, 1)
kernel = C.swapaxes(kernel, 0, 2)
padding = _preprocess_border_mode(padding)
strides = [strides]
x = C.convolution(
kernel,
x,
strides=tuple(strides),
auto_padding=[
False,
padding])
if data_format == 'channels_last':
x = C.swapaxes(x, 0, 1)
return x
def conv2d(x, kernel, strides=(1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
kernel = _preprocess_conv2d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
if dilation_rate == (1, 1):
strides = (1,) + strides
x = C.convolution(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding])
else:
assert dilation_rate[0] == dilation_rate[1]
assert strides == (1, 1), 'Invalid strides for dilated convolution'
x = C.convolution(
kernel,
x,
strides=dilation_rate[0],
auto_padding=[
False,
padding,
padding])
return _postprocess_conv2d_output(x, data_format)
def separable_conv1d(x, depthwise_kernel, pointwise_kernel, strides=1,
padding='valid', data_format=None, dilation_rate=1):
raise NotImplementedError
def separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1),
padding='valid', data_format=None, dilation_rate=(1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
depthwise_kernel = _preprocess_conv2d_kernel(depthwise_kernel, data_format)
depthwise_kernel = C.reshape(C.transpose(depthwise_kernel, (1, 0, 2, 3)),
(-1, 1) + depthwise_kernel.shape[2:])
pointwise_kernel = _preprocess_conv2d_kernel(pointwise_kernel, data_format)
padding = _preprocess_border_mode(padding)
if dilation_rate == (1, 1):
strides = (1,) + strides
x = C.convolution(depthwise_kernel, x,
strides=strides,
auto_padding=[False, padding, padding],
groups=x.shape[0])
x = C.convolution(pointwise_kernel, x,
strides=(1, 1, 1),
auto_padding=[False])
else:
if dilation_rate[0] != dilation_rate[1]:
raise ValueError('CNTK Backend: non-square dilation_rate is '
'not supported.')
if strides != (1, 1):
raise ValueError('Invalid strides for dilated convolution')
x = C.convolution(depthwise_kernel, x,
strides=dilation_rate[0],
auto_padding=[False, padding, padding])
x = C.convolution(pointwise_kernel, x,
strides=(1, 1, 1),
auto_padding=[False])
return _postprocess_conv2d_output(x, data_format)
def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
depthwise_kernel = _preprocess_conv2d_kernel(depthwise_kernel, data_format)
depthwise_kernel = C.reshape(C.transpose(depthwise_kernel, (1, 0, 2, 3)),
(-1, 1) + depthwise_kernel.shape[2:])
padding = _preprocess_border_mode(padding)
if dilation_rate == (1, 1):
strides = (1,) + strides
x = C.convolution(depthwise_kernel, x,
strides=strides,
auto_padding=[False, padding, padding],
groups=x.shape[0])
else:
if dilation_rate[0] != dilation_rate[1]:
raise ValueError('CNTK Backend: non-square dilation_rate is '
'not supported.')
if strides != (1, 1):
raise ValueError('Invalid strides for dilated convolution')
x = C.convolution(depthwise_kernel, x,
strides=dilation_rate[0],
auto_padding=[False, padding, padding],
groups=x.shape[0])
return _postprocess_conv2d_output(x, data_format)
def conv3d(x, kernel, strides=(1, 1, 1), padding='valid',
data_format=None, dilation_rate=(1, 1, 1)):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv3d_input(x, data_format)
kernel = _preprocess_conv3d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
strides = strides + (strides[0],)
x = C.convolution(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding,
padding])
return _postprocess_conv3d_output(x, data_format)
def conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1),
padding='valid', data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv3d_input(x, data_format)
kernel = _preprocess_conv3d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
strides = (1,) + strides
# cntk output_shape does not include batch axis
output_shape = output_shape[1:]
# in keras2, need handle output shape in different format
if data_format == 'channels_last':
shape = list(output_shape)
shape[0] = output_shape[3]
shape[1] = output_shape[0]
shape[2] = output_shape[1]
shape[3] = output_shape[2]
output_shape = tuple(shape)
x = C.convolution_transpose(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding,
padding],
output_shape=output_shape)
return _postprocess_conv3d_output(x, data_format)
def pool2d(x, pool_size, strides=(1, 1),
padding='valid', data_format=None,
pool_mode='max'):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
padding = _preprocess_border_mode(padding)
strides = strides
pool_size = pool_size
x = _preprocess_conv2d_input(x, data_format)
if pool_mode == 'max':
x = C.pooling(
x,
C.MAX_POOLING,
pool_size,
strides,
auto_padding=[padding])
elif pool_mode == 'avg':
x = C.pooling(
x,
C.AVG_POOLING,
pool_size,
strides,
auto_padding=[padding])
else:
raise ValueError('Invalid pooling mode: ' + str(pool_mode))
return _postprocess_conv2d_output(x, data_format)
def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid',
data_format=None, pool_mode='max'):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
padding = _preprocess_border_mode(padding)
x = _preprocess_conv3d_input(x, data_format)
if pool_mode == 'max':
x = C.pooling(
x,
C.MAX_POOLING,
pool_size,
strides,
auto_padding=[padding])
elif pool_mode == 'avg':
x = C.pooling(
x,
C.AVG_POOLING,
pool_size,
strides,
auto_padding=[padding])
else:
raise ValueError('Invalid pooling mode: ' + str(pool_mode))
return _postprocess_conv3d_output(x, data_format)
def relu(x, alpha=0., max_value=None):
if alpha != 0.:
negative_part = C.relu(-x)
x = C.relu(x)
if max_value is not None:
x = C.clip(x, 0.0, max_value)
if alpha != 0.:
x -= alpha * negative_part
return x
def dropout(x, level, noise_shape=None, seed=None):
if level < 0. or level >= 1:
raise ValueError('CNTK Backend: Invalid dropout level %s, '
'must be in interval [0, 1].' % level)
return C.dropout(x, level)
def batch_flatten(x):
# cntk's batch axis is not in shape,
# so just flatten all the dim in x.shape
dim = np.prod(x.shape)
x = C.reshape(x, (-1,))
x._keras_shape = (None, dim)
return x
def softmax(x, axis=-1):
return C.softmax(x, axis=axis)
def softplus(x):
return C.softplus(x)
def softsign(x):
return x / (1 + C.abs(x))
def categorical_crossentropy(target, output, from_logits=False):
if from_logits:
result = C.cross_entropy_with_softmax(output, target)
# cntk's result shape is (batch, 1), while keras expect (batch, )
return C.reshape(result, ())
else:
# scale preds so that the class probas of each sample sum to 1
output /= C.reduce_sum(output, axis=-1)
# avoid numerical instability with epsilon clipping
output = C.clip(output, epsilon(), 1.0 - epsilon())
return -sum(target * C.log(output), axis=-1)
def sparse_categorical_crossentropy(target, output, from_logits=False):
target = C.one_hot(target, output.shape[-1])
target = C.reshape(target, output.shape)
return categorical_crossentropy(target, output, from_logits)
class Function(object):
def __init__(self, inputs, outputs, updates=[], **kwargs):
self.placeholders = inputs
self.trainer = None
self.unrelated_updates = None
self.updates = updates
if len(updates) > 0:
assert len(outputs) > 0
self.loss = outputs[0]
# need group update by gradient place holder
u_ops = []
unrelated_updates = []
for update in updates:
if isinstance(update, tuple):
if len(update) != 2:
raise NotImplementedError
else:
u = C.assign(update[0], update[1])
else:
u = update
if len(u.arguments) == 0:
u_ops.append(u)
else:
unrelated_updates.append(u)
update_func = C.combine([u.output for u in u_ops])
grads = update_func.find_all_with_name('keras_grad_placeholder')
u_list = []
p_list = []
for g in grads:
if g in grad_parameter_dict:
p_list.append(grad_parameter_dict[g])
u_list.append(g)
else:
raise ValueError(
'CNTK backend: when constructing trainer, '
'found gradient node `%s` which is not '
'related to any parameters in the model. '
'Please double check how the gradient node '
'is constructed.' % g)
if len(u_list) > 0:
learner = C.cntk_py.universal_learner(p_list, u_list, update_func)
criterion = (
outputs[0],
outputs[1]) if len(outputs) > 1 else (
outputs[0],
)
self.trainer = C.trainer.Trainer(
outputs[0], criterion, [learner])
self.trainer_output = tuple([f.output for f in criterion])
elif len(u_ops) > 0:
unrelated_updates.extend(u_ops)
if len(unrelated_updates) > 0:
self.unrelated_updates = C.combine([_.output for _ in unrelated_updates])
if self.trainer is None:
self.metrics_outputs = [f.output for f in outputs]
self.metrics_func = C.combine(self.metrics_outputs)
# cntk only could handle loss and 1 metric in trainer, for metrics more
# than 2, need manual eval
elif len(outputs) > 2:
self.metrics_outputs = [f.output for f in outputs[2:]]
self.metrics_func = C.combine(self.metrics_outputs)
else:
self.metrics_func = None
@staticmethod
def _is_input_shape_compatible(input, placeholder):
if hasattr(input, 'shape') and hasattr(placeholder, 'shape'):
num_dynamic = get_num_dynamic_axis(placeholder)
input_shape = input.shape[num_dynamic:]
placeholder_shape = placeholder.shape
for i, p in zip(input_shape, placeholder_shape):
if i != p and p != C.InferredDimension and p != C.FreeDimension:
return False
return True
def __call__(self, inputs):
global _LEARNING_PHASE_PLACEHOLDER
global _LEARNING_PHASE
assert isinstance(inputs, (list, tuple))
feed_dict = {}
for tensor, value in zip(self.placeholders, inputs):
# cntk only support calculate on float, do auto cast here
if (hasattr(value, 'dtype') and
value.dtype != np.float32 and
value.dtype != np.float64):
value = value.astype(np.float32)
if tensor == _LEARNING_PHASE_PLACEHOLDER:
_LEARNING_PHASE_PLACEHOLDER.value = np.asarray(value)
else:
# in current version cntk can't support input with variable
# length. Will support it in next release.
if not self._is_input_shape_compatible(value, tensor):
raise ValueError('CNTK backend: The placeholder has been resolved '
'to shape `%s`, but input shape is `%s`. Currently '
'CNTK can not take variable length inputs. Please '
'pass inputs that have a static shape.'
% (str(tensor.shape), str(value.shape)))
feed_dict[tensor] = value
updated = []
if self.trainer is not None:
input_dict = {}
for argument in self.loss.arguments:
if argument in feed_dict:
input_dict[argument] = feed_dict[argument]
else:
raise ValueError(
'CNTK backend: argument %s is not found in inputs. '
'Please double check the model and inputs in '
'`train_function`.' % argument.name)
result = self.trainer.train_minibatch(
input_dict, self.trainer_output)
assert(len(result) == 2)
outputs = result[1]
for o in self.trainer_output:
updated.append(outputs[o])
if self.metrics_func is not None:
input_dict = {}
for argument in self.metrics_func.arguments:
if argument in feed_dict:
input_dict[argument] = feed_dict[argument]
else:
raise ValueError('CNTK backend: metrics argument %s '
'is not found in inputs. Please double '
'check the model and inputs.' % argument.name)
# Some ops (like dropout) won't be applied during "eval" in cntk.
# They only evaluated in training phase. To make it work, call
# "forward" method to let cntk know we want to evaluate them.from
# But the assign ops won't be executed under this mode, that's why
# we need this check.
if (self.unrelated_updates is None and
(_LEARNING_PHASE_PLACEHOLDER.value == 1.0 or _LEARNING_PHASE == 1)):
_, output_values = self.metrics_func.forward(
input_dict,
self.metrics_func.outputs,
(self.metrics_func.outputs[0],),
as_numpy=False)
else:
output_values = self.metrics_func.eval(input_dict, as_numpy=False)
if isinstance(output_values, dict):
for o in self.metrics_outputs:
value = output_values[o]
v = value.asarray()
updated.append(v)
else:
v = output_values.asarray()
for o in self.metrics_outputs:
updated.append(v)
if self.unrelated_updates is not None:
input_dict = {}
for argument in self.unrelated_updates.arguments:
if argument in feed_dict:
input_dict[argument] = feed_dict[argument]
else:
raise ValueError(
'CNTK backend: assign ops argument %s '
'is not found in inputs. Please double '
'check the model and inputs.' % argument.name)
self.unrelated_updates.eval(input_dict, as_numpy=False)
return updated
def function(inputs, outputs, updates=[], **kwargs):
return Function(inputs, outputs, updates=updates, **kwargs)
def temporal_padding(x, padding=(1, 1)):
assert len(padding) == 2
num_dynamic_axis = _get_dynamic_axis_num(x)
base_shape = x.shape
if num_dynamic_axis > 0:
assert len(base_shape) == 2
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[padding, (0, 0)])
else:
x = _padding(x, padding, 0)
else:
assert len(base_shape) == 3
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[(0, 0), padding, (0, 0)])
else:
x = _padding(x, padding, 1)
return x
def _padding(x, pattern, axis):
base_shape = x.shape
if b_any([dim < 0 for dim in base_shape]):
raise ValueError('CNTK Backend: padding input tensor with '
'shape `%s` contains non-specified dimension, '
'which is not supported. Please give fixed '
'dimension to enable padding.' % base_shape)
if pattern[0] > 0:
prefix_shape = list(base_shape)
prefix_shape[axis] = pattern[0]
prefix_shape = tuple(prefix_shape)
x = C.splice(C.constant(value=0, shape=prefix_shape), x, axis=axis)
base_shape = x.shape
if pattern[1] > 0:
postfix_shape = list(base_shape)
postfix_shape[axis] = pattern[1]
postfix_shape = tuple(postfix_shape)
x = C.splice(x, C.constant(value=0, shape=postfix_shape), axis=axis)
return x
def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None):
assert len(padding) == 2
assert len(padding[0]) == 2
assert len(padding[1]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
num_dynamic_axis = _get_dynamic_axis_num(x)
base_shape = x.shape
if data_format == 'channels_first':
if num_dynamic_axis > 0:
assert len(base_shape) == 3
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1])])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
else:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], [0, 0], list(padding[0]), list(padding[1])])
else:
x = _padding(x, padding[0], 2)
x = _padding(x, padding[1], 3)
else:
if num_dynamic_axis > 0:
assert len(base_shape) == 3
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[list(padding[0]), list(padding[1]), [0, 0]])
else:
x = _padding(x, padding[0], 0)
x = _padding(x, padding[1], 1)
else:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), [0, 0]])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
return x
def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None):
assert len(padding) == 3
assert len(padding[0]) == 2
assert len(padding[1]) == 2
assert len(padding[2]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
num_dynamic_axis = _get_dynamic_axis_num(x)
base_shape = x.shape
if data_format == 'channels_first':
if num_dynamic_axis > 0:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), list(padding[2])])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
x = _padding(x, padding[2], 3)
else:
assert len(base_shape) == 5
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], [0, 0], list(padding[0]), list(padding[1]), list(padding[2])])
else:
x = _padding(x, padding[0], 2)
x = _padding(x, padding[1], 3)
x = _padding(x, padding[2], 4)
else:
if num_dynamic_axis > 0:
assert len(base_shape) == 4
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[list(padding[0]), list(padding[1]), list(padding[2]), [0, 0]])
else:
x = _padding(x, padding[0], 0)
x = _padding(x, padding[1], 1)
x = _padding(x, padding[2], 2)
else:
assert len(base_shape) == 5
if hasattr(C, 'pad'):
x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), list(padding[2]), [0, 0]])
else:
x = _padding(x, padding[0], 1)
x = _padding(x, padding[1], 2)
x = _padding(x, padding[2], 3)
return x
def one_hot(indices, num_classes):
return C.one_hot(indices, num_classes)
def get_value(x):
if isinstance(
x,
C.variables.Parameter) or isinstance(
x,
C.variables.Constant):
return x.value
else:
return eval(x)
def batch_get_value(xs):
result = []
for x in xs:
if (isinstance(x, C.variables.Parameter) or
isinstance(x, C.variables.Constant)):
result.append(x.value)
else:
result.append(eval(x))
return result
def set_value(x, value):
if (isinstance(x, C.variables.Parameter) or
isinstance(x, C.variables.Constant)):
if isinstance(value, (float, int)):
value = np.full(x.shape, value, dtype=floatx())
x.value = value
else:
raise NotImplementedError
def print_tensor(x, message=''):
return C.user_function(
LambdaFunc(x,
when=lambda x: True,
execute=lambda x: print(message)))
def batch_set_value(tuples):
for t in tuples:
x = t[0]
value = t[1]
if isinstance(value, np.ndarray) is False:
value = np.asarray(value)
if isinstance(x, C.variables.Parameter):
x.value = value
else:
raise NotImplementedError
def stop_gradient(variables):
if isinstance(variables, (list, tuple)):
return map(C.stop_gradient, variables)
else:
return C.stop_gradient(variables)
def switch(condition, then_expression, else_expression):
ndim_cond = ndim(condition)
ndim_expr = ndim(then_expression)
if ndim_cond > ndim_expr:
raise ValueError('Rank of condition should be less'
' than or equal to rank of then and'
' else expressions. ndim(condition)=' +
str(ndim_cond) + ', ndim(then_expression)'
'=' + str(ndim_expr))
elif ndim_cond < ndim_expr:
shape_expr = int_shape(then_expression)
ndim_diff = ndim_expr - ndim_cond
for i in range(ndim_diff):
condition = expand_dims(condition)
condition = tile(condition, shape_expr[ndim_cond + i])
return C.element_select(condition,
then_expression,
else_expression)
def elu(x, alpha=1.):
res = C.elu(x)
if alpha == 1:
return res
else:
return C.element_select(C.greater(x, 0), res, alpha * res)
def in_top_k(predictions, targets, k):
_targets = C.one_hot(targets, predictions.shape[-1])
result = C.classification_error(predictions, _targets, topN=k)
return 1 - C.reshape(result, shape=())
def conv2d_transpose(x, kernel, output_shape, strides=(1, 1),
padding='valid', data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
x = _preprocess_conv2d_input(x, data_format)
kernel = _preprocess_conv2d_kernel(kernel, data_format)
padding = _preprocess_border_mode(padding)
strides = (1,) + strides
# cntk output_shape does not include batch axis
output_shape = output_shape[1:]
# in keras2, need handle output shape in different format
if data_format == 'channels_last':
shape = list(output_shape)
shape[0] = output_shape[2]
shape[1] = output_shape[0]
shape[2] = output_shape[1]
output_shape = tuple(shape)
x = C.convolution_transpose(
kernel,
x,
strides,
auto_padding=[
False,
padding,
padding],
output_shape=output_shape)
return _postprocess_conv2d_output(x, data_format)
def identity(x, name=None):
if name is None:
name = '%s_alias' % x.name
return C.alias(x, name=name)
def _preprocess_conv2d_input(x, data_format):
if data_format == 'channels_last':
# TF uses the last dimension as channel dimension,
# instead of the 2nd one.
# TH input shape: (samples, input_depth, rows, cols)
# TF input shape: (samples, rows, cols, input_depth)
x = C.transpose(x, (2, 0, 1))
return x
def _preprocess_conv2d_kernel(kernel, data_format):
# As of Keras 2.0.0, all kernels are normalized
# on the format `(rows, cols, input_depth, depth)`,
# independently of `data_format`.
# CNTK expects `(depth, input_depth, rows, cols)`.
kernel = C.transpose(kernel, (3, 2, 0, 1))
return kernel
def _preprocess_border_mode(padding):
if padding == 'same':
padding = True
elif padding == 'valid':
padding = False
else:
raise ValueError('Invalid border mode: ' + str(padding))
return padding
def _postprocess_conv2d_output(x, data_format):
if data_format == 'channels_last':
x = C.transpose(x, (1, 2, 0))
return x
def _preprocess_conv3d_input(x, data_format):
if data_format == 'channels_last':
# TF uses the last dimension as channel dimension,
# instead of the 2nd one.
# TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3)
# TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3,
# input_depth)
x = C.transpose(x, (3, 0, 1, 2))
return x
def _preprocess_conv3d_kernel(kernel, dim_ordering):
kernel = C.transpose(kernel, (4, 3, 0, 1, 2))
return kernel
def _postprocess_conv3d_output(x, dim_ordering):
if dim_ordering == 'channels_last':
x = C.transpose(x, (1, 2, 3, 0))
return x
def _get_dynamic_axis_num(x):
if hasattr(x, 'dynamic_axes'):
return len(x.dynamic_axes)
else:
return 0
def _contain_seqence_axis(x):
if _get_dynamic_axis_num(x) > 1:
return x.dynamic_axes[1] == C.Axis.default_dynamic_axis()
else:
return False
def get_num_dynamic_axis(x):
return _get_dynamic_axis_num(x)
def _reduce_on_axis(x, axis, reduce_fun_name):
if isinstance(axis, list):
for a in axis:
if isinstance(a, C.Axis) \
and a != C.Axis.default_batch_axis() \
and hasattr(C.sequence, reduce_fun_name):
x = getattr(C.sequence, reduce_fun_name)(x, a)
else:
x = getattr(C, reduce_fun_name)(x, a)
else:
x = getattr(C, reduce_fun_name)(x, axis)
return x
def _reshape_sequence(x, time_step):
tmp_shape = list(int_shape(x))
tmp_shape[1] = time_step
return reshape(x, tmp_shape)
def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
stride = strides[0]
kernel_shape = int_shape(kernel)
output_length, feature_dim, filters = kernel_shape
xs = []
for i in range(output_length):
slice_length = slice(i * stride,
i * stride + kernel_size[0])
xs.append(reshape(inputs[:, slice_length, :],
(-1, 1, feature_dim)))
x_aggregate = concatenate(xs, axis=1)
# transpose kernel to output_filters first, to apply broadcast
weight = permute_dimensions(kernel, (2, 0, 1))
# Shape: (batch, filters, output_length, input_length * kernel_size)
output = x_aggregate * weight
# Shape: (batch, filters, output_length)
output = sum(output, axis=3)
# Shape: (batch, output_length, filters)
return permute_dimensions(output, (0, 2, 1))
def local_conv2d(inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format=None):
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
stride_row, stride_col = strides
output_row, output_col = output_shape
kernel_shape = int_shape(kernel)
_, feature_dim, filters = kernel_shape
xs = []
for i in range(output_row):
for j in range(output_col):
slice_row = slice(i * stride_row,
i * stride_row + kernel_size[0])
slice_col = slice(j * stride_col,
j * stride_col + kernel_size[1])
if data_format == 'channels_first':
xs.append(reshape(inputs[:, :, slice_row, slice_col],
(-1, 1, feature_dim)))
else:
xs.append(reshape(inputs[:, slice_row, slice_col, :],
(-1, 1, feature_dim)))
x_aggregate = concatenate(xs, axis=1)
# transpose kernel to put filters first
weight = permute_dimensions(kernel, (2, 0, 1))
# shape: batch, filters, output_length, input_length * kernel_size
output = x_aggregate * weight
# shape: batch, filters, output_length
output = sum(output, axis=3)
# shape: batch, filters, row, col
output = reshape(output,
(-1, filters, output_row, output_col))
if data_format == 'channels_last':
# shape: batch, row, col, filters
output = permute_dimensions(output, (0, 2, 3, 1))
return output
def reverse(x, axes):
if isinstance(axes, int):
axes = [axes]
cntk_axes = _normalize_axis(axes, x)
begin_index = [0 for _ in cntk_axes]
end_index = [0 for _ in cntk_axes]
strides = [-1 for _ in cntk_axes]
return C.slice(x, cntk_axes, begin_index, end_index, strides)
def _reshape_batch(x, shape):
# there is a bug in cntk 2.1's unpack_batch implementation
if hasattr(C, 'unpack_batch') and _get_cntk_version() >= 2.2:
const_a = C.unpack_batch(x)
const_a = C.reshape(const_a, shape)
return C.to_batch(const_a)
else:
return C.user_function(ReshapeBatch(x, shape[1:]))
def _get_cntk_version():
version = C.__version__
if version.endswith('+'):
version = version[:-1]
# for hot fix, ignore all the . except the first one.
if len(version) > 2 and version[1] == '.':
version = version[:2] + version[2:].replace('.', '')
try:
return float(version)
except:
warnings.warn(
'CNTK backend warning: CNTK version not detected. '
'Will using CNTK 2.0 GA as default.')
return float(2.0)
class ReshapeBatch(C.ops.functions.UserFunction):
def __init__(self, input, shape, name='reshape_with_batch'):
super(ReshapeBatch, self).__init__([input], as_numpy=False, name=name)
self.from_shape = input.shape
self.target_shape = shape
def infer_outputs(self):
batch_axis = C.Axis.default_batch_axis()
return [
C.output_variable(
self.target_shape,
self.inputs[0].dtype,
[batch_axis])]
def forward(self, arguments, device=None, outputs_to_retain=None):
num_element = arguments.shape()[0] * np.prod(np.asarray(self.from_shape))
num_static_element = np.prod( | np.asarray(self.target_shape) | numpy.asarray |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[1].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
print(f'DFA fluctuation with 11 knots: {np.round(np.var(time_series - imfs_51[3, :]), 3)}')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[2].set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$', r'$5\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[2].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[2].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
plt.savefig('jss_figures/DFA_different_trends.png')
plt.show()
# plot 6b
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences Zoomed Region', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[0].set_ylim(-5.5, 5.5)
axs[0].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].set_ylim(-5.5, 5.5)
axs[1].set_xlim(0.95 * np.pi, 1.55 * np.pi)
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([np.pi, (3 / 2) * np.pi])
axs[2].set_xticklabels([r'$\pi$', r'$\frac{3}{2}\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].set_ylim(-5.5, 5.5)
axs[2].set_xlim(0.95 * np.pi, 1.55 * np.pi)
plt.savefig('jss_figures/DFA_different_trends_zoomed.png')
plt.show()
hs_ouputs = hilbert_spectrum(time, imfs_51, hts_51, ifs_51, max_frequency=12, plot=False)
# plot 6c
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Simple Sinusoidal Time Seres with Added Noise', 50))
x_hs, y, z = hs_ouputs
z_min, z_max = 0, np.abs(z).max()
ax.pcolormesh(x_hs, y, np.abs(z), cmap='gist_rainbow', vmin=z_min, vmax=z_max)
ax.plot(x_hs[0, :], 8 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 8$', Linewidth=3)
ax.plot(x_hs[0, :], 4 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 4$', Linewidth=3)
ax.plot(x_hs[0, :], 2 * np.ones_like(x_hs[0, :]), '--', label=r'$\omega = 2$', Linewidth=3)
ax.set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi])
ax.set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$'])
plt.ylabel(r'Frequency (rad.s$^{-1}$)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.85, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/DFA_hilbert_spectrum.png')
plt.show()
# plot 6c
time = np.linspace(0, 5 * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 51)
fluc = Fluctuation(time=time, time_series=time_series)
max_unsmoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='maxima', smooth=False)
max_smoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='maxima', smooth=True)
min_unsmoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='minima', smooth=False)
min_smoothed = fluc.envelope_basis_function_approximation(knots_for_envelope=knots, extrema_type='minima', smooth=True)
util = Utility(time=time, time_series=time_series)
maxima = util.max_bool_func_1st_order_fd()
minima = util.min_bool_func_1st_order_fd()
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title(textwrap.fill('Plot Demonstrating Unsmoothed Extrema Envelopes if Schoenberg–Whitney Conditions are Not Satisfied', 50))
plt.plot(time, time_series, label='Time series', zorder=2, LineWidth=2)
plt.scatter(time[maxima], time_series[maxima], c='r', label='Maxima', zorder=10)
plt.scatter(time[minima], time_series[minima], c='b', label='Minima', zorder=10)
plt.plot(time, max_unsmoothed[0], label=textwrap.fill('Unsmoothed maxima envelope', 10), c='darkorange')
plt.plot(time, max_smoothed[0], label=textwrap.fill('Smoothed maxima envelope', 10), c='red')
plt.plot(time, min_unsmoothed[0], label=textwrap.fill('Unsmoothed minima envelope', 10), c='cyan')
plt.plot(time, min_smoothed[0], label=textwrap.fill('Smoothed minima envelope', 10), c='blue')
for knot in knots[:-1]:
plt.plot(knot * np.ones(101), np.linspace(-3.0, -2.0, 101), '--', c='grey', zorder=1)
plt.plot(knots[-1] * np.ones(101), np.linspace(-3.0, -2.0, 101), '--', c='grey', label='Knots', zorder=1)
plt.xticks((0, 1 * np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi),
(r'$0$', r'$\pi$', r'2$\pi$', r'3$\pi$', r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
plt.xlim(-0.25 * np.pi, 5.25 * np.pi)
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Schoenberg_Whitney_Conditions.png')
plt.show()
# plot 7
a = 0.25
width = 0.2
time = np.linspace((0 + a) * np.pi, (5 - a) * np.pi, 1001)
knots = np.linspace((0 + a) * np.pi, (5 - a) * np.pi, 11)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
inflection_bool = utils.inflection_point()
inflection_x = time[inflection_bool]
inflection_y = time_series[inflection_bool]
fluctuation = emd_mean.Fluctuation(time=time, time_series=time_series)
maxima_envelope = fluctuation.envelope_basis_function_approximation(knots, 'maxima', smooth=False,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
maxima_envelope_smooth = fluctuation.envelope_basis_function_approximation(knots, 'maxima', smooth=True,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
minima_envelope = fluctuation.envelope_basis_function_approximation(knots, 'minima', smooth=False,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
minima_envelope_smooth = fluctuation.envelope_basis_function_approximation(knots, 'minima', smooth=True,
smoothing_penalty=0.2, edge_effect='none',
spline_method='b_spline')[0]
inflection_points_envelope = fluctuation.direct_detrended_fluctuation_estimation(knots,
smooth=True,
smoothing_penalty=0.2,
technique='inflection_points')[0]
binomial_points_envelope = fluctuation.direct_detrended_fluctuation_estimation(knots,
smooth=True,
smoothing_penalty=0.2,
technique='binomial_average', order=21,
increment=20)[0]
derivative_of_lsq = utils.derivative_forward_diff()
derivative_time = time[:-1]
derivative_knots = np.linspace(knots[0], knots[-1], 31)
# change (1) detrended_fluctuation_technique and (2) max_internal_iter and (3) debug (confusing with external debugging)
emd = AdvEMDpy.EMD(time=derivative_time, time_series=derivative_of_lsq)
imf_1_of_derivative = emd.empirical_mode_decomposition(knots=derivative_knots,
knot_time=derivative_time, text=False, verbose=False)[0][1, :]
utils = emd_utils.Utility(time=time[:-1], time_series=imf_1_of_derivative)
optimal_maxima = np.r_[False, utils.derivative_forward_diff() < 0, False] & \
np.r_[utils.zero_crossing() == 1, False]
optimal_minima = np.r_[False, utils.derivative_forward_diff() > 0, False] & \
np.r_[utils.zero_crossing() == 1, False]
EEMD_maxima_envelope = fluctuation.envelope_basis_function_approximation_fixed_points(knots, 'maxima',
optimal_maxima,
optimal_minima,
smooth=False,
smoothing_penalty=0.2,
edge_effect='none')[0]
EEMD_minima_envelope = fluctuation.envelope_basis_function_approximation_fixed_points(knots, 'minima',
optimal_maxima,
optimal_minima,
smooth=False,
smoothing_penalty=0.2,
edge_effect='none')[0]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Detrended Fluctuation Analysis Examples')
plt.plot(time, time_series, LineWidth=2, label='Time series')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(time[optimal_maxima], time_series[optimal_maxima], c='darkred', zorder=4,
label=textwrap.fill('Optimal maxima', 10))
plt.scatter(time[optimal_minima], time_series[optimal_minima], c='darkblue', zorder=4,
label=textwrap.fill('Optimal minima', 10))
plt.scatter(inflection_x, inflection_y, c='magenta', zorder=4, label=textwrap.fill('Inflection points', 10))
plt.plot(time, maxima_envelope, c='darkblue', label=textwrap.fill('EMD envelope', 10))
plt.plot(time, minima_envelope, c='darkblue')
plt.plot(time, (maxima_envelope + minima_envelope) / 2, c='darkblue')
plt.plot(time, maxima_envelope_smooth, c='darkred', label=textwrap.fill('SEMD envelope', 10))
plt.plot(time, minima_envelope_smooth, c='darkred')
plt.plot(time, (maxima_envelope_smooth + minima_envelope_smooth) / 2, c='darkred')
plt.plot(time, EEMD_maxima_envelope, c='darkgreen', label=textwrap.fill('EEMD envelope', 10))
plt.plot(time, EEMD_minima_envelope, c='darkgreen')
plt.plot(time, (EEMD_maxima_envelope + EEMD_minima_envelope) / 2, c='darkgreen')
plt.plot(time, inflection_points_envelope, c='darkorange', label=textwrap.fill('Inflection point envelope', 10))
plt.plot(time, binomial_points_envelope, c='deeppink', label=textwrap.fill('Binomial average envelope', 10))
plt.plot(time, np.cos(time), c='black', label='True mean')
plt.xticks((0, 1 * np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi), (r'$0$', r'$\pi$', r'2$\pi$', r'3$\pi$',
r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
plt.xlim(-0.25 * np.pi, 5.25 * np.pi)
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/detrended_fluctuation_analysis.png')
plt.show()
# Duffing Equation Example
def duffing_equation(xy, ts):
gamma = 0.1
epsilon = 1
omega = ((2 * np.pi) / 25)
return [xy[1], xy[0] - epsilon * xy[0] ** 3 + gamma * np.cos(omega * ts)]
t = np.linspace(0, 150, 1501)
XY0 = [1, 1]
solution = odeint(duffing_equation, XY0, t)
x = solution[:, 0]
dxdt = solution[:, 1]
x_points = [0, 50, 100, 150]
x_names = {0, 50, 100, 150}
y_points_1 = [-2, 0, 2]
y_points_2 = [-1, 0, 1]
fig, axs = plt.subplots(2, 1)
plt.subplots_adjust(hspace=0.2)
axs[0].plot(t, x)
axs[0].set_title('Duffing Equation Displacement')
axs[0].set_ylim([-2, 2])
axs[0].set_xlim([0, 150])
axs[1].plot(t, dxdt)
axs[1].set_title('Duffing Equation Velocity')
axs[1].set_ylim([-1.5, 1.5])
axs[1].set_xlim([0, 150])
axis = 0
for ax in axs.flat:
ax.label_outer()
if axis == 0:
ax.set_ylabel('x(t)')
ax.set_yticks(y_points_1)
if axis == 1:
ax.set_ylabel(r'$ \dfrac{dx(t)}{dt} $')
ax.set(xlabel='t')
ax.set_yticks(y_points_2)
ax.set_xticks(x_points)
ax.set_xticklabels(x_names)
axis += 1
plt.savefig('jss_figures/Duffing_equation.png')
plt.show()
# compare other packages Duffing - top
pyemd = pyemd0215()
py_emd = pyemd(x)
IP, IF, IA = emd040.spectra.frequency_transform(py_emd.T, 10, 'hilbert')
freq_edges, freq_bins = emd040.spectra.define_hist_bins(0, 0.2, 100)
hht = emd040.spectra.hilberthuang(IF, IA, freq_edges)
hht = gaussian_filter(hht, sigma=1)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 1.0
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Duffing Equation using PyEMD 0.2.10', 40))
plt.pcolormesh(t, freq_bins, hht, cmap='gist_rainbow', vmin=0, vmax=np.max(np.max(np.abs(hht))))
plt.plot(t[:-1], 0.124 * np.ones_like(t[:-1]), '--', label=textwrap.fill('Hamiltonian frequency approximation', 15))
plt.plot(t[:-1], 0.04 * np.ones_like(t[:-1]), 'g--', label=textwrap.fill('Driving function frequency', 15))
plt.xticks([0, 50, 100, 150])
plt.yticks([0, 0.1, 0.2])
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.75, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Duffing_equation_ht_pyemd.png')
plt.show()
plt.show()
emd_sift = emd040.sift.sift(x)
IP, IF, IA = emd040.spectra.frequency_transform(emd_sift, 10, 'hilbert')
freq_edges, freq_bins = emd040.spectra.define_hist_bins(0, 0.2, 100)
hht = emd040.spectra.hilberthuang(IF, IA, freq_edges)
hht = gaussian_filter(hht, sigma=1)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 1.0
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Duffing Equation using emd 0.3.3', 40))
plt.pcolormesh(t, freq_bins, hht, cmap='gist_rainbow', vmin=0, vmax=np.max(np.max(np.abs(hht))))
plt.plot(t[:-1], 0.124 * np.ones_like(t[:-1]), '--', label=textwrap.fill('Hamiltonian frequency approximation', 15))
plt.plot(t[:-1], 0.04 * np.ones_like(t[:-1]), 'g--', label=textwrap.fill('Driving function frequency', 15))
plt.xticks([0, 50, 100, 150])
plt.yticks([0, 0.1, 0.2])
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.75, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Duffing_equation_ht_emd.png')
plt.show()
# compare other packages Duffing - bottom
emd_duffing = AdvEMDpy.EMD(time=t, time_series=x)
emd_duff, emd_ht_duff, emd_if_duff, _, _, _, _ = emd_duffing.empirical_mode_decomposition(verbose=False)
fig, axs = plt.subplots(2, 1)
plt.subplots_adjust(hspace=0.3)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
axs[0].plot(t, emd_duff[1, :], label='AdvEMDpy')
axs[0].plot(t, py_emd[0, :], '--', label='PyEMD 0.2.10')
axs[0].plot(t, emd_sift[:, 0], '--', label='emd 0.3.3')
axs[0].set_title('IMF 1')
axs[0].set_ylim([-2, 2])
axs[0].set_xlim([0, 150])
axs[1].plot(t, emd_duff[2, :], label='AdvEMDpy')
print(f'AdvEMDpy driving function error: {np.round(sum(abs(0.1 * np.cos(0.04 * 2 * np.pi * t) - emd_duff[2, :])), 3)}')
axs[1].plot(t, py_emd[1, :], '--', label='PyEMD 0.2.10')
print(f'PyEMD driving function error: {np.round(sum(abs(0.1 * np.cos(0.04 * 2 * np.pi * t) - py_emd[1, :])), 3)}')
axs[1].plot(t, emd_sift[:, 1], '--', label='emd 0.3.3')
print(f'emd driving function error: {np.round(sum(abs(0.1 * np.cos(0.04 * 2 * np.pi * t) - emd_sift[:, 1])), 3)}')
axs[1].plot(t, 0.1 * np.cos(0.04 * 2 * np.pi * t), '--', label=r'$0.1$cos$(0.08{\pi}t)$')
axs[1].set_title('IMF 2')
axs[1].set_ylim([-0.2, 0.4])
axs[1].set_xlim([0, 150])
axis = 0
for ax in axs.flat:
ax.label_outer()
if axis == 0:
ax.set_ylabel(r'$\gamma_1(t)$')
ax.set_yticks([-2, 0, 2])
if axis == 1:
ax.set_ylabel(r'$\gamma_2(t)$')
ax.set_yticks([-0.2, 0, 0.2])
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
ax.set_xticks(x_points)
ax.set_xticklabels(x_names)
axis += 1
plt.savefig('jss_figures/Duffing_equation_imfs.png')
plt.show()
hs_ouputs = hilbert_spectrum(t, emd_duff, emd_ht_duff, emd_if_duff, max_frequency=1.3, plot=False)
ax = plt.subplot(111)
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of Duffing Equation using AdvEMDpy', 40))
x, y, z = hs_ouputs
y = y / (2 * np.pi)
z_min, z_max = 0, np.abs(z).max()
figure_size = plt.gcf().get_size_inches()
factor = 1.0
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
ax.pcolormesh(x, y, np.abs(z), cmap='gist_rainbow', vmin=z_min, vmax=z_max)
plt.plot(t[:-1], 0.124 * np.ones_like(t[:-1]), '--', label=textwrap.fill('Hamiltonian frequency approximation', 15))
plt.plot(t[:-1], 0.04 * np.ones_like(t[:-1]), 'g--', label=textwrap.fill('Driving function frequency', 15))
plt.xticks([0, 50, 100, 150])
plt.yticks([0, 0.1, 0.2])
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (s)')
box_0 = ax.get_position()
ax.set_position([box_0.x0, box_0.y0 + 0.05, box_0.width * 0.75, box_0.height * 0.9])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/Duffing_equation_ht.png')
plt.show()
# Carbon Dioxide Concentration Example
CO2_data = pd.read_csv('Data/co2_mm_mlo.csv', header=51)
plt.plot(CO2_data['month'], CO2_data['decimal date'])
plt.title(textwrap.fill('Mean Monthly Concentration of Carbon Dioxide in the Atmosphere', 35))
plt.ylabel('Parts per million')
plt.xlabel('Time (years)')
plt.savefig('jss_figures/CO2_concentration.png')
plt.show()
signal = CO2_data['decimal date']
signal = np.asarray(signal)
time = CO2_data['month']
time = np.asarray(time)
# compare other packages Carbon Dioxide - top
pyemd = pyemd0215()
py_emd = pyemd(signal)
IP, IF, IA = emd040.spectra.frequency_transform(py_emd[:2, :].T, 12, 'hilbert')
print(f'PyEMD annual frequency error: {np.round(sum(np.abs(IF[:, 0] - np.ones_like(IF[:, 0]))), 3)}')
freq_edges, freq_bins = emd040.spectra.define_hist_bins(0, 2, 100)
hht = emd040.spectra.hilberthuang(IF, IA, freq_edges)
hht = gaussian_filter(hht, sigma=1)
fig, ax = plt.subplots()
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.title(textwrap.fill('Gaussian Filtered Hilbert Spectrum of CO$_{2}$ Concentration using PyEMD 0.2.10', 45))
plt.ylabel('Frequency (year$^{-1}$)')
plt.xlabel('Time (years)')
plt.pcolormesh(time, freq_bins, hht, cmap='gist_rainbow', vmin=0, vmax=np.max(np.max(np.abs(hht))))
plt.plot(time, | np.ones_like(time) | numpy.ones_like |
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 28 12:10:11 2019
@author: Omer
"""
## File handler
## This file was initially intended purely to generate the matrices for the near earth code found in: https://public.ccsds.org/Pubs/131x1o2e2s.pdf
## The values from the above pdf were copied manually to a txt file, and it is the purpose of this file to parse it.
## The emphasis here is on correctness, I currently do not see a reason to generalise this file, since matrices will be saved in either json or some matrix friendly format.
import numpy as np
from scipy.linalg import circulant
#import matplotlib.pyplot as plt
import scipy.io
import common
import hashlib
import os
projectDir = os.environ.get('LDPC')
if projectDir == None:
import pathlib
projectDir = pathlib.Path(__file__).parent.absolute()
## <NAME>: added on 01/12/2020, need to make sure this doesn't break anything.
import sys
sys.path.insert(1, projectDir)
FILE_HANDLER_INT_DATA_TYPE = np.int32
GENERAL_CODE_MATRIX_DATA_TYPE = np.int32
NIBBLE_CONVERTER = np.array([8, 4, 2, 1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
def nibbleToHex(inputArray):
n = NIBBLE_CONVERTER.dot(inputArray)
if n == 10:
h = 'A'
elif n== 11:
h = 'B'
elif n== 12:
h = 'C'
elif n== 13:
h = 'D'
elif n== 14:
h = 'E'
elif n== 15:
h = 'F'
else:
h = str(n)
return h
def binaryArraytoHex(inputArray):
d1 = len(inputArray)
assert (d1 % 4 == 0)
outputArray = np.zeros(d1//4, dtype = str)
outputString = ''
for j in range(d1//4):
nibble = inputArray[4 * j : 4 * j + 4]
h = nibbleToHex(nibble)
outputArray[j] = h
outputString = outputString + h
return outputArray, outputString
def hexStringToBinaryArray(hexString):
outputBinary = np.array([], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
for i in hexString:
if i == '0':
nibble = np.array([0,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '1':
nibble = np.array([0,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '2':
nibble = np.array([0,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '3':
nibble = np.array([0,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '4':
nibble = np.array([0,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '5':
nibble = np.array([0,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '6':
nibble = np.array([0,1,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '7':
nibble = | np.array([0,1,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) | numpy.array |
import argparse
import json
import numpy as np
import pandas as pd
import os
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,f1_score
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras import backend as K
from keras.utils.vis_utils import plot_model
from sklearn.externals import joblib
import time
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def get_embeddings(sentences_list,layer_json):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:return: Dictionary with key each sentence of the sentences_list and as value the embedding
'''
sentences = dict()#dict with key the index of each line of the sentences_list.txt and as value the sentence
embeddings = dict()##dict with key the index of each sentence and as value the its embedding
sentence_emb = dict()#key:sentence,value:its embedding
with open(sentences_list,'r') as file:
for index,line in enumerate(file):
sentences[index] = line.strip()
with open(layer_json, 'r',encoding='utf-8') as f:
for line in f:
embeddings[json.loads(line)['linex_index']] = np.asarray(json.loads(line)['features'])
for key,value in sentences.items():
sentence_emb[value] = embeddings[key]
return sentence_emb
def train_classifier(sentences_list,layer_json,dataset_csv,filename):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:param filename: The path of the pickle file that the model will be stored
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = np.asarray(label)
print(errors)
features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1)
features = np.column_stack([features, length]) # np.append(features,length,axis=1)
print(features.shape)
X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42)
log = LogisticRegression(random_state=0, solver='newton-cg', max_iter=1000, C=0.1)
log.fit(X_train, y_train)
#save the model
_ = joblib.dump(log, filename, compress=9)
predictions = log.predict(X_val)
print("###########################################")
print("Results using embeddings from the",layer_json,"file")
print(classification_report(y_val, predictions))
print("F1 score using Logistic Regression:",f1_score(y_val, predictions))
print("###########################################")
#train a DNN
f1_results = list()
for i in range(3):
model = Sequential()
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dense(128, activation='relu', trainable=True))
model.add(Dropout(0.30))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.25))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.35))
model.add(Dense(1, activation='sigmoid'))
# compile network
model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[f1])
# fit network
model.fit(X_train, y_train, epochs=100, batch_size=64)
loss, f_1 = model.evaluate(X_val, y_val, verbose=1)
print('\nTest F1: %f' % (f_1 * 100))
f1_results.append(f_1)
model = None
print("###########################################")
print("Results using embeddings from the", layer_json, "file")
# evaluate
print(np.mean(f1_results))
print("###########################################")
def parameter_tuning_LR(sentences_list,layer_json,dataset_csv):
'''
:param sentences_list: the path o the sentences.txt
:param layer_json: the path of the json file that contains the embeddings of the sentences
:param dataset_csv: the path of the dataset
:return:
'''
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list,layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = np.asarray(label)
print(errors)
features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1)
features = np.column_stack([features, length])
print(features.shape)
X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42)
C = [0.1,1,2,5,10]
solver = ['newton-cg','saga','sag']
best_params = dict()
best_score = 0.0
for c in C:
for s in solver:
start = time.time()
log = LogisticRegression(random_state=0, solver=s, max_iter=1000, C=c)
log.fit(X_train, y_train)
predictions = log.predict(X_val)
print("###########################################")
print("LR with C =",c,'and solver = ',s)
print("Results using embeddings from the", layer_json, "file")
print(classification_report(y_val, predictions))
f1 = f1_score(y_val, predictions)
if f1 > best_score:
best_score = f1
best_params['c'] = c
best_params['solver'] = s
print("F1 score using Logistic Regression:",f1)
print("###########################################")
end = time.time()
running_time = end - start
print("Running time:"+str(running_time))
def visualize_DNN(file_to_save):
'''
Save the DNN architecture to a png file. Better use the Visulize_DNN.ipynd
:param file_to_save: the png file that the architecture of the DNN will be saved.
:return: None
'''
model = Sequential()
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dense(128, activation='relu', trainable=True))
model.add(Dropout(0.30))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.25))
model.add(Dense(64, activation='relu', trainable=True))
model.add(Dropout(0.35))
model.add(Dense(1, activation='sigmoid'))
plot_model(model, to_file=file_to_save, show_shapes=True)
def save_model(sentences_list,layer_json,dataset_csv,pkl):
dataset = pd.read_csv(dataset_csv)
bert_dict = get_embeddings(sentences_list, layer_json)
length = list()
sentence_emb = list()
previous_emb = list()
next_list = list()
section_list = list()
label = list()
errors = 0
for row in dataset.iterrows():
sentence = row[1][0].strip()
previous = row[1][1].strip()
nexts = row[1][2].strip()
section = row[1][3].strip()
if sentence in bert_dict:
sentence_emb.append(bert_dict[sentence])
else:
sentence_emb.append(np.zeros(768))
print(sentence)
errors += 1
if previous in bert_dict:
previous_emb.append(bert_dict[previous])
else:
previous_emb.append(np.zeros(768))
if nexts in bert_dict:
next_list.append(bert_dict[nexts])
else:
next_list.append(np.zeros(768))
if section in bert_dict:
section_list.append(bert_dict[section])
else:
section_list.append(np.zeros(768))
length.append(row[1][4])
label.append(row[1][5])
sentence_emb = np.asarray(sentence_emb)
print(sentence_emb.shape)
next_emb = np.asarray(next_list)
print(next_emb.shape)
previous_emb = np.asarray(previous_emb)
print(previous_emb.shape)
section_emb = np.asarray(section_list)
print(sentence_emb.shape)
length = np.asarray(length)
print(length.shape)
label = np.asarray(label)
print(errors)
features = | np.concatenate([sentence_emb, previous_emb, next_emb, section_emb], axis=1) | numpy.concatenate |
import numpy as np
from stumpff import C, S
from CelestialBody import BODIES
from numerical import newton, laguerre
from lagrange import calc_f, calc_fd, calc_g, calc_gd
def kepler_chi(chi, alpha, r0, vr0, mu, dt):
''' Kepler's Equation of the universal anomaly, modified
for use in numerical solvers. '''
z = alpha*chi**2
return (r0*vr0/np.sqrt(mu))*chi**2*C(z) + \
(1 - alpha*r0)*chi**3*S(z) + \
r0*chi - np.sqrt(mu)*dt
def dkepler_dchi(chi, alpha, r0, vr0, mu, dt):
''' Derivative of Kepler's Equation of the universal anomaly,
modified for use in numerical solvers. '''
z = alpha*chi**2
return (r0*vr0/np.sqrt(mu))*chi*(1 - alpha*chi**2*S(z)) + \
(1 - alpha*r0)*chi**2*C(z) + r0
def d2kepler_dchi2(chi, alpha, r0, vr0, mu, dt):
''' Second derivative of Kepler's Equation of the universal
anomaly, modified for use in numerical solvers. '''
z = alpha*chi**2
S_ = S(z)
return (r0*vr0/np.sqrt(mu))*(1 - 3*z*S_ + z*(C(z) - 3*S_)) + \
chi*(1 - z*S_)*(1 - alpha*r0)
def solve_kepler_chi(r_0, v_0, dt, body=BODIES['Earth'], method='laguerre', tol=1e-7, max_iters=100):
''' Solve Kepler's Equation of the universal anomaly chi using the specified
numerical method. Applies Algorithm 3.4 from Orbital Mechanics for Engineering
Students, 4 ed, Curtis.
:param r_0: `iterable` (km) initial position 3-vector
:param v_0: `iterable` (km/s) initial velocity 3-vector
:param dt: `float` (s) time after initial state to solve for r, v as 3-vectors
:param body: `CelestialBody` (--) the celestial body to use for orbital parameters
:param method: `str` (--) which numerical method to use to solve Kepler's Equation
:param tol: `float` (--) decimal tolerance for numerical method (default 1e-7 is IEEE 745 single precision)
:param max_iters: `int` (--) maximum number of iterations in numerical method before breaking
:return: (km) final position 3-vector, (km/s) final velocity 3-vector
'''
VALID_METHODS = ('laguerre', 'newton')
mu = body.mu # (km**3/s**2) gravitational parameter of the specified primary body
r0 = np.linalg.norm(r_0) # (km) initial position magnitude
v0 = np.linalg.norm(v_0) # (km/s) initial velocity magnitude
vr0 = np.dot(v_0, r_0)/r0 # (km/s) initial radial velocity magnitude
alpha = 2/r0 - v0**2/mu # (1/km) inverse of semi-major axis
chi0 = | np.sqrt(mu) | numpy.sqrt |
# coding: utf-8
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Test the Logarithmic Units and Quantities
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
from ...extern import six
from ...extern.six.moves import zip
import pickle
import itertools
import pytest
import numpy as np
from numpy.testing.utils import assert_allclose
from ...tests.helper import assert_quantity_allclose
from ... import units as u, constants as c
lu_units = [u.dex, u.mag, u.decibel]
lu_subclasses = [u.DexUnit, u.MagUnit, u.DecibelUnit]
lq_subclasses = [u.Dex, u.Magnitude, u.Decibel]
pu_sample = (u.dimensionless_unscaled, u.m, u.g/u.s**2, u.Jy)
class TestLogUnitCreation(object):
def test_logarithmic_units(self):
"""Check logarithmic units are set up correctly."""
assert u.dB.to(u.dex) == 0.1
assert u.dex.to(u.mag) == -2.5
assert u.mag.to(u.dB) == -4
@pytest.mark.parametrize('lu_unit, lu_cls', zip(lu_units, lu_subclasses))
def test_callable_units(self, lu_unit, lu_cls):
assert isinstance(lu_unit, u.UnitBase)
assert callable(lu_unit)
assert lu_unit._function_unit_class is lu_cls
@pytest.mark.parametrize('lu_unit', lu_units)
def test_equality_to_normal_unit_for_dimensionless(self, lu_unit):
lu = lu_unit()
assert lu == lu._default_function_unit # eg, MagUnit() == u.mag
assert lu._default_function_unit == lu # and u.mag == MagUnit()
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_call_units(self, lu_unit, physical_unit):
"""Create a LogUnit subclass using the callable unit and physical unit,
and do basic check that output is right."""
lu1 = lu_unit(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
def test_call_invalid_unit(self):
with pytest.raises(TypeError):
u.mag([])
with pytest.raises(ValueError):
u.mag(u.mag())
@pytest.mark.parametrize('lu_cls, physical_unit', itertools.product(
lu_subclasses + [u.LogUnit], pu_sample))
def test_subclass_creation(self, lu_cls, physical_unit):
"""Create a LogUnit subclass object for given physical unit,
and do basic check that output is right."""
lu1 = lu_cls(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
lu2 = lu_cls(physical_unit,
function_unit=2*lu1._default_function_unit)
assert lu2.physical_unit == physical_unit
assert lu2.function_unit == u.Unit(2*lu2._default_function_unit)
with pytest.raises(ValueError):
lu_cls(physical_unit, u.m)
def test_predefined_magnitudes():
assert_quantity_allclose((-21.1*u.STmag).physical,
1.*u.erg/u.cm**2/u.s/u.AA)
assert_quantity_allclose((-48.6*u.ABmag).physical,
1.*u.erg/u.cm**2/u.s/u.Hz)
assert_quantity_allclose((0*u.M_bol).physical, c.L_bol0)
assert_quantity_allclose((0*u.m_bol).physical,
c.L_bol0/(4.*np.pi*(10.*c.pc)**2))
def test_predefined_reinitialisation():
assert u.mag('ST') == u.STmag
assert u.mag('AB') == u.ABmag
assert u.mag('Bol') == u.M_bol
assert u.mag('bol') == u.m_bol
def test_predefined_string_roundtrip():
"""Ensure roundtripping; see #5015"""
with u.magnitude_zero_points.enable():
assert u.Unit(u.STmag.to_string()) == u.STmag
assert u.Unit(u.ABmag.to_string()) == u.ABmag
assert u.Unit(u.M_bol.to_string()) == u.M_bol
assert u.Unit(u.m_bol.to_string()) == u.m_bol
def test_inequality():
"""Check __ne__ works (regresssion for #5342)."""
lu1 = u.mag(u.Jy)
lu2 = u.dex(u.Jy)
lu3 = u.mag(u.Jy**2)
lu4 = lu3 - lu1
assert lu1 != lu2
assert lu1 != lu3
assert lu1 == lu4
class TestLogUnitStrings(object):
def test_str(self):
"""Do some spot checks that str, repr, etc. work as expected."""
lu1 = u.mag(u.Jy)
assert str(lu1) == 'mag(Jy)'
assert repr(lu1) == 'Unit("mag(Jy)")'
assert lu1.to_string('generic') == 'mag(Jy)'
with pytest.raises(ValueError):
lu1.to_string('fits')
lu2 = u.dex()
assert str(lu2) == 'dex'
assert repr(lu2) == 'Unit("dex(1)")'
assert lu2.to_string() == 'dex(1)'
lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag)
assert str(lu3) == '2 mag(Jy)'
assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
assert lu3.to_string() == '2 mag(Jy)'
lu4 = u.mag(u.ct)
assert lu4.to_string('generic') == 'mag(ct)'
assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
'\\mathrm{ct} \\right)}$')
assert lu4._repr_latex_() == lu4.to_string('latex')
class TestLogUnitConversion(object):
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_physical_unit_conversion(self, lu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to their non-log counterparts."""
lu1 = lu_unit(physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(physical_unit, 0.) == 1.
assert physical_unit.is_equivalent(lu1)
assert physical_unit.to(lu1, 1.) == 0.
pu = u.Unit(8.*physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(pu, 0.) == 0.125
assert pu.is_equivalent(lu1)
assert_allclose(pu.to(lu1, 0.125), 0., atol=1.e-15)
# Check we round-trip.
value = np.linspace(0., 10., 6)
assert_allclose(pu.to(lu1, lu1.to(pu, value)), value, atol=1.e-15)
# And that we're not just returning True all the time.
pu2 = u.g
assert not lu1.is_equivalent(pu2)
with pytest.raises(u.UnitsError):
lu1.to(pu2)
assert not pu2.is_equivalent(lu1)
with pytest.raises(u.UnitsError):
pu2.to(lu1)
@pytest.mark.parametrize('lu_unit', lu_units)
def test_container_unit_conversion(self, lu_unit):
"""Check that conversion to logarithmic units (u.mag, u.dB, u.dex)
is only possible when the physical unit is dimensionless."""
values = np.linspace(0., 10., 6)
lu1 = lu_unit(u.dimensionless_unscaled)
assert lu1.is_equivalent(lu1.function_unit)
assert_allclose(lu1.to(lu1.function_unit, values), values)
lu2 = lu_unit(u.Jy)
assert not lu2.is_equivalent(lu2.function_unit)
with pytest.raises(u.UnitsError):
lu2.to(lu2.function_unit, values)
@pytest.mark.parametrize(
'flu_unit, tlu_unit, physical_unit',
itertools.product(lu_units, lu_units, pu_sample))
def test_subclass_conversion(self, flu_unit, tlu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to each other if they correspond to equivalent physical units."""
values = np.linspace(0., 10., 6)
flu = flu_unit(physical_unit)
tlu = tlu_unit(physical_unit)
assert flu.is_equivalent(tlu)
assert_allclose(flu.to(tlu), flu.function_unit.to(tlu.function_unit))
assert_allclose(flu.to(tlu, values),
values * flu.function_unit.to(tlu.function_unit))
tlu2 = tlu_unit(u.Unit(100.*physical_unit))
assert flu.is_equivalent(tlu2)
# Check that we round-trip.
assert_allclose(flu.to(tlu2, tlu2.to(flu, values)), values, atol=1.e-15)
tlu3 = tlu_unit(physical_unit.to_system(u.si)[0])
assert flu.is_equivalent(tlu3)
assert_allclose(flu.to(tlu3, tlu3.to(flu, values)), values, atol=1.e-15)
tlu4 = tlu_unit(u.g)
assert not flu.is_equivalent(tlu4)
with pytest.raises(u.UnitsError):
flu.to(tlu4, values)
def test_unit_decomposition(self):
lu = u.mag(u.Jy)
assert lu.decompose() == u.mag(u.Jy.decompose())
assert lu.decompose().physical_unit.bases == [u.kg, u.s]
assert lu.si == u.mag(u.Jy.si)
assert lu.si.physical_unit.bases == [u.kg, u.s]
assert lu.cgs == u.mag(u.Jy.cgs)
assert lu.cgs.physical_unit.bases == [u.g, u.s]
def test_unit_multiple_possible_equivalencies(self):
lu = u.mag(u.Jy)
assert lu.is_equivalent(pu_sample)
class TestLogUnitArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other units is only
possible when the physical unit is dimensionless, and that this
turns the unit into a normal one."""
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 * u.m
with pytest.raises(u.UnitsError):
u.m * lu1
with pytest.raises(u.UnitsError):
lu1 / lu1
for unit in (u.dimensionless_unscaled, u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lu1 / unit
lu2 = u.mag(u.dimensionless_unscaled)
with pytest.raises(u.UnitsError):
lu2 * lu1
with pytest.raises(u.UnitsError):
lu2 / lu1
# But dimensionless_unscaled can be cancelled.
assert lu2 / lu2 == u.dimensionless_unscaled
# With dimensionless, normal units are OK, but we return a plain unit.
tf = lu2 * u.m
tr = u.m * lu2
for t in (tf, tr):
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lu2.physical_unit)
# Now we essentially have a LogUnit with a prefactor of 100,
# so should be equivalent again.
t = tf / u.cm
with u.set_enabled_equivalencies(u.logarithmic()):
assert t.is_equivalent(lu2.function_unit)
assert_allclose(t.to(u.dimensionless_unscaled, | np.arange(3.) | numpy.arange |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + np.cos(4 * time) + np.cos(8 * time)
noise = np.random.normal(0, 1, len(time_series))
time_series += noise
advemdpy = EMD(time=time, time_series=time_series)
imfs_51, hts_51, ifs_51 = advemdpy.empirical_mode_decomposition(knots=knots_51, max_imfs=3,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_31 = np.linspace(0, 5 * np.pi, 31)
imfs_31, hts_31, ifs_31 = advemdpy.empirical_mode_decomposition(knots=knots_31, max_imfs=2,
edge_effect='symmetric_anchor', verbose=False)[:3]
knots_11 = np.linspace(0, 5 * np.pi, 11)
imfs_11, hts_11, ifs_11 = advemdpy.empirical_mode_decomposition(knots=knots_11, max_imfs=1,
edge_effect='symmetric_anchor', verbose=False)[:3]
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
print(f'DFA fluctuation with 51 knots: {np.round(np.var(time_series - (imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :])), 3)}')
for knot in knots_51:
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[0].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[0].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[0].set_xticklabels(['', '', '', '', '', ''])
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[0].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[0].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[0].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(time, time_series, label='Time series')
axs[1].plot(time, imfs_31[1, :] + imfs_31[2, :], label=textwrap.fill('Sum of IMF 1 and IMF 2 with 31 knots', 19))
axs[1].plot(time, imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 2 and IMF 3 with 51 knots', 19))
print(f'DFA fluctuation with 31 knots: {np.round(np.var(time_series - (imfs_31[1, :] + imfs_31[2, :])), 3)}')
for knot in knots_31:
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[1].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[1].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[1].set_xticklabels(['', '', '', '', '', ''])
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[1].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[1].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[1].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
axs[2].plot(time, time_series, label='Time series')
axs[2].plot(time, imfs_11[1, :], label='IMF 1 with 11 knots')
axs[2].plot(time, imfs_31[2, :], label='IMF 2 with 31 knots')
axs[2].plot(time, imfs_51[3, :], label='IMF 3 with 51 knots')
print(f'DFA fluctuation with 11 knots: {np.round(np.var(time_series - imfs_51[3, :]), 3)}')
for knot in knots_11:
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1)
axs[2].plot(knot * np.ones(101), np.linspace(-5, 5, 101), '--', c='grey', zorder=1, label='Knots')
axs[2].set_xticks([0, np.pi, 2 * np.pi, 3 * np.pi, 4 * np.pi, 5 * np.pi])
axs[2].set_xticklabels(['$0$', r'$\pi$', r'$2\pi$', r'$3\pi$', r'$4\pi$', r'$5\pi$'])
box_2 = axs[2].get_position()
axs[2].set_position([box_2.x0 - 0.05, box_2.y0, box_2.width * 0.85, box_2.height])
axs[2].legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=8)
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), 5.5 * np.ones(101), 'k--')
axs[2].plot(np.linspace(0.95 * np.pi, 1.55 * np.pi, 101), -5.5 * np.ones(101), 'k--')
axs[2].plot(0.95 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--')
axs[2].plot(1.55 * np.pi * np.ones(101), np.linspace(-5.5, 5.5, 101), 'k--', label='Zoomed region')
plt.savefig('jss_figures/DFA_different_trends.png')
plt.show()
# plot 6b
fig, axs = plt.subplots(3, 1)
plt.suptitle(textwrap.fill('Comparison of Trends Extracted with Different Knot Sequences Zoomed Region', 40))
plt.subplots_adjust(hspace=0.1)
axs[0].plot(time, time_series, label='Time series')
axs[0].plot(time, imfs_51[1, :] + imfs_51[2, :] + imfs_51[3, :], label=textwrap.fill('Sum of IMF 1, IMF 2, & IMF 3 with 51 knots', 21))
for knot in knots_51:
axs[0].plot(knot * | np.ones(101) | numpy.ones |
# coding: utf-8
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Test the Logarithmic Units and Quantities
"""
from __future__ import (absolute_import, unicode_literals, division,
print_function)
from ...extern import six
from ...extern.six.moves import zip
import pickle
import itertools
import pytest
import numpy as np
from numpy.testing.utils import assert_allclose
from ...tests.helper import assert_quantity_allclose
from ... import units as u, constants as c
lu_units = [u.dex, u.mag, u.decibel]
lu_subclasses = [u.DexUnit, u.MagUnit, u.DecibelUnit]
lq_subclasses = [u.Dex, u.Magnitude, u.Decibel]
pu_sample = (u.dimensionless_unscaled, u.m, u.g/u.s**2, u.Jy)
class TestLogUnitCreation(object):
def test_logarithmic_units(self):
"""Check logarithmic units are set up correctly."""
assert u.dB.to(u.dex) == 0.1
assert u.dex.to(u.mag) == -2.5
assert u.mag.to(u.dB) == -4
@pytest.mark.parametrize('lu_unit, lu_cls', zip(lu_units, lu_subclasses))
def test_callable_units(self, lu_unit, lu_cls):
assert isinstance(lu_unit, u.UnitBase)
assert callable(lu_unit)
assert lu_unit._function_unit_class is lu_cls
@pytest.mark.parametrize('lu_unit', lu_units)
def test_equality_to_normal_unit_for_dimensionless(self, lu_unit):
lu = lu_unit()
assert lu == lu._default_function_unit # eg, MagUnit() == u.mag
assert lu._default_function_unit == lu # and u.mag == MagUnit()
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_call_units(self, lu_unit, physical_unit):
"""Create a LogUnit subclass using the callable unit and physical unit,
and do basic check that output is right."""
lu1 = lu_unit(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
def test_call_invalid_unit(self):
with pytest.raises(TypeError):
u.mag([])
with pytest.raises(ValueError):
u.mag(u.mag())
@pytest.mark.parametrize('lu_cls, physical_unit', itertools.product(
lu_subclasses + [u.LogUnit], pu_sample))
def test_subclass_creation(self, lu_cls, physical_unit):
"""Create a LogUnit subclass object for given physical unit,
and do basic check that output is right."""
lu1 = lu_cls(physical_unit)
assert lu1.physical_unit == physical_unit
assert lu1.function_unit == lu1._default_function_unit
lu2 = lu_cls(physical_unit,
function_unit=2*lu1._default_function_unit)
assert lu2.physical_unit == physical_unit
assert lu2.function_unit == u.Unit(2*lu2._default_function_unit)
with pytest.raises(ValueError):
lu_cls(physical_unit, u.m)
def test_predefined_magnitudes():
assert_quantity_allclose((-21.1*u.STmag).physical,
1.*u.erg/u.cm**2/u.s/u.AA)
assert_quantity_allclose((-48.6*u.ABmag).physical,
1.*u.erg/u.cm**2/u.s/u.Hz)
assert_quantity_allclose((0*u.M_bol).physical, c.L_bol0)
assert_quantity_allclose((0*u.m_bol).physical,
c.L_bol0/(4.*np.pi*(10.*c.pc)**2))
def test_predefined_reinitialisation():
assert u.mag('ST') == u.STmag
assert u.mag('AB') == u.ABmag
assert u.mag('Bol') == u.M_bol
assert u.mag('bol') == u.m_bol
def test_predefined_string_roundtrip():
"""Ensure roundtripping; see #5015"""
with u.magnitude_zero_points.enable():
assert u.Unit(u.STmag.to_string()) == u.STmag
assert u.Unit(u.ABmag.to_string()) == u.ABmag
assert u.Unit(u.M_bol.to_string()) == u.M_bol
assert u.Unit(u.m_bol.to_string()) == u.m_bol
def test_inequality():
"""Check __ne__ works (regresssion for #5342)."""
lu1 = u.mag(u.Jy)
lu2 = u.dex(u.Jy)
lu3 = u.mag(u.Jy**2)
lu4 = lu3 - lu1
assert lu1 != lu2
assert lu1 != lu3
assert lu1 == lu4
class TestLogUnitStrings(object):
def test_str(self):
"""Do some spot checks that str, repr, etc. work as expected."""
lu1 = u.mag(u.Jy)
assert str(lu1) == 'mag(Jy)'
assert repr(lu1) == 'Unit("mag(Jy)")'
assert lu1.to_string('generic') == 'mag(Jy)'
with pytest.raises(ValueError):
lu1.to_string('fits')
lu2 = u.dex()
assert str(lu2) == 'dex'
assert repr(lu2) == 'Unit("dex(1)")'
assert lu2.to_string() == 'dex(1)'
lu3 = u.MagUnit(u.Jy, function_unit=2*u.mag)
assert str(lu3) == '2 mag(Jy)'
assert repr(lu3) == 'MagUnit("Jy", unit="2 mag")'
assert lu3.to_string() == '2 mag(Jy)'
lu4 = u.mag(u.ct)
assert lu4.to_string('generic') == 'mag(ct)'
assert lu4.to_string('latex') == ('$\\mathrm{mag}$$\\mathrm{\\left( '
'\\mathrm{ct} \\right)}$')
assert lu4._repr_latex_() == lu4.to_string('latex')
class TestLogUnitConversion(object):
@pytest.mark.parametrize('lu_unit, physical_unit',
itertools.product(lu_units, pu_sample))
def test_physical_unit_conversion(self, lu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to their non-log counterparts."""
lu1 = lu_unit(physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(physical_unit, 0.) == 1.
assert physical_unit.is_equivalent(lu1)
assert physical_unit.to(lu1, 1.) == 0.
pu = u.Unit(8.*physical_unit)
assert lu1.is_equivalent(physical_unit)
assert lu1.to(pu, 0.) == 0.125
assert pu.is_equivalent(lu1)
assert_allclose(pu.to(lu1, 0.125), 0., atol=1.e-15)
# Check we round-trip.
value = np.linspace(0., 10., 6)
assert_allclose(pu.to(lu1, lu1.to(pu, value)), value, atol=1.e-15)
# And that we're not just returning True all the time.
pu2 = u.g
assert not lu1.is_equivalent(pu2)
with pytest.raises(u.UnitsError):
lu1.to(pu2)
assert not pu2.is_equivalent(lu1)
with pytest.raises(u.UnitsError):
pu2.to(lu1)
@pytest.mark.parametrize('lu_unit', lu_units)
def test_container_unit_conversion(self, lu_unit):
"""Check that conversion to logarithmic units (u.mag, u.dB, u.dex)
is only possible when the physical unit is dimensionless."""
values = np.linspace(0., 10., 6)
lu1 = lu_unit(u.dimensionless_unscaled)
assert lu1.is_equivalent(lu1.function_unit)
assert_allclose(lu1.to(lu1.function_unit, values), values)
lu2 = lu_unit(u.Jy)
assert not lu2.is_equivalent(lu2.function_unit)
with pytest.raises(u.UnitsError):
lu2.to(lu2.function_unit, values)
@pytest.mark.parametrize(
'flu_unit, tlu_unit, physical_unit',
itertools.product(lu_units, lu_units, pu_sample))
def test_subclass_conversion(self, flu_unit, tlu_unit, physical_unit):
"""Check various LogUnit subclasses are equivalent and convertible
to each other if they correspond to equivalent physical units."""
values = np.linspace(0., 10., 6)
flu = flu_unit(physical_unit)
tlu = tlu_unit(physical_unit)
assert flu.is_equivalent(tlu)
assert_allclose(flu.to(tlu), flu.function_unit.to(tlu.function_unit))
assert_allclose(flu.to(tlu, values),
values * flu.function_unit.to(tlu.function_unit))
tlu2 = tlu_unit(u.Unit(100.*physical_unit))
assert flu.is_equivalent(tlu2)
# Check that we round-trip.
assert_allclose(flu.to(tlu2, tlu2.to(flu, values)), values, atol=1.e-15)
tlu3 = tlu_unit(physical_unit.to_system(u.si)[0])
assert flu.is_equivalent(tlu3)
assert_allclose(flu.to(tlu3, tlu3.to(flu, values)), values, atol=1.e-15)
tlu4 = tlu_unit(u.g)
assert not flu.is_equivalent(tlu4)
with pytest.raises(u.UnitsError):
flu.to(tlu4, values)
def test_unit_decomposition(self):
lu = u.mag(u.Jy)
assert lu.decompose() == u.mag(u.Jy.decompose())
assert lu.decompose().physical_unit.bases == [u.kg, u.s]
assert lu.si == u.mag(u.Jy.si)
assert lu.si.physical_unit.bases == [u.kg, u.s]
assert lu.cgs == u.mag(u.Jy.cgs)
assert lu.cgs.physical_unit.bases == [u.g, u.s]
def test_unit_multiple_possible_equivalencies(self):
lu = u.mag(u.Jy)
assert lu.is_equivalent(pu_sample)
class TestLogUnitArithmetic(object):
def test_multiplication_division(self):
"""Check that multiplication/division with other units is only
possible when the physical unit is dimensionless, and that this
turns the unit into a normal one."""
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 * u.m
with pytest.raises(u.UnitsError):
u.m * lu1
with pytest.raises(u.UnitsError):
lu1 / lu1
for unit in (u.dimensionless_unscaled, u.m, u.mag, u.dex):
with pytest.raises(u.UnitsError):
lu1 / unit
lu2 = u.mag(u.dimensionless_unscaled)
with pytest.raises(u.UnitsError):
lu2 * lu1
with pytest.raises(u.UnitsError):
lu2 / lu1
# But dimensionless_unscaled can be cancelled.
assert lu2 / lu2 == u.dimensionless_unscaled
# With dimensionless, normal units are OK, but we return a plain unit.
tf = lu2 * u.m
tr = u.m * lu2
for t in (tf, tr):
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit * u.m
with u.set_enabled_equivalencies(u.logarithmic()):
with pytest.raises(u.UnitsError):
t.to(lu2.physical_unit)
# Now we essentially have a LogUnit with a prefactor of 100,
# so should be equivalent again.
t = tf / u.cm
with u.set_enabled_equivalencies(u.logarithmic()):
assert t.is_equivalent(lu2.function_unit)
assert_allclose(t.to(u.dimensionless_unscaled, np.arange(3.)/100.),
lu2.to(lu2.physical_unit, np.arange(3.)))
# If we effectively remove lu1, a normal unit should be returned.
t2 = tf / lu2
assert not isinstance(t2, type(lu2))
assert t2 == u.m
t3 = tf / lu2.function_unit
assert not isinstance(t3, type(lu2))
assert t3 == u.m
# For completeness, also ensure non-sensical operations fail
with pytest.raises(TypeError):
lu1 * object()
with pytest.raises(TypeError):
slice(None) * lu1
with pytest.raises(TypeError):
lu1 / []
with pytest.raises(TypeError):
1 / lu1
@pytest.mark.parametrize('power', (2, 0.5, 1, 0))
def test_raise_to_power(self, power):
"""Check that raising LogUnits to some power is only possible when the
physical unit is dimensionless, and that conversion is turned off when
the resulting logarithmic unit (such as mag**2) is incompatible."""
lu1 = u.mag(u.Jy)
if power == 0:
assert lu1 ** power == u.dimensionless_unscaled
elif power == 1:
assert lu1 ** power == lu1
else:
with pytest.raises(u.UnitsError):
lu1 ** power
# With dimensionless, though, it works, but returns a normal unit.
lu2 = u.mag(u.dimensionless_unscaled)
t = lu2**power
if power == 0:
assert t == u.dimensionless_unscaled
elif power == 1:
assert t == lu2
else:
assert not isinstance(t, type(lu2))
assert t == lu2.function_unit**power
# also check we roundtrip
t2 = t**(1./power)
assert t2 == lu2.function_unit
with u.set_enabled_equivalencies(u.logarithmic()):
assert_allclose(t2.to(u.dimensionless_unscaled, np.arange(3.)),
lu2.to(lu2.physical_unit, np.arange(3.)))
@pytest.mark.parametrize('other', pu_sample)
def test_addition_subtraction_to_normal_units_fails(self, other):
lu1 = u.mag(u.Jy)
with pytest.raises(u.UnitsError):
lu1 + other
with pytest.raises(u.UnitsError):
lu1 - other
with pytest.raises(u.UnitsError):
other - lu1
def test_addition_subtraction_to_non_units_fails(self):
lu1 = u.mag(u.Jy)
with pytest.raises(TypeError):
lu1 + 1.
with pytest.raises(TypeError):
lu1 - [1., 2., 3.]
@pytest.mark.parametrize(
'other', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag)))
def test_addition_subtraction(self, other):
"""Check physical units are changed appropriately"""
lu1 = u.mag(u.Jy)
other_pu = getattr(other, 'physical_unit', u.dimensionless_unscaled)
lu_sf = lu1 + other
assert lu_sf.is_equivalent(lu1.physical_unit * other_pu)
lu_sr = other + lu1
assert lu_sr.is_equivalent(lu1.physical_unit * other_pu)
lu_df = lu1 - other
assert lu_df.is_equivalent(lu1.physical_unit / other_pu)
lu_dr = other - lu1
assert lu_dr.is_equivalent(other_pu / lu1.physical_unit)
def test_complicated_addition_subtraction(self):
"""for fun, a more complicated example of addition and subtraction"""
dm0 = u.Unit('DM', 1./(4.*np.pi*(10.*u.pc)**2))
lu_dm = u.mag(dm0)
lu_absST = u.STmag - lu_dm
assert lu_absST.is_equivalent(u.erg/u.s/u.AA)
def test_neg_pos(self):
lu1 = u.mag(u.Jy)
neg_lu = -lu1
assert neg_lu != lu1
assert neg_lu.physical_unit == u.Jy**-1
assert -neg_lu == lu1
pos_lu = +lu1
assert pos_lu is not lu1
assert pos_lu == lu1
def test_pickle():
lu1 = u.dex(u.cm/u.s**2)
s = pickle.dumps(lu1)
lu2 = pickle.loads(s)
assert lu1 == lu2
def test_hashable():
lu1 = u.dB(u.mW)
lu2 = u.dB(u.m)
lu3 = u.dB(u.mW)
assert hash(lu1) != hash(lu2)
assert hash(lu1) == hash(lu3)
luset = {lu1, lu2, lu3}
assert len(luset) == 2
class TestLogQuantityCreation(object):
@pytest.mark.parametrize('lq, lu', zip(lq_subclasses + [u.LogQuantity],
lu_subclasses + [u.LogUnit]))
def test_logarithmic_quantities(self, lq, lu):
"""Check logarithmic quantities are all set up correctly"""
assert lq._unit_class == lu
assert type(lu()._quantity_class(1.)) is lq
@pytest.mark.parametrize('lq_cls, physical_unit',
itertools.product(lq_subclasses, pu_sample))
def test_subclass_creation(self, lq_cls, physical_unit):
"""Create LogQuantity subclass objects for some physical units,
and basic check on transformations"""
value = np.arange(1., 10.)
log_q = lq_cls(value * physical_unit)
assert log_q.unit.physical_unit == physical_unit
assert log_q.unit.function_unit == log_q.unit._default_function_unit
assert_allclose(log_q.physical.value, value)
with pytest.raises(ValueError):
lq_cls(value, physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag, u.mag(), u.mag(u.Jy), u.mag(u.m),
u.Unit(2*u.mag), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_different_units(self, unit):
q = u.Magnitude(1.23, unit)
assert q.unit.function_unit == getattr(unit, 'function_unit', unit)
assert q.unit.physical_unit is getattr(unit, 'physical_unit',
u.dimensionless_unscaled)
@pytest.mark.parametrize('value, unit', (
(1.*u.mag(u.Jy), None),
(1.*u.dex(u.Jy), None),
(1.*u.mag(u.W/u.m**2/u.Hz), u.mag(u.Jy)),
(1.*u.dex(u.W/u.m**2/u.Hz), u.mag(u.Jy))))
def test_function_values(self, value, unit):
lq = u.Magnitude(value, unit)
assert lq == value
assert lq.unit.function_unit == u.mag
assert lq.unit.physical_unit == getattr(unit, 'physical_unit',
value.unit.physical_unit)
@pytest.mark.parametrize(
'unit', (u.mag(), u.mag(u.Jy), u.mag(u.m), u.MagUnit('', 2.*u.mag),
u.MagUnit(u.Jy, -1*u.mag), u.MagUnit(u.m, -2.*u.mag)))
def test_indirect_creation(self, unit):
q1 = 2.5 * unit
assert isinstance(q1, u.Magnitude)
assert q1.value == 2.5
assert q1.unit == unit
pv = 100. * unit.physical_unit
q2 = unit * pv
assert q2.unit == unit
assert q2.unit.physical_unit == pv.unit
assert q2.to_value(unit.physical_unit) == 100.
assert (q2._function_view / u.mag).to_value(1) == -5.
q3 = unit / 0.4
assert q3 == q1
def test_from_view(self):
# Cannot view a physical quantity as a function quantity, since the
# values would change.
q = [100., 1000.] * u.cm/u.s**2
with pytest.raises(TypeError):
q.view(u.Dex)
# But fine if we have the right magnitude.
q = [2., 3.] * u.dex
lq = q.view(u.Dex)
assert isinstance(lq, u.Dex)
assert lq.unit.physical_unit == u.dimensionless_unscaled
assert np.all(q == lq)
def test_using_quantity_class(self):
"""Check that we can use Quantity if we have subok=True"""
# following issue #5851
lu = u.dex(u.AA)
with pytest.raises(u.UnitTypeError):
u.Quantity(1., lu)
q = u.Quantity(1., lu, subok=True)
assert type(q) is lu._quantity_class
def test_conversion_to_and_from_physical_quantities():
"""Ensures we can convert from regular quantities."""
mst = [10., 12., 14.] * u.STmag
flux_lambda = mst.physical
mst_roundtrip = flux_lambda.to(u.STmag)
# check we return a logquantity; see #5178.
assert isinstance(mst_roundtrip, u.Magnitude)
assert mst_roundtrip.unit == mst.unit
assert_allclose(mst_roundtrip.value, mst.value)
wave = [4956.8, 4959.55, 4962.3] * u.AA
flux_nu = mst.to(u.Jy, equivalencies=u.spectral_density(wave))
mst_roundtrip2 = flux_nu.to(u.STmag, u.spectral_density(wave))
assert isinstance(mst_roundtrip2, u.Magnitude)
assert mst_roundtrip2.unit == mst.unit
assert_allclose(mst_roundtrip2.value, mst.value)
def test_quantity_decomposition():
lq = 10.*u.mag(u.Jy)
assert lq.decompose() == lq
assert lq.decompose().unit.physical_unit.bases == [u.kg, u.s]
assert lq.si == lq
assert lq.si.unit.physical_unit.bases == [u.kg, u.s]
assert lq.cgs == lq
assert lq.cgs.unit.physical_unit.bases == [u.g, u.s]
class TestLogQuantityViews(object):
def setup(self):
self.lq = u.Magnitude(np.arange(10.) * u.Jy)
self.lq2 = u.Magnitude(np.arange(5.))
def test_value_view(self):
lq_value = self.lq.value
assert type(lq_value) is np.ndarray
lq_value[2] = -1.
assert np.all(self.lq.value == lq_value)
def test_function_view(self):
lq_fv = self.lq._function_view
assert type(lq_fv) is u.Quantity
assert lq_fv.unit is self.lq.unit.function_unit
lq_fv[3] = -2. * lq_fv.unit
assert | np.all(self.lq.value == lq_fv.value) | numpy.all |
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
@ignore_warnings
def test_grid_search_no_score():
# Test grid-search on classifier that has no score function.
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
clf_no_score = LinearSVCNoScore(random_state=0)
grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
grid_search.fit(X, y)
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
scoring='accuracy')
# smoketest grid search
grid_search_no_score.fit(X, y)
# check that best params are equal
assert grid_search_no_score.best_params_ == grid_search.best_params_
# check that we can call score and that it gives the correct result
assert grid_search.score(X, y) == grid_search_no_score.score(X, y)
# giving no scoring function raises an error
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
[[1]])
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc'
).fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert score_auc < 1.0
assert score_accuracy < 1.0
assert score_auc != score_accuracy
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
def test_grid_search_groups():
# Check if ValueError (when groups is None) propagates to GridSearchCV
# And also check if groups is correctly passed to the cv object
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 3, 15)
clf = LinearSVC(random_state=0)
grid = {'C': [1]}
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2),
GroupKFold(n_splits=3), GroupShuffleSplit()]
for cv in group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
gs.fit, X, y)
gs.fit(X, y, groups=groups)
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
for cv in non_group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
# Should not raise an error
gs.fit(X, y)
def test_classes__property():
# Test that classes_ property matches best_estimator_.classes_
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
Cs = [.1, 1, 10]
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
grid_search.fit(X, y)
assert_array_equal(grid_search.best_estimator_.classes_,
grid_search.classes_)
# Test that regressors do not have a classes_ attribute
grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute before it's fit
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute without a refit
grid_search = GridSearchCV(LinearSVC(random_state=0),
{'C': Cs}, refit=False)
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
def test_trivial_cv_results_attr():
# Test search over a "grid" with only one point.
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1]}, cv=3)
grid_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1, cv=3)
random_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
def test_no_refit():
# Test that GSCV can be used for model selection alone without refitting
clf = MockClassifier()
for scoring in [None, ['accuracy', 'precision']]:
grid_search = GridSearchCV(
clf, {'foo_param': [1, 2, 3]}, refit=False, cv=3
)
grid_search.fit(X, y)
assert not hasattr(grid_search, "best_estimator_") and \
hasattr(grid_search, "best_index_") and \
hasattr(grid_search, "best_params_")
# Make sure the functions predict/transform etc raise meaningful
# error messages
for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
'transform', 'inverse_transform'):
assert_raise_message(NotFittedError,
('refit=False. %s is available only after '
'refitting on the best parameters'
% fn_name), getattr(grid_search, fn_name), X)
# Test that an invalid refit param raises appropriate error messages
for refit in ["", 5, True, 'recall', 'accuracy']:
assert_raise_message(ValueError, "For multi-metric scoring, the "
"parameter refit must be set to a scorer key",
GridSearchCV(clf, {}, refit=refit,
scoring={'acc': 'accuracy',
'prec': 'precision'}
).fit,
X, y)
def test_grid_search_error():
# Test that grid search will capture errors on data with different length
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, X_[:180], y_)
def test_grid_search_one_grid_point():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
clf = SVC(gamma='auto')
cv = GridSearchCV(clf, param_dict)
cv.fit(X_, y_)
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
clf.fit(X_, y_)
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
def test_grid_search_when_param_grid_includes_range():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = None
grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}, cv=3)
grid_search.fit(X, y)
assert grid_search.best_estimator_.foo_param == 2
def test_grid_search_bad_param_grid():
param_dict = {"C": 1}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'int'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": []}
clf = SVC()
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a non-empty sequence.",
GridSearchCV, clf, param_dict)
param_dict = {"C": "1,2,3"}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'str'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": np.ones((3, 2))}
clf = SVC()
assert_raises(ValueError, GridSearchCV, clf, param_dict)
def test_grid_search_sparse():
# Test that grid search works with both dense and sparse matrices
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180].tocoo(), y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert np.mean(y_pred == y_pred2) >= .9
assert C == C2
def test_grid_search_sparse_scoring():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred2)
assert C == C2
# Smoke test the score
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
# cv.score(X_[:180], y[:180]))
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
F1Loss = make_scorer(f1_loss, greater_is_better=False)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
cv.fit(X_[:180], y_[:180])
y_pred3 = cv.predict(X_[180:])
C3 = cv.best_estimator_.C
assert C == C3
assert_array_equal(y_pred, y_pred3)
def test_grid_search_precomputed_kernel():
# Test that grid search works when the input features are given in the
# form of a precomputed kernel matrix
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
# compute the training kernel matrix corresponding to the linear kernel
K_train = np.dot(X_[:180], X_[:180].T)
y_train = y_[:180]
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(K_train, y_train)
assert cv.best_score_ >= 0
# compute the test kernel matrix
K_test = np.dot(X_[180:], X_[:180].T)
y_test = y_[180:]
y_pred = cv.predict(K_test)
assert np.mean(y_pred == y_test) >= 0
# test error is raised when the precomputed kernel is not array-like
# or sparse
assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
def test_grid_search_precomputed_kernel_error_nonsquare():
# Test that grid search returns an error with a non-square precomputed
# training kernel matrix
K_train = np.zeros((10, 20))
y_train = np.ones((10, ))
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, K_train, y_train)
class BrokenClassifier(BaseEstimator):
"""Broken classifier that cannot be fit twice"""
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y):
assert not hasattr(self, 'has_been_fit_')
self.has_been_fit_ = True
def predict(self, X):
return np.zeros(X.shape[0])
@ignore_warnings
def test_refit():
# Regression test for bug in refitting
# Simulates re-fitting a broken estimator; this used to break with
# sparse SVMs.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
scoring="precision", refit=True)
clf.fit(X, y)
def test_refit_callable():
"""
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=True)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results['mean_test_score'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_refit_callable_invalid_type():
"""
Test implementation catches the errors when 'best_index_' returns an
invalid result.
"""
def refit_callable_invalid_type(cv_results):
"""
A dummy function tests when returned 'best_index_' is not integer.
"""
return None
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_invalid_type)
with pytest.raises(TypeError,
match='best_index_ returned is not an integer'):
clf.fit(X, y)
@pytest.mark.parametrize('out_bound_value', [-1, 2])
@pytest.mark.parametrize('search_cv', [RandomizedSearchCV, GridSearchCV])
def test_refit_callable_out_bound(out_bound_value, search_cv):
"""
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
"""
def refit_callable_out_bound(cv_results):
"""
A dummy function tests when returned 'best_index_' is out of bounds.
"""
return out_bound_value
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = search_cv(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_out_bound)
with pytest.raises(IndexError, match='best_index_ index out of range'):
clf.fit(X, y)
def test_refit_callable_multi_metric():
"""
Test refit=callable in multiple metric evaluation setting
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_prec`.
"""
assert 'mean_test_prec' in cv_results
return cv_results['mean_test_prec'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
scoring = {'Accuracy': make_scorer(accuracy_score), 'prec': 'precision'}
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring=scoring, refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_gridsearch_nd():
# Pass X as list in GridSearchCV
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
check_X = lambda x: x.shape[1:] == (5, 3, 2)
check_y = lambda x: x.shape[1:] == (7, 11)
clf = CheckingClassifier(
check_X=check_X, check_y=check_y, methods_to_check=["fit"],
)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_4d, y_3d).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_X_as_list():
# Pass X as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_X=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X.tolist(), y).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_y_as_list():
# Pass y as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_y=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X, y.tolist()).score(X, y)
assert hasattr(grid_search, "cv_results_")
@ignore_warnings
def test_pandas_input():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((DataFrame, Series))
except ImportError:
pass
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
for InputFeatureType, TargetType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y)
def check_df(x):
return isinstance(x, InputFeatureType)
def check_series(x):
return isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
grid_search.predict(X_df)
assert hasattr(grid_search, "cv_results_")
def test_unsupervised_grid_search():
# test grid-search with unsupervised estimator
X, y = make_blobs(n_samples=50, random_state=0)
km = KMeans(random_state=0, init="random", n_init=1)
# Multi-metric evaluation unsupervised
scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring=scoring, refit=refit)
grid_search.fit(X, y)
# Both ARI and FMS can find the right number :)
assert grid_search.best_params_["n_clusters"] == 3
# Single metric evaluation unsupervised
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring='fowlkes_mallows_score')
grid_search.fit(X, y)
assert grid_search.best_params_["n_clusters"] == 3
# Now without a score, and without y
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
grid_search.fit(X)
assert grid_search.best_params_["n_clusters"] == 4
def test_gridsearch_no_predict():
# test grid-search with an estimator without predict.
# slight duplication of a test from KDE
def custom_scoring(estimator, X):
return 42 if estimator.bandwidth == .1 else 0
X, _ = make_blobs(cluster_std=.1, random_state=1,
centers=[[0, 1], [1, 0], [0, 0]])
search = GridSearchCV(KernelDensity(),
param_grid=dict(bandwidth=[.01, .1, 1]),
scoring=custom_scoring)
search.fit(X)
assert search.best_params_['bandwidth'] == .1
assert search.best_score_ == 42
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert len(samples) == 10
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
def check_cv_results_array_types(search, param_keys, score_keys):
# Check if the search `cv_results`'s array are of correct types
cv_results = search.cv_results_
assert all(isinstance(cv_results[param], np.ma.MaskedArray)
for param in param_keys)
assert all(cv_results[key].dtype == object for key in param_keys)
assert not any(isinstance(cv_results[key], np.ma.MaskedArray)
for key in score_keys)
assert all(cv_results[key].dtype == np.float64
for key in score_keys if not key.startswith('rank'))
scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']
for key in scorer_keys:
assert cv_results['rank_test_%s' % key].dtype == np.int32
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
# Test the search.cv_results_ contains all the required results
assert_array_equal(sorted(cv_results.keys()),
sorted(param_keys + score_keys + ('params',)))
assert all(cv_results[key].shape == (n_cand,)
for key in param_keys + score_keys)
def test_grid_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4,
random_state=42)
n_splits = 3
n_grid_points = 6
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_candidates = n_grid_points
search = GridSearchCV(SVC(), cv=n_splits, param_grid=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check if score and timing are reasonable
assert all(cv_results['rank_test_score'] >= 1)
assert (all(cv_results[k] >= 0) for k in score_keys
if k != 'rank_test_score')
assert (all(cv_results[k] <= 1) for k in score_keys
if 'time' not in k and
k != 'rank_test_score')
# Check cv_results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
# Check masking
cv_results = search.cv_results_
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
def test_random_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
params = [{'kernel': ['rbf'], 'C': expon(scale=10),
'gamma': expon(scale=0.1)},
{'kernel': ['poly'], 'degree': [2, 3]}]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_cand = n_search_iter
search = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
@pytest.mark.parametrize(
"SearchCV, specialized_params",
[(GridSearchCV, {'param_grid': {'C': [1, 10]}}),
(RandomizedSearchCV,
{'param_distributions': {'C': [1, 10]}, 'n_iter': 2})]
)
def test_search_default_iid(SearchCV, specialized_params):
# Test the IID parameter TODO: Clearly this test does something else???
# noise-free simple 2d-data
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
cluster_std=0.1, shuffle=False, n_samples=80)
# split dataset into two folds that are not iid
# first one contains data of all 4 blobs, second only from two.
mask = np.ones(X.shape[0], dtype=np.bool)
mask[np.where(y == 1)[0][::2]] = 0
mask[np.where(y == 2)[0][::2]] = 0
# this leads to perfect classification on one fold and a score of 1/3 on
# the other
# create "cv" for splits
cv = [[mask, ~mask], [~mask, mask]]
common_params = {'estimator': SVC(), 'cv': cv,
'return_train_score': True}
search = SearchCV(**common_params, **specialized_params)
search.fit(X, y)
test_cv_scores = np.array(
[search.cv_results_['split%d_test_score' % s][0]
for s in range(search.n_splits_)]
)
test_mean = search.cv_results_['mean_test_score'][0]
test_std = search.cv_results_['std_test_score'][0]
train_cv_scores = np.array(
[search.cv_results_['split%d_train_score' % s][0]
for s in range(search.n_splits_)]
)
train_mean = search.cv_results_['mean_train_score'][0]
train_std = search.cv_results_['std_train_score'][0]
assert search.cv_results_['param_C'][0] == 1
# scores are the same as above
assert_allclose(test_cv_scores, [1, 1. / 3.])
assert_allclose(train_cv_scores, [1, 1])
# Unweighted mean/std is used
assert test_mean == pytest.approx(np.mean(test_cv_scores))
assert test_std == pytest.approx(np.std(test_cv_scores))
# For the train scores, we do not take a weighted mean irrespective of
# i.i.d. or not
assert train_mean == pytest.approx(1)
assert train_std == pytest.approx(0)
def test_grid_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
grid_searches = []
for scoring in ({'accuracy': make_scorer(accuracy_score),
'recall': make_scorer(recall_score)},
'accuracy', 'recall'):
grid_search = GridSearchCV(SVC(), cv=n_splits,
param_grid=params,
scoring=scoring, refit=False)
grid_search.fit(X, y)
grid_searches.append(grid_search)
compare_cv_results_multimetric_with_single(*grid_searches)
def test_random_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
# Scipy 0.12's stats dists do not accept seed, hence we use param grid
params = dict(C=np.logspace(-4, 1, 3),
gamma=np.logspace(-5, 0, 3, base=0.1))
for refit in (True, False):
random_searches = []
for scoring in (('accuracy', 'recall'), 'accuracy', 'recall'):
# If True, for multi-metric pass refit='accuracy'
if refit:
probability = True
refit = 'accuracy' if isinstance(scoring, tuple) else refit
else:
probability = False
clf = SVC(probability=probability, random_state=42)
random_search = RandomizedSearchCV(clf, n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
scoring=scoring,
refit=refit, random_state=0)
random_search.fit(X, y)
random_searches.append(random_search)
compare_cv_results_multimetric_with_single(*random_searches)
compare_refit_methods_when_refit_with_acc(
random_searches[0], random_searches[1], refit)
def compare_cv_results_multimetric_with_single(
search_multi, search_acc, search_rec):
"""Compare multi-metric cv_results with the ensemble of multiple
single metric cv_results from single metric grid/random search"""
assert search_multi.multimetric_
assert_array_equal(sorted(search_multi.scorer_),
('accuracy', 'recall'))
cv_results_multi = search_multi.cv_results_
cv_results_acc_rec = {re.sub('_score$', '_accuracy', k): v
for k, v in search_acc.cv_results_.items()}
cv_results_acc_rec.update({re.sub('_score$', '_recall', k): v
for k, v in search_rec.cv_results_.items()})
# Check if score and timing are reasonable, also checks if the keys
# are present
assert all(( | np.all(cv_results_multi[k] <= 1) | numpy.all |
# pylint: disable=protected-access
"""
Test the wrappers for the C API.
"""
import os
from contextlib import contextmanager
import numpy as np
import numpy.testing as npt
import pandas as pd
import pytest
import xarray as xr
from packaging.version import Version
from pygmt import Figure, clib
from pygmt.clib.conversion import dataarray_to_matrix
from pygmt.clib.session import FAMILIES, VIAS
from pygmt.exceptions import (
GMTCLibError,
GMTCLibNoSessionError,
GMTInvalidInput,
GMTVersionError,
)
from pygmt.helpers import GMTTempFile
TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
with clib.Session() as _lib:
gmt_version = Version(_lib.info["version"])
@contextmanager
def mock(session, func, returns=None, mock_func=None):
"""
Mock a GMT C API function to make it always return a given value.
Used to test that exceptions are raised when API functions fail by
producing a NULL pointer as output or non-zero status codes.
Needed because it's not easy to get some API functions to fail without
inducing a Segmentation Fault (which is a good thing because libgmt usually
only fails with errors).
"""
if mock_func is None:
def mock_api_function(*args): # pylint: disable=unused-argument
"""
A mock GMT API function that always returns a given value.
"""
return returns
mock_func = mock_api_function
get_libgmt_func = session.get_libgmt_func
def mock_get_libgmt_func(name, argtypes=None, restype=None):
"""
Return our mock function.
"""
if name == func:
return mock_func
return get_libgmt_func(name, argtypes, restype)
setattr(session, "get_libgmt_func", mock_get_libgmt_func)
yield
setattr(session, "get_libgmt_func", get_libgmt_func)
def test_getitem():
"""
Test that I can get correct constants from the C lib.
"""
ses = clib.Session()
assert ses["GMT_SESSION_EXTERNAL"] != -99999
assert ses["GMT_MODULE_CMD"] != -99999
assert ses["GMT_PAD_DEFAULT"] != -99999
assert ses["GMT_DOUBLE"] != -99999
with pytest.raises(GMTCLibError):
ses["A_WHOLE_LOT_OF_JUNK"] # pylint: disable=pointless-statement
def test_create_destroy_session():
"""
Test that create and destroy session are called without errors.
"""
# Create two session and make sure they are not pointing to the same memory
session1 = clib.Session()
session1.create(name="test_session1")
assert session1.session_pointer is not None
session2 = clib.Session()
session2.create(name="test_session2")
assert session2.session_pointer is not None
assert session2.session_pointer != session1.session_pointer
session1.destroy()
session2.destroy()
# Create and destroy a session twice
ses = clib.Session()
for __ in range(2):
with pytest.raises(GMTCLibNoSessionError):
ses.session_pointer # pylint: disable=pointless-statement
ses.create("session1")
assert ses.session_pointer is not None
ses.destroy()
with pytest.raises(GMTCLibNoSessionError):
ses.session_pointer # pylint: disable=pointless-statement
def test_create_session_fails():
"""
Check that an exception is raised when failing to create a session.
"""
ses = clib.Session()
with mock(ses, "GMT_Create_Session", returns=None):
with pytest.raises(GMTCLibError):
ses.create("test-session-name")
# Should fail if trying to create a session before destroying the old one.
ses.create("test1")
with pytest.raises(GMTCLibError):
ses.create("test2")
def test_destroy_session_fails():
"""
Fail to destroy session when given bad input.
"""
ses = clib.Session()
with pytest.raises(GMTCLibNoSessionError):
ses.destroy()
ses.create("test-session")
with mock(ses, "GMT_Destroy_Session", returns=1):
with pytest.raises(GMTCLibError):
ses.destroy()
ses.destroy()
def test_call_module():
"""
Run a command to see if call_module works.
"""
data_fname = os.path.join(TEST_DATA_DIR, "points.txt")
out_fname = "test_call_module.txt"
with clib.Session() as lib:
with GMTTempFile() as out_fname:
lib.call_module("info", "{} -C ->{}".format(data_fname, out_fname.name))
assert os.path.exists(out_fname.name)
output = out_fname.read().strip()
assert output == "11.5309 61.7074 -2.9289 7.8648 0.1412 0.9338"
def test_call_module_invalid_arguments():
"""
Fails for invalid module arguments.
"""
with clib.Session() as lib:
with pytest.raises(GMTCLibError):
lib.call_module("info", "bogus-data.bla")
def test_call_module_invalid_name():
"""
Fails when given bad input.
"""
with clib.Session() as lib:
with pytest.raises(GMTCLibError):
lib.call_module("meh", "")
def test_call_module_error_message():
"""
Check is the GMT error message was captured.
"""
with clib.Session() as lib:
try:
lib.call_module("info", "bogus-data.bla")
except GMTCLibError as error:
assert "Module 'info' failed with status code" in str(error)
assert "gmtinfo [ERROR]: Cannot find file bogus-data.bla" in str(error)
def test_method_no_session():
"""
Fails when not in a session.
"""
# Create an instance of Session without "with" so no session is created.
lib = clib.Session()
with pytest.raises(GMTCLibNoSessionError):
lib.call_module("gmtdefaults", "")
with pytest.raises(GMTCLibNoSessionError):
lib.session_pointer # pylint: disable=pointless-statement
def test_parse_constant_single():
"""
Parsing a single family argument correctly.
"""
lib = clib.Session()
for family in FAMILIES:
parsed = lib._parse_constant(family, valid=FAMILIES)
assert parsed == lib[family]
def test_parse_constant_composite():
"""
Parsing a composite constant argument (separated by |) correctly.
"""
lib = clib.Session()
test_cases = ((family, via) for family in FAMILIES for via in VIAS)
for family, via in test_cases:
composite = "|".join([family, via])
expected = lib[family] + lib[via]
parsed = lib._parse_constant(composite, valid=FAMILIES, valid_modifiers=VIAS)
assert parsed == expected
def test_parse_constant_fails():
"""
Check if the function fails when given bad input.
"""
lib = clib.Session()
test_cases = [
"SOME_random_STRING",
"GMT_IS_DATASET|GMT_VIA_MATRIX|GMT_VIA_VECTOR",
"GMT_IS_DATASET|NOT_A_PROPER_VIA",
"NOT_A_PROPER_FAMILY|GMT_VIA_MATRIX",
"NOT_A_PROPER_FAMILY|ALSO_INVALID",
]
for test_case in test_cases:
with pytest.raises(GMTInvalidInput):
lib._parse_constant(test_case, valid=FAMILIES, valid_modifiers=VIAS)
# Should also fail if not given valid modifiers but is using them anyway.
# This should work...
lib._parse_constant(
"GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=VIAS
)
# But this shouldn't.
with pytest.raises(GMTInvalidInput):
lib._parse_constant(
"GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=None
)
def test_create_data_dataset():
"""
Run the function to make sure it doesn't fail badly.
"""
with clib.Session() as lib:
# Dataset from vectors
data_vector = lib.create_data(
family="GMT_IS_DATASET|GMT_VIA_VECTOR",
geometry="GMT_IS_POINT",
mode="GMT_CONTAINER_ONLY",
dim=[10, 20, 1, 0], # columns, rows, layers, dtype
)
# Dataset from matrices
data_matrix = lib.create_data(
family="GMT_IS_DATASET|GMT_VIA_MATRIX",
geometry="GMT_IS_POINT",
mode="GMT_CONTAINER_ONLY",
dim=[10, 20, 1, 0],
)
assert data_vector != data_matrix
def test_create_data_grid_dim():
"""
Create a grid ignoring range and inc.
"""
with clib.Session() as lib:
# Grids from matrices using dim
lib.create_data(
family="GMT_IS_GRID|GMT_VIA_MATRIX",
geometry="GMT_IS_SURFACE",
mode="GMT_CONTAINER_ONLY",
dim=[10, 20, 1, 0],
)
def test_create_data_grid_range():
"""
Create a grid specifying range and inc instead of dim.
"""
with clib.Session() as lib:
# Grids from matrices using range and int
lib.create_data(
family="GMT_IS_GRID|GMT_VIA_MATRIX",
geometry="GMT_IS_SURFACE",
mode="GMT_CONTAINER_ONLY",
ranges=[150.0, 250.0, -20.0, 20.0],
inc=[0.1, 0.2],
)
def test_create_data_fails():
"""
Check that create_data raises exceptions for invalid input and output.
"""
# Passing in invalid mode
with pytest.raises(GMTInvalidInput):
with clib.Session() as lib:
lib.create_data(
family="GMT_IS_DATASET",
geometry="GMT_IS_SURFACE",
mode="Not_a_valid_mode",
dim=[0, 0, 1, 0],
ranges=[150.0, 250.0, -20.0, 20.0],
inc=[0.1, 0.2],
)
# Passing in invalid geometry
with pytest.raises(GMTInvalidInput):
with clib.Session() as lib:
lib.create_data(
family="GMT_IS_GRID",
geometry="Not_a_valid_geometry",
mode="GMT_CONTAINER_ONLY",
dim=[0, 0, 1, 0],
ranges=[150.0, 250.0, -20.0, 20.0],
inc=[0.1, 0.2],
)
# If the data pointer returned is None (NULL pointer)
with pytest.raises(GMTCLibError):
with clib.Session() as lib:
with mock(lib, "GMT_Create_Data", returns=None):
lib.create_data(
family="GMT_IS_DATASET",
geometry="GMT_IS_SURFACE",
mode="GMT_CONTAINER_ONLY",
dim=[11, 10, 2, 0],
)
def test_virtual_file():
"""
Test passing in data via a virtual file with a Dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (5, 3)
for dtype in dtypes:
with clib.Session() as lib:
family = "GMT_IS_DATASET|GMT_VIA_MATRIX"
geometry = "GMT_IS_POINT"
dataset = lib.create_data(
family=family,
geometry=geometry,
mode="GMT_CONTAINER_ONLY",
dim=[shape[1], shape[0], 1, 0], # columns, rows, layers, dtype
)
data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
lib.put_matrix(dataset, matrix=data)
# Add the dataset to a virtual file and pass it along to gmt info
vfargs = (family, geometry, "GMT_IN|GMT_IS_REFERENCE", dataset)
with lib.open_virtual_file(*vfargs) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T]
)
expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds)
assert output == expected
def test_virtual_file_fails():
"""
Check that opening and closing virtual files raises an exception for non-
zero return codes.
"""
vfargs = (
"GMT_IS_DATASET|GMT_VIA_MATRIX",
"GMT_IS_POINT",
"GMT_IN|GMT_IS_REFERENCE",
None,
)
# Mock Open_VirtualFile to test the status check when entering the context.
# If the exception is raised, the code won't get to the closing of the
# virtual file.
with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=1):
with pytest.raises(GMTCLibError):
with lib.open_virtual_file(*vfargs):
print("Should not get to this code")
# Test the status check when closing the virtual file
# Mock the opening to return 0 (success) so that we don't open a file that
# we won't close later.
with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=0), mock(
lib, "GMT_Close_VirtualFile", returns=1
):
with pytest.raises(GMTCLibError):
with lib.open_virtual_file(*vfargs):
pass
print("Shouldn't get to this code either")
def test_virtual_file_bad_direction():
"""
Test passing an invalid direction argument.
"""
with clib.Session() as lib:
vfargs = (
"GMT_IS_DATASET|GMT_VIA_MATRIX",
"GMT_IS_POINT",
"GMT_IS_GRID", # The invalid direction argument
0,
)
with pytest.raises(GMTInvalidInput):
with lib.open_virtual_file(*vfargs):
print("This should have failed")
def test_virtualfile_from_vectors():
"""
Test the automation for transforming vectors to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
size = 10
for dtype in dtypes:
x = np.arange(size, dtype=dtype)
y = np.arange(size, size * 2, 1, dtype=dtype)
z = np.arange(size * 2, size * 3, 1, dtype=dtype)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(x, y, z) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(i.min(), i.max()) for i in (x, y, z)]
)
expected = "<vector memory>: N = {}\t{}\n".format(size, bounds)
assert output == expected
@pytest.mark.parametrize("dtype", [str, object])
def test_virtualfile_from_vectors_one_string_or_object_column(dtype):
"""
Test passing in one column with string or object dtype into virtual file
dataset.
"""
size = 5
x = np.arange(size, dtype=np.int32)
y = np.arange(size, size * 2, 1, dtype=np.int32)
strings = np.array(["a", "bc", "defg", "hijklmn", "opqrst"], dtype=dtype)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(x, y, strings) as vfile:
with GMTTempFile() as outfile:
lib.call_module("convert", f"{vfile} ->{outfile.name}")
output = outfile.read(keep_tabs=True)
expected = "".join(f"{i}\t{j}\t{k}\n" for i, j, k in zip(x, y, strings))
assert output == expected
@pytest.mark.parametrize("dtype", [str, object])
def test_virtualfile_from_vectors_two_string_or_object_columns(dtype):
"""
Test passing in two columns of string or object dtype into virtual file
dataset.
"""
size = 5
x = np.arange(size, dtype=np.int32)
y = np.arange(size, size * 2, 1, dtype=np.int32)
strings1 = np.array(["a", "bc", "def", "ghij", "klmno"], dtype=dtype)
strings2 = np.array(["pqrst", "uvwx", "yz!", "@#", "$"], dtype=dtype)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(x, y, strings1, strings2) as vfile:
with GMTTempFile() as outfile:
lib.call_module("convert", f"{vfile} ->{outfile.name}")
output = outfile.read(keep_tabs=True)
expected = "".join(
f"{h}\t{i}\t{j} {k}\n" for h, i, j, k in zip(x, y, strings1, strings2)
)
assert output == expected
def test_virtualfile_from_vectors_transpose():
"""
Test transforming matrix columns to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (7, 5)
for dtype in dtypes:
data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
with clib.Session() as lib:
with lib.virtualfile_from_vectors(*data.T) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} -C ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["{:.0f}\t{:.0f}".format(col.min(), col.max()) for col in data.T]
)
expected = "{}\n".format(bounds)
assert output == expected
def test_virtualfile_from_vectors_diff_size():
"""
Test the function fails for arrays of different sizes.
"""
x = np.arange(5)
y = np.arange(6)
with clib.Session() as lib:
with pytest.raises(GMTInvalidInput):
with lib.virtualfile_from_vectors(x, y):
print("This should have failed")
def test_virtualfile_from_matrix():
"""
Test transforming a matrix to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (7, 5)
for dtype in dtypes:
data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape)
with clib.Session() as lib:
with lib.virtualfile_from_matrix(data) as vfile:
with GMTTempFile() as outfile:
lib.call_module("info", "{} ->{}".format(vfile, outfile.name))
output = outfile.read(keep_tabs=True)
bounds = "\t".join(
["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T]
)
expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds)
assert output == expected
def test_virtualfile_from_matrix_slice():
"""
Test transforming a slice of a larger array to virtual file dataset.
"""
dtypes = "float32 float64 int32 int64 uint32 uint64".split()
shape = (10, 6)
for dtype in dtypes:
full_data = | np.arange(shape[0] * shape[1], dtype=dtype) | numpy.arange |
"""Test the search module"""
from collections.abc import Iterable, Sized
from io import StringIO
from itertools import chain, product
from functools import partial
import pickle
import sys
from types import GeneratorType
import re
import numpy as np
import scipy.sparse as sp
import pytest
from sklearn.utils.fixes import sp_version
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from scipy.stats import bernoulli, expon, uniform
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.base import clone
from sklearn.exceptions import NotFittedError
from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection import fit_grid_point
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import ParameterGrid
from sklearn.model_selection import ParameterSampler
from sklearn.model_selection._search import BaseSearchCV
from sklearn.model_selection._validation import FitFailedWarning
from sklearn.svm import LinearSVC, SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.neighbors import KernelDensity
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import make_scorer
from sklearn.metrics import roc_auc_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import Ridge, SGDClassifier, LinearRegression
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.model_selection.tests.common import OneTimeSplitter
# Neither of the following two estimators inherit from BaseEstimator,
# to test hyperparameter search on user-defined classifiers.
class MockClassifier:
"""Dummy classifier to test the parameter search algorithms"""
def __init__(self, foo_param=0):
self.foo_param = foo_param
def fit(self, X, Y):
assert len(X) == len(Y)
self.classes_ = np.unique(Y)
return self
def predict(self, T):
return T.shape[0]
def transform(self, X):
return X + self.foo_param
def inverse_transform(self, X):
return X - self.foo_param
predict_proba = predict
predict_log_proba = predict
decision_function = predict
def score(self, X=None, Y=None):
if self.foo_param > 1:
score = 1.
else:
score = 0.
return score
def get_params(self, deep=False):
return {'foo_param': self.foo_param}
def set_params(self, **params):
self.foo_param = params['foo_param']
return self
class LinearSVCNoScore(LinearSVC):
"""An LinearSVC classifier that has no score method."""
@property
def score(self):
raise AttributeError
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
def assert_grid_iter_equals_getitem(grid):
assert list(grid) == [grid[i] for i in range(len(grid))]
@pytest.mark.parametrize("klass", [ParameterGrid,
partial(ParameterSampler, n_iter=10)])
@pytest.mark.parametrize(
"input, error_type, error_message",
[(0, TypeError, r'Parameter .* is not a dict or a list \(0\)'),
([{'foo': [0]}, 0], TypeError, r'Parameter .* is not a dict \(0\)'),
({'foo': 0}, TypeError, "Parameter.* value is not iterable .*"
r"\(key='foo', value=0\)")]
)
def test_validate_parameter_input(klass, input, error_type, error_message):
with pytest.raises(error_type, match=error_message):
klass(input)
def test_parameter_grid():
# Test basic properties of ParameterGrid.
params1 = {"foo": [1, 2, 3]}
grid1 = ParameterGrid(params1)
assert isinstance(grid1, Iterable)
assert isinstance(grid1, Sized)
assert len(grid1) == 3
assert_grid_iter_equals_getitem(grid1)
params2 = {"foo": [4, 2],
"bar": ["ham", "spam", "eggs"]}
grid2 = ParameterGrid(params2)
assert len(grid2) == 6
# loop to assert we can iterate over the grid multiple times
for i in range(2):
# tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2)
points = set(tuple(chain(*(sorted(p.items())))) for p in grid2)
assert (points ==
set(("bar", x, "foo", y)
for x, y in product(params2["bar"], params2["foo"])))
assert_grid_iter_equals_getitem(grid2)
# Special case: empty grid (useful to get default estimator settings)
empty = ParameterGrid({})
assert len(empty) == 1
assert list(empty) == [{}]
assert_grid_iter_equals_getitem(empty)
assert_raises(IndexError, lambda: empty[1])
has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}])
assert len(has_empty) == 4
assert list(has_empty) == [{'C': 1}, {'C': 10}, {}, {'C': .5}]
assert_grid_iter_equals_getitem(has_empty)
def test_grid_search():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=3, verbose=3)
# make sure it selects the smallest parameter in case of ties
old_stdout = sys.stdout
sys.stdout = StringIO()
grid_search.fit(X, y)
sys.stdout = old_stdout
assert grid_search.best_estimator_.foo_param == 2
assert_array_equal(grid_search.cv_results_["param_foo_param"].data,
[1, 2, 3])
# Smoke test the score etc:
grid_search.score(X, y)
grid_search.predict_proba(X)
grid_search.decision_function(X)
grid_search.transform(X)
# Test exception handling on scoring
grid_search.scoring = 'sklearn'
assert_raises(ValueError, grid_search.fit, X, y)
def test_grid_search_pipeline_steps():
# check that parameters that are estimators are cloned before fitting
pipe = Pipeline([('regressor', LinearRegression())])
param_grid = {'regressor': [LinearRegression(), Ridge()]}
grid_search = GridSearchCV(pipe, param_grid, cv=2)
grid_search.fit(X, y)
regressor_results = grid_search.cv_results_['param_regressor']
assert isinstance(regressor_results[0], LinearRegression)
assert isinstance(regressor_results[1], Ridge)
assert not hasattr(regressor_results[0], 'coef_')
assert not hasattr(regressor_results[1], 'coef_')
assert regressor_results[0] is not grid_search.best_estimator_
assert regressor_results[1] is not grid_search.best_estimator_
# check that we didn't modify the parameter grid that was passed
assert not hasattr(param_grid['regressor'][0], 'coef_')
assert not hasattr(param_grid['regressor'][1], 'coef_')
@pytest.mark.parametrize("SearchCV", [GridSearchCV, RandomizedSearchCV])
def test_SearchCV_with_fit_params(SearchCV):
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_fit_params=['spam', 'eggs'])
searcher = SearchCV(
clf, {'foo_param': [1, 2, 3]}, cv=2, error_score="raise"
)
# The CheckingClassifier generates an assertion error if
# a parameter is missing or has length != len(X).
err_msg = r"Expected fit parameter\(s\) \['eggs'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(10))
err_msg = "Fit parameter spam has length 1; expected"
with pytest.raises(AssertionError, match=err_msg):
searcher.fit(X, y, spam=np.ones(1), eggs=np.zeros(10))
searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10))
@ignore_warnings
def test_grid_search_no_score():
# Test grid-search on classifier that has no score function.
clf = LinearSVC(random_state=0)
X, y = make_blobs(random_state=0, centers=2)
Cs = [.1, 1, 10]
clf_no_score = LinearSVCNoScore(random_state=0)
grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy')
grid_search.fit(X, y)
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs},
scoring='accuracy')
# smoketest grid search
grid_search_no_score.fit(X, y)
# check that best params are equal
assert grid_search_no_score.best_params_ == grid_search.best_params_
# check that we can call score and that it gives the correct result
assert grid_search.score(X, y) == grid_search_no_score.score(X, y)
# giving no scoring function raises an error
grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs})
assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit,
[[1]])
def test_grid_search_score_method():
X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2,
random_state=0)
clf = LinearSVC(random_state=0)
grid = {'C': [.1]}
search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y)
search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y)
search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid,
scoring='roc_auc'
).fit(X, y)
search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y)
# Check warning only occurs in situation where behavior changed:
# estimator requires score method to compete with scoring parameter
score_no_scoring = search_no_scoring.score(X, y)
score_accuracy = search_accuracy.score(X, y)
score_no_score_auc = search_no_score_method_auc.score(X, y)
score_auc = search_auc.score(X, y)
# ensure the test is sane
assert score_auc < 1.0
assert score_accuracy < 1.0
assert score_auc != score_accuracy
assert_almost_equal(score_accuracy, score_no_scoring)
assert_almost_equal(score_auc, score_no_score_auc)
def test_grid_search_groups():
# Check if ValueError (when groups is None) propagates to GridSearchCV
# And also check if groups is correctly passed to the cv object
rng = np.random.RandomState(0)
X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
groups = rng.randint(0, 3, 15)
clf = LinearSVC(random_state=0)
grid = {'C': [1]}
group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2),
GroupKFold(n_splits=3), GroupShuffleSplit()]
for cv in group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
assert_raise_message(ValueError,
"The 'groups' parameter should not be None.",
gs.fit, X, y)
gs.fit(X, y, groups=groups)
non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()]
for cv in non_group_cvs:
gs = GridSearchCV(clf, grid, cv=cv)
# Should not raise an error
gs.fit(X, y)
def test_classes__property():
# Test that classes_ property matches best_estimator_.classes_
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
Cs = [.1, 1, 10]
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
grid_search.fit(X, y)
assert_array_equal(grid_search.best_estimator_.classes_,
grid_search.classes_)
# Test that regressors do not have a classes_ attribute
grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute before it's fit
grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
assert not hasattr(grid_search, 'classes_')
# Test that the grid searcher has no classes_ attribute without a refit
grid_search = GridSearchCV(LinearSVC(random_state=0),
{'C': Cs}, refit=False)
grid_search.fit(X, y)
assert not hasattr(grid_search, 'classes_')
def test_trivial_cv_results_attr():
# Test search over a "grid" with only one point.
clf = MockClassifier()
grid_search = GridSearchCV(clf, {'foo_param': [1]}, cv=3)
grid_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1, cv=3)
random_search.fit(X, y)
assert hasattr(grid_search, "cv_results_")
def test_no_refit():
# Test that GSCV can be used for model selection alone without refitting
clf = MockClassifier()
for scoring in [None, ['accuracy', 'precision']]:
grid_search = GridSearchCV(
clf, {'foo_param': [1, 2, 3]}, refit=False, cv=3
)
grid_search.fit(X, y)
assert not hasattr(grid_search, "best_estimator_") and \
hasattr(grid_search, "best_index_") and \
hasattr(grid_search, "best_params_")
# Make sure the functions predict/transform etc raise meaningful
# error messages
for fn_name in ('predict', 'predict_proba', 'predict_log_proba',
'transform', 'inverse_transform'):
assert_raise_message(NotFittedError,
('refit=False. %s is available only after '
'refitting on the best parameters'
% fn_name), getattr(grid_search, fn_name), X)
# Test that an invalid refit param raises appropriate error messages
for refit in ["", 5, True, 'recall', 'accuracy']:
assert_raise_message(ValueError, "For multi-metric scoring, the "
"parameter refit must be set to a scorer key",
GridSearchCV(clf, {}, refit=refit,
scoring={'acc': 'accuracy',
'prec': 'precision'}
).fit,
X, y)
def test_grid_search_error():
# Test that grid search will capture errors on data with different length
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, X_[:180], y_)
def test_grid_search_one_grid_point():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]}
clf = SVC(gamma='auto')
cv = GridSearchCV(clf, param_dict)
cv.fit(X_, y_)
clf = SVC(C=1.0, kernel="rbf", gamma=0.1)
clf.fit(X_, y_)
assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_)
def test_grid_search_when_param_grid_includes_range():
# Test that the best estimator contains the right value for foo_param
clf = MockClassifier()
grid_search = None
grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}, cv=3)
grid_search.fit(X, y)
assert grid_search.best_estimator_.foo_param == 2
def test_grid_search_bad_param_grid():
param_dict = {"C": 1}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'int'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": []}
clf = SVC()
assert_raise_message(
ValueError,
"Parameter values for parameter (C) need to be a non-empty sequence.",
GridSearchCV, clf, param_dict)
param_dict = {"C": "1,2,3"}
clf = SVC(gamma='auto')
assert_raise_message(
ValueError,
"Parameter grid for parameter (C) needs to"
" be a list or numpy array, but got (<class 'str'>)."
" Single values need to be wrapped in a list"
" with one element.",
GridSearchCV, clf, param_dict)
param_dict = {"C": np.ones((3, 2))}
clf = SVC()
assert_raises(ValueError, GridSearchCV, clf, param_dict)
def test_grid_search_sparse():
# Test that grid search works with both dense and sparse matrices
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(X_[:180].tocoo(), y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert np.mean(y_pred == y_pred2) >= .9
assert C == C2
def test_grid_search_sparse_scoring():
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred = cv.predict(X_[180:])
C = cv.best_estimator_.C
X_ = sp.csr_matrix(X_)
clf = LinearSVC()
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
cv.fit(X_[:180], y_[:180])
y_pred2 = cv.predict(X_[180:])
C2 = cv.best_estimator_.C
assert_array_equal(y_pred, y_pred2)
assert C == C2
# Smoke test the score
# np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
# cv.score(X_[:180], y[:180]))
# test loss where greater is worse
def f1_loss(y_true_, y_pred_):
return -f1_score(y_true_, y_pred_)
F1Loss = make_scorer(f1_loss, greater_is_better=False)
cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
cv.fit(X_[:180], y_[:180])
y_pred3 = cv.predict(X_[180:])
C3 = cv.best_estimator_.C
assert C == C3
assert_array_equal(y_pred, y_pred3)
def test_grid_search_precomputed_kernel():
# Test that grid search works when the input features are given in the
# form of a precomputed kernel matrix
X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)
# compute the training kernel matrix corresponding to the linear kernel
K_train = np.dot(X_[:180], X_[:180].T)
y_train = y_[:180]
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
cv.fit(K_train, y_train)
assert cv.best_score_ >= 0
# compute the test kernel matrix
K_test = np.dot(X_[180:], X_[:180].T)
y_test = y_[180:]
y_pred = cv.predict(K_test)
assert np.mean(y_pred == y_test) >= 0
# test error is raised when the precomputed kernel is not array-like
# or sparse
assert_raises(ValueError, cv.fit, K_train.tolist(), y_train)
def test_grid_search_precomputed_kernel_error_nonsquare():
# Test that grid search returns an error with a non-square precomputed
# training kernel matrix
K_train = np.zeros((10, 20))
y_train = np.ones((10, ))
clf = SVC(kernel='precomputed')
cv = GridSearchCV(clf, {'C': [0.1, 1.0]})
assert_raises(ValueError, cv.fit, K_train, y_train)
class BrokenClassifier(BaseEstimator):
"""Broken classifier that cannot be fit twice"""
def __init__(self, parameter=None):
self.parameter = parameter
def fit(self, X, y):
assert not hasattr(self, 'has_been_fit_')
self.has_been_fit_ = True
def predict(self, X):
return np.zeros(X.shape[0])
@ignore_warnings
def test_refit():
# Regression test for bug in refitting
# Simulates re-fitting a broken estimator; this used to break with
# sparse SVMs.
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}],
scoring="precision", refit=True)
clf.fit(X, y)
def test_refit_callable():
"""
Test refit=callable, which adds flexibility in identifying the
"best" estimator.
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_score`.
"""
# Fit a dummy clf with `refit=True` to get a list of keys in
# clf.cv_results_.
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=True)
clf.fit(X, y)
# Ensure that `best_index_ != 0` for this dummy clf
assert clf.best_index_ != 0
# Assert every key matches those in `cv_results`
for key in clf.cv_results_.keys():
assert key in cv_results
return cv_results['mean_test_score'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring='precision', refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_refit_callable_invalid_type():
"""
Test implementation catches the errors when 'best_index_' returns an
invalid result.
"""
def refit_callable_invalid_type(cv_results):
"""
A dummy function tests when returned 'best_index_' is not integer.
"""
return None
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_invalid_type)
with pytest.raises(TypeError,
match='best_index_ returned is not an integer'):
clf.fit(X, y)
@pytest.mark.parametrize('out_bound_value', [-1, 2])
@pytest.mark.parametrize('search_cv', [RandomizedSearchCV, GridSearchCV])
def test_refit_callable_out_bound(out_bound_value, search_cv):
"""
Test implementation catches the errors when 'best_index_' returns an
out of bound result.
"""
def refit_callable_out_bound(cv_results):
"""
A dummy function tests when returned 'best_index_' is out of bounds.
"""
return out_bound_value
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
clf = search_cv(LinearSVC(random_state=42), {'C': [0.1, 1]},
scoring='precision', refit=refit_callable_out_bound)
with pytest.raises(IndexError, match='best_index_ index out of range'):
clf.fit(X, y)
def test_refit_callable_multi_metric():
"""
Test refit=callable in multiple metric evaluation setting
"""
def refit_callable(cv_results):
"""
A dummy function tests `refit=callable` interface.
Return the index of a model that has the least
`mean_test_prec`.
"""
assert 'mean_test_prec' in cv_results
return cv_results['mean_test_prec'].argmin()
X, y = make_classification(n_samples=100, n_features=4,
random_state=42)
scoring = {'Accuracy': make_scorer(accuracy_score), 'prec': 'precision'}
clf = GridSearchCV(LinearSVC(random_state=42), {'C': [0.01, 0.1, 1]},
scoring=scoring, refit=refit_callable)
clf.fit(X, y)
assert clf.best_index_ == 0
# Ensure `best_score_` is disabled when using `refit=callable`
assert not hasattr(clf, 'best_score_')
def test_gridsearch_nd():
# Pass X as list in GridSearchCV
X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
check_X = lambda x: x.shape[1:] == (5, 3, 2)
check_y = lambda x: x.shape[1:] == (7, 11)
clf = CheckingClassifier(
check_X=check_X, check_y=check_y, methods_to_check=["fit"],
)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_4d, y_3d).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_X_as_list():
# Pass X as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_X=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X.tolist(), y).score(X, y)
assert hasattr(grid_search, "cv_results_")
def test_y_as_list():
# Pass y as list in GridSearchCV
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(
check_y=lambda x: isinstance(x, list), methods_to_check=["fit"],
)
cv = KFold(n_splits=3)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv)
grid_search.fit(X, y.tolist()).score(X, y)
assert hasattr(grid_search, "cv_results_")
@ignore_warnings
def test_pandas_input():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((DataFrame, Series))
except ImportError:
pass
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
for InputFeatureType, TargetType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y)
def check_df(x):
return isinstance(x, InputFeatureType)
def check_series(x):
return isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]})
grid_search.fit(X_df, y_ser).score(X_df, y_ser)
grid_search.predict(X_df)
assert hasattr(grid_search, "cv_results_")
def test_unsupervised_grid_search():
# test grid-search with unsupervised estimator
X, y = make_blobs(n_samples=50, random_state=0)
km = KMeans(random_state=0, init="random", n_init=1)
# Multi-metric evaluation unsupervised
scoring = ['adjusted_rand_score', 'fowlkes_mallows_score']
for refit in ['adjusted_rand_score', 'fowlkes_mallows_score']:
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring=scoring, refit=refit)
grid_search.fit(X, y)
# Both ARI and FMS can find the right number :)
assert grid_search.best_params_["n_clusters"] == 3
# Single metric evaluation unsupervised
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]),
scoring='fowlkes_mallows_score')
grid_search.fit(X, y)
assert grid_search.best_params_["n_clusters"] == 3
# Now without a score, and without y
grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]))
grid_search.fit(X)
assert grid_search.best_params_["n_clusters"] == 4
def test_gridsearch_no_predict():
# test grid-search with an estimator without predict.
# slight duplication of a test from KDE
def custom_scoring(estimator, X):
return 42 if estimator.bandwidth == .1 else 0
X, _ = make_blobs(cluster_std=.1, random_state=1,
centers=[[0, 1], [1, 0], [0, 0]])
search = GridSearchCV(KernelDensity(),
param_grid=dict(bandwidth=[.01, .1, 1]),
scoring=custom_scoring)
search.fit(X)
assert search.best_params_['bandwidth'] == .1
assert search.best_score_ == 42
def test_param_sampler():
# test basic properties of param sampler
param_distributions = {"kernel": ["rbf", "linear"],
"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
samples = [x for x in sampler]
assert len(samples) == 10
for sample in samples:
assert sample["kernel"] in ["rbf", "linear"]
assert 0 <= sample["C"] <= 1
# test that repeated calls yield identical parameters
param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=3, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
if sp_version >= (0, 16):
param_distributions = {"C": uniform(0, 1)}
sampler = ParameterSampler(param_distributions=param_distributions,
n_iter=10, random_state=0)
assert [x for x in sampler] == [x for x in sampler]
def check_cv_results_array_types(search, param_keys, score_keys):
# Check if the search `cv_results`'s array are of correct types
cv_results = search.cv_results_
assert all(isinstance(cv_results[param], np.ma.MaskedArray)
for param in param_keys)
assert all(cv_results[key].dtype == object for key in param_keys)
assert not any(isinstance(cv_results[key], np.ma.MaskedArray)
for key in score_keys)
assert all(cv_results[key].dtype == np.float64
for key in score_keys if not key.startswith('rank'))
scorer_keys = search.scorer_.keys() if search.multimetric_ else ['score']
for key in scorer_keys:
assert cv_results['rank_test_%s' % key].dtype == np.int32
def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand):
# Test the search.cv_results_ contains all the required results
assert_array_equal(sorted(cv_results.keys()),
sorted(param_keys + score_keys + ('params',)))
assert all(cv_results[key].shape == (n_cand,)
for key in param_keys + score_keys)
def test_grid_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4,
random_state=42)
n_splits = 3
n_grid_points = 6
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_candidates = n_grid_points
search = GridSearchCV(SVC(), cv=n_splits, param_grid=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check if score and timing are reasonable
assert all(cv_results['rank_test_score'] >= 1)
assert (all(cv_results[k] >= 0) for k in score_keys
if k != 'rank_test_score')
assert (all(cv_results[k] <= 1) for k in score_keys
if 'time' not in k and
k != 'rank_test_score')
# Check cv_results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates)
# Check masking
cv_results = search.cv_results_
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
def test_random_search_cv_results():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
params = [{'kernel': ['rbf'], 'C': expon(scale=10),
'gamma': expon(scale=0.1)},
{'kernel': ['poly'], 'degree': [2, 3]}]
param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel')
score_keys = ('mean_test_score', 'mean_train_score',
'rank_test_score',
'split0_test_score', 'split1_test_score',
'split2_test_score',
'split0_train_score', 'split1_train_score',
'split2_train_score',
'std_test_score', 'std_train_score',
'mean_fit_time', 'std_fit_time',
'mean_score_time', 'std_score_time')
n_cand = n_search_iter
search = RandomizedSearchCV(SVC(), n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
return_train_score=True)
search.fit(X, y)
cv_results = search.cv_results_
# Check results structure
check_cv_results_array_types(search, param_keys, score_keys)
check_cv_results_keys(cv_results, param_keys, score_keys, n_cand)
n_candidates = len(search.cv_results_['params'])
assert all((cv_results['param_C'].mask[i] and
cv_results['param_gamma'].mask[i] and
not cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'linear')
assert all((not cv_results['param_C'].mask[i] and
not cv_results['param_gamma'].mask[i] and
cv_results['param_degree'].mask[i])
for i in range(n_candidates)
if cv_results['param_kernel'][i] == 'rbf')
@pytest.mark.parametrize(
"SearchCV, specialized_params",
[(GridSearchCV, {'param_grid': {'C': [1, 10]}}),
(RandomizedSearchCV,
{'param_distributions': {'C': [1, 10]}, 'n_iter': 2})]
)
def test_search_default_iid(SearchCV, specialized_params):
# Test the IID parameter TODO: Clearly this test does something else???
# noise-free simple 2d-data
X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0,
cluster_std=0.1, shuffle=False, n_samples=80)
# split dataset into two folds that are not iid
# first one contains data of all 4 blobs, second only from two.
mask = np.ones(X.shape[0], dtype=np.bool)
mask[np.where(y == 1)[0][::2]] = 0
mask[np.where(y == 2)[0][::2]] = 0
# this leads to perfect classification on one fold and a score of 1/3 on
# the other
# create "cv" for splits
cv = [[mask, ~mask], [~mask, mask]]
common_params = {'estimator': SVC(), 'cv': cv,
'return_train_score': True}
search = SearchCV(**common_params, **specialized_params)
search.fit(X, y)
test_cv_scores = np.array(
[search.cv_results_['split%d_test_score' % s][0]
for s in range(search.n_splits_)]
)
test_mean = search.cv_results_['mean_test_score'][0]
test_std = search.cv_results_['std_test_score'][0]
train_cv_scores = np.array(
[search.cv_results_['split%d_train_score' % s][0]
for s in range(search.n_splits_)]
)
train_mean = search.cv_results_['mean_train_score'][0]
train_std = search.cv_results_['std_train_score'][0]
assert search.cv_results_['param_C'][0] == 1
# scores are the same as above
assert_allclose(test_cv_scores, [1, 1. / 3.])
assert_allclose(train_cv_scores, [1, 1])
# Unweighted mean/std is used
assert test_mean == pytest.approx(np.mean(test_cv_scores))
assert test_std == pytest.approx(np.std(test_cv_scores))
# For the train scores, we do not take a weighted mean irrespective of
# i.i.d. or not
assert train_mean == pytest.approx(1)
assert train_std == pytest.approx(0)
def test_grid_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
dict(kernel=['poly', ], degree=[1, 2])]
grid_searches = []
for scoring in ({'accuracy': make_scorer(accuracy_score),
'recall': make_scorer(recall_score)},
'accuracy', 'recall'):
grid_search = GridSearchCV(SVC(), cv=n_splits,
param_grid=params,
scoring=scoring, refit=False)
grid_search.fit(X, y)
grid_searches.append(grid_search)
compare_cv_results_multimetric_with_single(*grid_searches)
def test_random_search_cv_results_multimetric():
X, y = make_classification(n_samples=50, n_features=4, random_state=42)
n_splits = 3
n_search_iter = 30
# Scipy 0.12's stats dists do not accept seed, hence we use param grid
params = dict(C=np.logspace(-4, 1, 3),
gamma=np.logspace(-5, 0, 3, base=0.1))
for refit in (True, False):
random_searches = []
for scoring in (('accuracy', 'recall'), 'accuracy', 'recall'):
# If True, for multi-metric pass refit='accuracy'
if refit:
probability = True
refit = 'accuracy' if isinstance(scoring, tuple) else refit
else:
probability = False
clf = SVC(probability=probability, random_state=42)
random_search = RandomizedSearchCV(clf, n_iter=n_search_iter,
cv=n_splits,
param_distributions=params,
scoring=scoring,
refit=refit, random_state=0)
random_search.fit(X, y)
random_searches.append(random_search)
compare_cv_results_multimetric_with_single(*random_searches)
compare_refit_methods_when_refit_with_acc(
random_searches[0], random_searches[1], refit)
def compare_cv_results_multimetric_with_single(
search_multi, search_acc, search_rec):
"""Compare multi-metric cv_results with the ensemble of multiple
single metric cv_results from single metric grid/random search"""
assert search_multi.multimetric_
assert_array_equal(sorted(search_multi.scorer_),
('accuracy', 'recall'))
cv_results_multi = search_multi.cv_results_
cv_results_acc_rec = {re.sub('_score$', '_accuracy', k): v
for k, v in search_acc.cv_results_.items()}
cv_results_acc_rec.update({re.sub('_score$', '_recall', k): v
for k, v in search_rec.cv_results_.items()})
# Check if score and timing are reasonable, also checks if the keys
# are present
assert all((np.all(cv_results_multi[k] <= 1) for k in (
'mean_score_time', 'std_score_time', 'mean_fit_time',
'std_fit_time')))
# Compare the keys, other than time keys, among multi-metric and
# single metric grid search results. np.testing.assert_equal performs a
# deep nested comparison of the two cv_results dicts
np.testing.assert_equal({k: v for k, v in cv_results_multi.items()
if not k.endswith('_time')},
{k: v for k, v in cv_results_acc_rec.items()
if not k.endswith('_time')})
def compare_refit_methods_when_refit_with_acc(search_multi, search_acc, refit):
"""Compare refit multi-metric search methods with single metric methods"""
assert search_acc.refit == refit
if refit:
assert search_multi.refit == 'accuracy'
else:
assert not search_multi.refit
return # search cannot predict/score without refit
X, y = make_blobs(n_samples=100, n_features=4, random_state=42)
for method in ('predict', 'predict_proba', 'predict_log_proba'):
assert_almost_equal(getattr(search_multi, method)(X),
getattr(search_acc, method)(X))
assert_almost_equal(search_multi.score(X, y), search_acc.score(X, y))
for key in ('best_index_', 'best_score_', 'best_params_'):
assert getattr(search_multi, key) == getattr(search_acc, key)
def test_search_cv_results_rank_tie_breaking():
X, y = make_blobs(n_samples=50, random_state=42)
# The two C values are close enough to give similar models
# which would result in a tie of their mean cv-scores
param_grid = {'C': [1, 1.001, 0.001]}
grid_search = GridSearchCV(SVC(), param_grid=param_grid,
return_train_score=True)
random_search = RandomizedSearchCV(SVC(), n_iter=3,
param_distributions=param_grid,
return_train_score=True)
for search in (grid_search, random_search):
search.fit(X, y)
cv_results = search.cv_results_
# Check tie breaking strategy -
# Check that there is a tie in the mean scores between
# candidates 1 and 2 alone
assert_almost_equal(cv_results['mean_test_score'][0],
cv_results['mean_test_score'][1])
assert_almost_equal(cv_results['mean_train_score'][0],
cv_results['mean_train_score'][1])
assert not np.allclose(cv_results['mean_test_score'][1],
cv_results['mean_test_score'][2])
assert not np.allclose(cv_results['mean_train_score'][1],
cv_results['mean_train_score'][2])
# 'min' rank should be assigned to the tied candidates
assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3])
def test_search_cv_results_none_param():
X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1]
estimators = (DecisionTreeRegressor(), DecisionTreeClassifier())
est_parameters = {"random_state": [0, None]}
cv = KFold()
for est in estimators:
grid_search = GridSearchCV(est, est_parameters, cv=cv,
).fit(X, y)
assert_array_equal(grid_search.cv_results_['param_random_state'],
[0, None])
@ignore_warnings()
def test_search_cv_timing():
svc = LinearSVC(random_state=0)
X = [[1, ], [2, ], [3, ], [4, ]]
y = [0, 1, 1, 0]
gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0)
rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2)
for search in (gs, rs):
search.fit(X, y)
for key in ['mean_fit_time', 'std_fit_time']:
# NOTE The precision of time.time in windows is not high
# enough for the fit/score times to be non-zero for trivial X and y
assert | np.all(search.cv_results_[key] >= 0) | numpy.all |
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
#from math import *
from math import sin, cos
from qiskit_metal import draw, Dict
from qiskit_metal.qlibrary.core.base import QComponent
import numpy as np
#from ... import config
#if not config.is_building_docs():
# from qiskit_metal import is_true
class TransmonInterdigitated(QComponent):
"""
The base "TransmonInterdigitated" inherits the "QComponent" class.
This creates a transmon pocket with two large pads connected by a Josephson
junction. Both pads have four interdigitated "fingers" which increase the
capacitance of the structure. There are three coupling capacitor pads with qpins
defined; these can be connected to other structures in a design using CPWs.
Default Options:
* pad_width: '1000um' -- width of the large rectanglular pads on either side
of the junction
* pad_height: '300um' -- height of the large rectanglular pads on either side
of the junction
* finger_width: '50um' -- width of the "finger" on either side of the junction
* finger_height: '100um' -- height of the "finger" on the side of the junction
* finger_space: '50um' -- height of the Josephson Junction (equivalently; space
between two fingers)
* pad_pos_x: '0um' -- the internal coordinate defining the center of the bottom
rectangular pad
* pad_pos_y: '0um' -- the internal coordinate defining the center of the bottom
rectangular pad
* comb_width: '50um' -- the width of the four interdigitated combs connected to
either pad
* comb_space_vert: '50um' -- the space between the edge of a comb and the edge of
the opposite rectangular pad
* comb_space_hor: '50um' -- the space between adjacent interdigitated comb structures
* jj_width: '20um' -- the width of the Josephson Junction located between the two
fingers of the device
* cc_space: '50um' -- the space between the lower rectangular pad and the coupling
capacitor below it
* cc_width: '100um' -- the width of the coupling capacitor located below the bottom
rectangular pad
* cc_height: '100um' -- the height of the coupling capacitor located below the bottom
rectangular pad
* cc_topleft_space: '50um' -- the space between the upper rectangular pad and the top
left coupling capacitor
* cc_topleft_width: '100um' -- the width of the top left coupling capacitor pad
* cc_topleft_height: '100um' -- the height of the top left coupling capacitor pad
* cc_topright_space: '50um' -- the space between the upper rectangular pad and the
top right coupling capacitor
* cc_topright_width: '100um' -- the width of the top right coupling capacitor pad
* cc_topright_height: '100um' -- the height of the top right coupling capacitor pad
* position_x: '0um' -- the x-coordinate defining the center of the transmon pocket
on the chip
* position_y: '0um' -- the y-coordinate defining the center of the transmon pocket
on the chip
* rotation: '0.0' -- the angle at which the entire structure is rotated
* rotation_top_pad: '180' -- internal coordinate defining the angle of rotation
between top and bottom pads
* layer: '1' -- all objcets are drawn assuming they are part of the same layer on a
the chip
"""
# Default drawing options
default_options = Dict(pad_width='1000um',
pad_height='300um',
finger_width='50um',
finger_height='100um',
finger_space='50um',
pad_pos_x='0um',
pad_pos_y='0um',
comb_width='50um',
comb_space_vert='50um',
comb_space_hor='50um',
jj_width='20um',
cc_space='50um',
cc_width='100um',
cc_height='100um',
cc_topleft_space='50um',
cc_topleft_width='100um',
cc_topleft_height='100um',
cc_topright_space='50um',
cc_topright_width='100um',
cc_topright_height='100um',
position_x='0um',
position_y='0um',
rotation='0.0',
rotation_top_pad='180',
layer='1')
"""Default drawing options"""
# Name prefix of component, if user doesn't provide name
component_metadata = Dict(short_name='component')
"""Component metadata"""
def make(self):
"""Convert self.options into QGeometry."""
p = self.parse_options() # Parse the string options into numbers
# draw the lower pad as a rectangle
pad_lower = draw.rectangle(p.pad_width, p.pad_height, p.pad_pos_x,
p.pad_pos_y)
# draw the lower finger as a rectangle
finger_lower = draw.rectangle(
p.finger_width, p.finger_height, p.pad_pos_x, p.pad_pos_y +
0.49999 * (p.pad_height) + 0.49999 * (p.finger_height))
# draw the Josephson Junction
rect_jj = draw.rectangle(
p.jj_width, p.finger_space, p.pad_pos_x,
0.5 * (p.pad_height) + p.finger_height + 0.5 * (p.finger_space))
# draw the first comb to the right of the lower finger as a rectangle
comb1_lower = draw.rectangle(
p.comb_width,
(2 * p.finger_height + p.finger_space - p.comb_space_vert),
(0.5 * p.finger_width + p.comb_space_hor + 0.5 * p.comb_width),
(0.5 * p.pad_height + 0.5 *
(p.pad_pos_y + 0.5 * (p.pad_height) + 0.5 * (p.finger_height))))
# draw the second comb to the right of the lower finger by translating the first comb
comb2_lower = draw.translate(comb1_lower,
2.0 * (p.comb_space_hor + p.comb_width),
0.0)
# draw the first comb to the left of the lower finger
comb3_lower = draw.rectangle(
p.comb_width,
(2 * p.finger_height + p.finger_space - p.comb_space_vert),
(-0.5 * p.finger_width - 2.0 * p.comb_space_hor -
1.5 * p.comb_width),
(0.5 * p.pad_height + 0.5 *
(p.pad_pos_y + 0.5 * (p.pad_height) + 0.5 * (p.finger_height))))
# draw the second comb to the left of the lower finger
comb4_lower = draw.translate(comb3_lower,
-2.0 * (p.comb_space_hor + p.comb_width),
0.0)
coupling_capacitor = draw.rectangle(
p.cc_width, p.cc_height, p.pad_pos_x,
p.pad_pos_y - 0.5 * (p.pad_height) - p.cc_space - 0.5 * p.cc_height)
cc_topleft = draw.rectangle(
p.cc_topleft_width, p.cc_topleft_height,
p.pad_pos_x - 0.5 * p.pad_width + 0.5 * p.cc_topleft_width,
p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height +
p.finger_space + p.cc_topleft_space + 0.5 * p.cc_topleft_height)
cc_topright = draw.translate(
cc_topleft,
p.pad_width - 0.5 * p.cc_topleft_width - 0.5 * p.cc_topright_width,
0.0)
# merge the bottom elements
bottom = draw.union(pad_lower, finger_lower, comb1_lower, comb2_lower,
comb3_lower, comb4_lower)
# create the top portion of the comb by translating and rotating
# the bottom portion of the comb
top = draw.translate(bottom, 0.0, p.pad_height + p.finger_space)
top = draw.rotate(top, p.rotation_top_pad)
# merge everything into a single design
design = draw.union(bottom, top, rect_jj, coupling_capacitor,
cc_topleft, cc_topright)
# draw the transmon pocket bounding box
pocket = draw.rectangle(1.5 * p.pad_width, 5.0 * p.pad_height)
# the origin is originally set to the middle of the lower pad.
# Let's move it to the center of the JJ.
design = draw.translate(
design, 0.0,
-0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space)
# now translate the final structure according to the user input
design = draw.rotate(design, p.rotation, origin=(0, 0))
design = draw.translate(design, p.position_x, p.position_y)
pocket = draw.rotate(pocket, p.rotation, origin=(0, 0))
pocket = draw.translate(pocket, p.position_x, p.position_y)
geom = {'design': design}
geom_pocket = {'pocket': pocket}
self.add_qgeometry('poly', geom, layer=p.layer, subtract=False)
self.add_qgeometry('poly', geom_pocket, layer=p.layer, subtract=True)
###################################################################
# Add Qpin connections for coupling capacitors
# define a function that both rotates and translates the
# qpin coordinates
def qpin_rotate_translate(x):
""" This function rotates the coordinates of the three qpins
according to the user inputs for "position_x", "position_y"
and "rotation".
"""
y = list(x)
z = [0.0, 0.0]
z[0] = y[0] * cos(p.rotation * 3.14159 / 180) - y[1] * sin(
p.rotation * 3.14159 / 180)
z[1] = y[0] * sin(p.rotation * 3.14159 / 180) + y[1] * cos(
p.rotation * 3.14159 / 180)
z[0] = z[0] + p.position_x
z[1] = z[1] + p.position_y
x = (z[0], z[1])
return x
# Add Qpin connections for the bottom coupling capacitor
qp1a = (0.0,
-0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space)
qp1b = (0.0, -0.5 * p.pad_height - p.cc_space - p.cc_height -
0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space)
# rotate and translate the qpin coordinates
qp1a = qpin_rotate_translate(qp1a)
qp1b = qpin_rotate_translate(qp1b)
self.add_pin('pin1',
points=np.array([qp1a, qp1b]),
width=0.01,
input_as_norm=True)
# Add Qpin connections for top left coupling capacitor
qp2a = (p.pad_pos_x - 0.5 * p.pad_width + 0.5 * p.cc_topleft_width,
p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height +
p.finger_space + p.cc_topleft_space +
0.5 * p.cc_topleft_height - 0.5 * p.pad_height -
p.finger_height - 0.5 * p.finger_space)
qp2b = (p.pad_pos_x - 0.5 * p.pad_width, p.pad_pos_y +
1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space +
p.cc_topleft_space + 0.5 * p.cc_topleft_height -
0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space)
qp2a = qpin_rotate_translate(qp2a)
qp2b = qpin_rotate_translate(qp2b)
self.add_pin('pin2',
points=np.array([qp2a, qp2b]),
width=0.01,
input_as_norm=True)
# Add Qpin connections for top right coupling capacitor
qp3a = (p.pad_pos_x + 0.5 * p.pad_width - 0.5 * p.cc_topleft_width,
p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height +
p.finger_space + p.cc_topleft_space +
0.5 * p.cc_topleft_height - 0.5 * p.pad_height -
p.finger_height - 0.5 * p.finger_space)
qp3b = (p.pad_pos_x + 0.5 * p.pad_width, p.pad_pos_y +
1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space +
p.cc_topleft_space + 0.5 * p.cc_topleft_height -
0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space)
qp3a = qpin_rotate_translate(qp3a)
qp3b = qpin_rotate_translate(qp3b)
self.add_pin('pin3',
points= | np.array([qp3a, qp3b]) | numpy.array |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[1].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 13))
axs[1].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_smooth.png')
plt.show()
# plot 2
fig, axs = plt.subplots(1, 2, sharey=True)
axs[0].set_title('Cubic B-Spline Bases')
axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1')
axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2')
axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3')
axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4')
axs[0].legend(loc='upper left')
axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-')
axs[0].set_xticks([5, 6])
axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[0].set_xlim(4.5, 6.5)
axs[1].set_title('Cubic Hermite Spline Bases')
axs[1].plot(time, chsi_basis[10, :].T, '--')
axs[1].plot(time, chsi_basis[11, :].T, '--')
axs[1].plot(time, chsi_basis[12, :].T, '--')
axs[1].plot(time, chsi_basis[13, :].T, '--')
axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
axs[1].set_xticks([5, 6])
axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $'])
axs[1].set_xlim(4.5, 6.5)
plt.savefig('jss_figures/comparing_bases.png')
plt.show()
# plot 3
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_dash = maxima_y[-1] * np.ones_like(max_dash_time)
min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_dash = minima_y[-1] * np.ones_like(min_dash_time)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
max_discard = maxima_y[-1]
max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1]
max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101)
max_discard_dash = max_discard * np.ones_like(max_discard_dash_time)
dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101)
dash_2 = np.linspace(minima_y[-1], max_discard, 101)
end_point_time = time[-1]
end_point = time_series[-1]
time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101)
time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi,
(5 - a) * np.pi, 101)))
time_series_anti_reflect = time_series_reflect[0] - time_series_reflect
utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect)
anti_max_bool = utils.max_bool_func_1st_order_fd()
anti_max_point_time = time_reflect[anti_max_bool]
anti_max_point = time_series_anti_reflect[anti_max_bool]
utils = emd_utils.Utility(time=time, time_series=time_series_reflect)
no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()]
no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()]
point_1 = 5.4
length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101)
length_distance_time = point_1 * np.pi * np.ones_like(length_distance)
length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101)
length_top = maxima_y[-1] * np.ones_like(length_time)
length_bottom = minima_y[-1] * np.ones_like(length_time)
point_2 = 5.2
length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101)
length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2)
length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101)
length_top_2 = time_series[-1] * np.ones_like(length_time_2)
length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2)
symmetry_axis_1_time = minima_x[-1] * np.ones(101)
symmetry_axis_2_time = time[-1] * np.ones(101)
symmetry_axis = np.linspace(-2, 2, 101)
end_time = np.linspace(time[-1] - width, time[-1] + width, 101)
end_signal = time_series[-1] * np.ones_like(end_time)
anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101)
anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Symmetry Edge Effects Example')
plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10))
plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2,
label=textwrap.fill('Anti-symmetric signal', 10))
plt.plot(max_dash_time, max_dash, 'k-')
plt.plot(min_dash_time, min_dash, 'k-')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(length_distance_time, length_distance, 'k--')
plt.plot(length_distance_time_2, length_distance_2, 'k--')
plt.plot(length_time, length_top, 'k-')
plt.plot(length_time, length_bottom, 'k-')
plt.plot(length_time_2, length_top_2, 'k-')
plt.plot(length_time_2, length_bottom_2, 'k-')
plt.plot(end_time, end_signal, 'k-')
plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1)
plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1)
plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1)
plt.text(5.1 * np.pi, -0.7, r'$\beta$L')
plt.text(5.34 * np.pi, -0.05, 'L')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10))
plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10))
plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10))
plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_symmetry_anti.png')
plt.show()
# plot 4
a = 0.21
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1)
max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1)
min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1)
min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1)
dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101)
dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101)
dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101)
dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101)
s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1])
slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1
max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1)
max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101)
dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101)
dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101)
s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1])
slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2
min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1)
min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101)
dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time)
dash_4 = np.linspace(slope_based_maximum, slope_based_minimum)
maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101)
maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash)
maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash)
maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash)
maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101)
maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time)
minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101)
minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash)
minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash)
minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash)
minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101)
minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time)
# slightly edit signal to make difference between slope-based method and improved slope-based method more clear
time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \
time_series[time == minima_x[-1]]
improved_slope_based_maximum_time = time[-1]
improved_slope_based_maximum = time_series[-1]
improved_slope_based_minimum_time = slope_based_minimum_time
improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time -
improved_slope_based_maximum_time)
min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101)
min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4)
dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101)
dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101)
ax = plt.subplot(111)
figure_size = plt.gcf().get_size_inches()
factor = 0.9
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.title('Slope-Based Edge Effects Example')
plt.plot(max_dash_time_1, max_dash_1, 'k-')
plt.plot(max_dash_time_2, max_dash_2, 'k-')
plt.plot(max_dash_time_3, max_dash_3, 'k-')
plt.plot(min_dash_time_1, min_dash_1, 'k-')
plt.plot(min_dash_time_2, min_dash_2, 'k-')
plt.plot(min_dash_time_3, min_dash_3, 'k-')
plt.plot(min_dash_time_4, min_dash_4, 'k-')
plt.plot(maxima_dash_time_1, maxima_dash, 'k-')
plt.plot(maxima_dash_time_2, maxima_dash, 'k-')
plt.plot(maxima_dash_time_3, maxima_dash, 'k-')
plt.plot(minima_dash_time_1, minima_dash, 'k-')
plt.plot(minima_dash_time_2, minima_dash, 'k-')
plt.plot(minima_dash_time_3, minima_dash, 'k-')
plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$')
plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$')
plt.text(4.30 * np.pi, 0.35, r'$s_1$')
plt.text(4.43 * np.pi, -0.20, r'$s_2$')
plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$')
plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]),
-0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]),
1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$')
plt.plot(minima_line_dash_time, minima_line_dash, 'k--')
plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--')
plt.plot(dash_1_time, dash_1, 'k--')
plt.plot(dash_2_time, dash_2, 'k--')
plt.plot(dash_3_time, dash_3, 'k--')
plt.plot(dash_4_time, dash_4, 'k--')
plt.plot(dash_final_time, dash_final, 'k--')
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4,
label=textwrap.fill('Slope-based maximum', 11))
plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4,
label=textwrap.fill('Slope-based minimum', 11))
plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4,
label=textwrap.fill('Improved slope-based maximum', 11))
plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4,
label=textwrap.fill('Improved slope-based minimum', 11))
plt.xlim(3.9 * np.pi, 5.5 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_slope_based.png')
plt.show()
# plot 5
a = 0.25
width = 0.2
time = np.linspace(0, (5 - a) * np.pi, 1001)
time_series = np.cos(time) + np.cos(5 * time)
utils = emd_utils.Utility(time=time, time_series=time_series)
max_bool = utils.max_bool_func_1st_order_fd()
maxima_x = time[max_bool]
maxima_y = time_series[max_bool]
min_bool = utils.min_bool_func_1st_order_fd()
minima_x = time[min_bool]
minima_y = time_series[min_bool]
A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2
A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2
P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2])
P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1])
Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1]
Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1]
Coughlin_time = Huang_time
Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0]))
Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2])
Average_max = (maxima_y[-2] + maxima_y[-1]) / 2
Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2])
Average_min = (minima_y[-2] + minima_y[-1]) / 2
utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave)
Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd()
Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd()
utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave)
Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd()
Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd()
Huang_max_time = Huang_time[Huang_max_bool]
Huang_max = Huang_wave[Huang_max_bool]
Huang_min_time = Huang_time[Huang_min_bool]
Huang_min = Huang_wave[Huang_min_bool]
Coughlin_max_time = Coughlin_time[Coughlin_max_bool]
Coughlin_max = Coughlin_wave[Coughlin_max_bool]
Coughlin_min_time = Coughlin_time[Coughlin_min_bool]
Coughlin_min = Coughlin_wave[Coughlin_min_bool]
max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101)
max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time)
min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101)
min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101)
min_2_x = minima_y[-2] * np.ones_like(min_2_x_time)
dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101)
dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x)
max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101)
max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y)
min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101)
min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101)
min_2_y_time = minima_x[-2] * np.ones_like(min_2_y)
dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101)
dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time)
max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101)
max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time)
min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101)
min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101)
min_1_x = minima_y[-1] * np.ones_like(min_1_x_time)
dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101)
dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x)
max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101)
max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y)
min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101)
min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101)
min_1_y_time = minima_x[-1] * np.ones_like(min_1_y)
dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101)
dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time)
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Characteristic Wave Effects Example')
plt.plot(time, time_series, LineWidth=2, label='Signal')
plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10))
plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10))
plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4,
label=textwrap.fill('Coughlin maximum', 14))
plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4,
label=textwrap.fill('Coughlin minimum', 14))
plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4,
label=textwrap.fill('Average maximum', 14))
plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4,
label=textwrap.fill('Average minimum', 14))
plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima')
plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima')
plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14))
plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14))
plt.plot(max_2_x_time, max_2_x, 'k-')
plt.plot(max_2_x_time_side, max_2_x, 'k-')
plt.plot(min_2_x_time, min_2_x, 'k-')
plt.plot(min_2_x_time_side, min_2_x, 'k-')
plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--')
plt.text(5.16 * np.pi, 0.85, r'$2a_2$')
plt.plot(max_2_y_time, max_2_y, 'k-')
plt.plot(max_2_y_time, max_2_y_side, 'k-')
plt.plot(min_2_y_time, min_2_y, 'k-')
plt.plot(min_2_y_time, min_2_y_side, 'k-')
plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--')
plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$')
plt.plot(max_1_x_time, max_1_x, 'k-')
plt.plot(max_1_x_time_side, max_1_x, 'k-')
plt.plot(min_1_x_time, min_1_x, 'k-')
plt.plot(min_1_x_time_side, min_1_x, 'k-')
plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--')
plt.text(5.42 * np.pi, -0.1, r'$2a_1$')
plt.plot(max_1_y_time, max_1_y, 'k-')
plt.plot(max_1_y_time, max_1_y_side, 'k-')
plt.plot(min_1_y_time, min_1_y, 'k-')
plt.plot(min_1_y_time, min_1_y_side, 'k-')
plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--')
plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$')
plt.xlim(3.9 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/edge_effects_characteristic_wave.png')
plt.show()
# plot 6
t = np.linspace(5, 95, 100)
signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200)
util_nn = emd_utils.Utility(time=t, time_series=signal_orig)
maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()]
minima = signal_orig[util_nn.min_bool_func_1st_order_fd()]
cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima)
cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima)
time = np.linspace(0, 5 * np.pi, 1001)
lsq_signal = np.cos(time) + np.cos(5 * time)
knots = np.linspace(0, 5 * np.pi, 101)
time_extended = time_extension(time)
time_series_extended = np.zeros_like(time_extended) / 0
time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal
neural_network_m = 200
neural_network_k = 100
# forward ->
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))]
P[-1, col] = 1 # for additive constant
t = lsq_signal[-neural_network_m:]
# test - top
seed_weights = np.ones(neural_network_k) / neural_network_k
weights = 0 * seed_weights.copy()
train_input = P[:-1, :]
lr = 0.01
for iterations in range(1000):
output = np.matmul(weights, train_input)
error = (t - output)
gradients = error * (- train_input)
# guess average gradients
average_gradients = np.mean(gradients, axis=1)
# steepest descent
max_gradient_vector = average_gradients * (np.abs(average_gradients) == max(np.abs(average_gradients)))
adjustment = - lr * average_gradients
# adjustment = - lr * max_gradient_vector
weights += adjustment
# test - bottom
weights_right = np.hstack((weights, 0))
max_count_right = 0
min_count_right = 0
i_right = 0
while ((max_count_right < 1) or (min_count_right < 1)) and (i_right < len(lsq_signal) - 1):
time_series_extended[int(2 * (len(lsq_signal) - 1) + 1 + i_right)] = \
sum(weights_right * np.hstack((time_series_extended[
int(2 * (len(lsq_signal) - 1) + 1 - neural_network_k + i_right):
int(2 * (len(lsq_signal) - 1) + 1 + i_right)], 1)))
i_right += 1
if i_right > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_right += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)],
time_series=time_series_extended[int(2 * (len(lsq_signal) - 1) + 1):
int(2 * (len(lsq_signal) - 1) + 1 + i_right + 1)])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_right += 1
# backward <-
P = np.zeros((int(neural_network_k + 1), neural_network_m))
for col in range(neural_network_m):
P[:-1, col] = lsq_signal[int(col + 1):int(col + neural_network_k + 1)]
P[-1, col] = 1 # for additive constant
t = lsq_signal[:neural_network_m]
vx = cvx.Variable(int(neural_network_k + 1))
objective = cvx.Minimize(cvx.norm((2 * (vx * P) + 1 - t), 2)) # linear activation function is arbitrary
prob = cvx.Problem(objective)
result = prob.solve(verbose=True, solver=cvx.ECOS)
weights_left = np.array(vx.value)
max_count_left = 0
min_count_left = 0
i_left = 0
while ((max_count_left < 1) or (min_count_left < 1)) and (i_left < len(lsq_signal) - 1):
time_series_extended[int(len(lsq_signal) - 2 - i_left)] = \
2 * sum(weights_left * np.hstack((time_series_extended[int(len(lsq_signal) - 1 - i_left):
int(len(lsq_signal) - 1 - i_left + neural_network_k)],
1))) + 1
i_left += 1
if i_left > 1:
emd_utils_max = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_max.max_bool_func_1st_order_fd()) > 0:
max_count_left += 1
emd_utils_min = \
emd_utils.Utility(time=time_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))],
time_series=time_series_extended[int(len(lsq_signal) - 1 - i_left):int(len(lsq_signal))])
if sum(emd_utils_min.min_bool_func_1st_order_fd()) > 0:
min_count_left += 1
lsq_utils = emd_utils.Utility(time=time, time_series=lsq_signal)
utils_extended = emd_utils.Utility(time=time_extended, time_series=time_series_extended)
maxima = lsq_signal[lsq_utils.max_bool_func_1st_order_fd()]
maxima_time = time[lsq_utils.max_bool_func_1st_order_fd()]
maxima_extrapolate = time_series_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
maxima_extrapolate_time = time_extended[utils_extended.max_bool_func_1st_order_fd()][-1]
minima = lsq_signal[lsq_utils.min_bool_func_1st_order_fd()]
minima_time = time[lsq_utils.min_bool_func_1st_order_fd()]
minima_extrapolate = time_series_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
minima_extrapolate_time = time_extended[utils_extended.min_bool_func_1st_order_fd()][-2:]
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('Single Neuron Neural Network Example')
plt.plot(time, lsq_signal, zorder=2, label='Signal')
plt.plot(time_extended, time_series_extended, c='g', zorder=1, label=textwrap.fill('Extrapolated signal', 12))
plt.scatter(maxima_time, maxima, c='r', zorder=3, label='Maxima')
plt.scatter(minima_time, minima, c='b', zorder=3, label='Minima')
plt.scatter(maxima_extrapolate_time, maxima_extrapolate, c='magenta', zorder=3,
label=textwrap.fill('Extrapolated maxima', 12))
plt.scatter(minima_extrapolate_time, minima_extrapolate, c='cyan', zorder=4,
label=textwrap.fill('Extrapolated minima', 12))
plt.plot(((time[-302] + time[-301]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k',
label=textwrap.fill('Neural network inputs', 13))
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time[-302] + time[-301]) / 2), ((time[-302] + time[-301]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='k')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1002]) / 2),
((time_extended[-1001] + time_extended[-1002]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='k')
plt.plot(((time_extended[-1001] + time_extended[-1002]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='k')
plt.plot(((time[-202] + time[-201]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray', linestyle='dashed',
label=textwrap.fill('Neural network targets', 13))
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
-2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time[-202] + time[-201]) / 2), ((time[-202] + time[-201]) / 2) + 0.1, 100),
2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), -2.75 * np.ones(100), c='gray')
plt.plot(np.linspace(((time_extended[-1001] + time_extended[-1000]) / 2),
((time_extended[-1001] + time_extended[-1000]) / 2) - 0.1, 100), 2.75 * np.ones(100), c='gray')
plt.plot(((time_extended[-1001] + time_extended[-1000]) / 2) * np.ones(100), np.linspace(-2.75, 2.75, 100), c='gray',
linestyle='dashed')
plt.xlim(3.4 * np.pi, 5.6 * np.pi)
plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$'))
plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2'))
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/neural_network.png')
plt.show()
# plot 6a
np.random.seed(0)
time = np.linspace(0, 5 * np.pi, 1001)
knots_51 = np.linspace(0, 5 * np.pi, 51)
time_series = np.cos(2 * time) + | np.cos(4 * time) | numpy.cos |
import os
from PIL import Image
import cv2
from os import listdir
from os.path import join
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.colors import LogNorm
from io_utils.io_common import create_folder
from viz_utils.constants import PlotMode, BackgroundType
import pylab
import numpy as np
import cmocean
import shapely
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import cartopy
def select_colormap(field_name):
'''
Based on the name if the field it chooses a colormap from cmocean
Args:
field_name:
Returns:
'''
if np.any([field_name.find(x) != -1 for x in ('ssh', 'srfhgt', 'adt','surf_el')]):
# cmaps_fields.append(cmocean.cm.deep_r)
return cmocean.cm.curl
elif np.any([field_name.find(x) != -1 for x in ('temp', 'sst', 'temperature')]):
return cmocean.cm.thermal
elif np.any([field_name.find(x) != -1 for x in ('vorticity', 'vort')]):
return cmocean.cm.curl
elif np.any([field_name.find(x) != -1 for x in ('salin', 'sss', 'sal')]):
return cmocean.cm.haline
elif field_name.find('error') != -1:
return cmocean.cm.diff
elif field_name.find('binary') != -1:
return cmocean.cm.oxy
elif np.any([field_name.find(x) != -1 for x in ('u_', 'v_', 'u-vel.', 'v-vel.','velocity')]):
return cmocean.cm.speed
class EOAImageVisualizer:
"""This class makes plenty of plots assuming we are plotting Geospatial data (maps).
It is made to read xarrays, numpy arrays, and numpy arrays in dictionaries
vizobj = new EOAImageVisualizer(disp_images=True, output_folder='output',
lats=[lats],lons=[lons])
"""
_COLORS = ['y', 'r', 'c', 'b', 'g', 'w', 'k', 'y', 'r', 'c', 'b', 'g', 'w', 'k']
_figsize = 8
_font_size = 30
_units = ''
_max_imgs_per_row = 4
_mincbar = np.nan # User can set a min and max colorbar values to 'force' same color bar to all plots
_maxcbar = np.nan
_flip_data = True
_eoas_pyutils_path = './eoas_pyutils'# This is the path where the eoas_utils folder is stored with respect to the main project
_contourf = False # When plotting non-regular grids and need precision
_background = BackgroundType.BLUE_MARBLE_LR # Select the background to use
_auto_colormap = True # Selects the colormap based on the name of the field
_show_var_names = False # Includes the name of the field name in the titles
_additional_polygons = [] # MUST BE SHAPELY GEOMETRIES In case we want to include additional polygons in the plots (all of them)
# If you want to add a streamplot of a vector field. It must be a dictionary with keys x,y,u,v
# and optional density, color, cmap, arrowsize, arrowstyle, minlength
_vector_field = None
_norm = None # Use to normalize the colormap. For example with LogNorm
# vizobj = EOAImageVisualizer(disp_images=True, output_folder='output',
# lats=[lats],lons=[lons])
def __init__(self, disp_images=True, output_folder='output',
lats=[-90,90], lons =[-180,180],
projection=ccrs.PlateCarree(), **kwargs):
# All the arguments that are passed to the constructor of the class MUST have its name on it.
self._disp_images = disp_images
self._output_folder = output_folder
self._projection = projection
bbox = self.getExtent(lats, lons)
self._extent = bbox
self._lats = lats
self._lons = lons
self._fig_prop = (bbox[1]-bbox[0])/(bbox[3]-bbox[2])
self._contour_labels = False
for arg_name, arg_value in kwargs.items():
self.__dict__["_" + arg_name] = arg_value
print(self.__dict__["_" + arg_name])
def __getattr__(self, attr):
'''Generic getter for all the properties of the class'''
return self.__dict__["_" + attr]
def __setattr__(self, attr, value):
'''Generic setter for all the properties of the class'''
self.__dict__["_" + attr] = value
def add_colorbar(self, fig, im, ax, show_color_bar, label=""):
# https://matplotlib.org/api/_as_gen/matplotlib.pyplot.colorbar.html
if show_color_bar:
font_size_cbar = self._font_size * .5
# TODO how to make this automatic and works always
cbar = fig.colorbar(im, ax=ax, shrink=.7)
cbar.ax.tick_params(labelsize=font_size_cbar)
if label != "":
cbar.set_label(label, fontsize=font_size_cbar*1.2)
else:
cbar.set_label(self._units, fontsize=font_size_cbar*1.2)
def plot_slice_eoa(self, c_img, ax, cmap='gray', mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan) -> None:
"""
Plots a 2D img for EOA data.
:param c_img: 2D array
:param ax: geoaxes
:return:
"""
c_ax = ax
if self._flip_data:
origin = 'lower'
else:
origin = 'upper'
if self._background == BackgroundType.CARTO_DEF:
c_ax.stock_img()
else:
if self._background == BackgroundType.BLUE_MARBLE_LR:
img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/bluemarble.png'))
if self._background == BackgroundType.BLUE_MARBLE_HR:
img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/bluemarble_5400x2700.jpg'))
if self._background == BackgroundType.TOPO:
img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/etopo.png'))
if self._background == BackgroundType.BATHYMETRY:
img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/bathymetry_3600x1800.jpg'))
c_ax.imshow(img, origin='upper', extent=(-180,180,-90,90), transform=ccrs.PlateCarree())
if mode == PlotMode.RASTER or mode == PlotMode.MERGED:
if self._contourf:
im = c_ax.contourf(self._lons, self._lats, c_img, num_colors=255, cmap='inferno', extent=self._extent)
else:
if np.isnan(mincbar):
im = c_ax.imshow(c_img, extent=self._extent, origin=origin, cmap=cmap, transform=self._projection, norm=self._norm)
else:
im = c_ax.imshow(c_img, extent=self._extent, origin=origin, cmap=cmap, vmin=mincbar, vmax=maxcbar, transform=self._projection, norm=self._norm)
if mode == PlotMode.CONTOUR or mode == PlotMode.MERGED:
c_ax.set_extent(self.getExtent(list(self._lats), list(self._lons)))
if mode == PlotMode.CONTOUR:
im = c_ax.contour(c_img, extent=self._extent, transform=self._projection)
if mode == PlotMode.MERGED:
if self._contour_labels:
c_ax.contour(c_img, self._contour_labels, colors='r', extent=self._extent, transform=self._projection)
else:
c_ax.contour(c_img, extent=self._extent, transform=self._projection)
if len(self._additional_polygons) > 0:
pol_lats = []
pol_lons = []
for c_polygon in self._additional_polygons:
if isinstance(c_polygon, shapely.geometry.linestring.LineString):
x,y = c_polygon.xy
elif isinstance(c_polygon, shapely.geometry.polygon.Polygon):
x, y = c_polygon.exterior.xy
pol_lats += y
pol_lons += x
c_ax.plot(x,y, transform=self._projection, c='r')
# Adds a threshold to the plot to see the polygons
c_ax.set_extent(self.getExtent(list(self._lats) + pol_lats, list(self._lons) + pol_lons, 0.5))
if self._vector_field != None:
try:
u = self._vector_field['u']
v = self._vector_field['v']
x = self._vector_field['x']
y = self._vector_field['y']
vec_keys = self._vector_field.keys()
c = 'r'
density = 1
linewidth = 3
vec_cmap = cmocean.cm.solar
if 'color' in vec_keys:
c = self._vector_field['color']
if 'density' in vec_keys:
density = self._vector_field['density']
if 'linewidth' in vec_keys:
linewidth = self._vector_field['linewidth']
if 'cmap' in vec_keys:
vec_cmap = self._vector_field['cmap']
c_ax.set_extent(self.getExtent(list(self._lats), list(self._lons)))
c_ax.streamplot(x, y, u, v, transform=self._projection, density=density, color=c,
cmap=vec_cmap, linewidth=linewidth)
except Exception as e:
print(F"Couldn't add vector field e:{e}")
gl = c_ax.gridlines(draw_labels=True, color='grey', alpha=0.5, linestyle='--')
# gl.xlabel_style = {'size': self._font_size/2, 'color': '#aaaaaa', 'weight':'bold'}
font_coords = {'size': self._font_size*.6}
gl.xlabel_style = font_coords
gl.ylabel_style = font_coords
gl.top_labels = False
gl.right_labels = False
return im
def get_proper_size(self, rows, cols):
"""
Obtains the proper size for a figure.
:param rows: how many rows will the figure have
:param cols: how many colswill the figure have
:param prop: Proportion is the proportion to use w/h
:return:
"""
if rows == 1:
return self._figsize * cols * self._fig_prop, self._figsize
else:
return self._figsize * cols * self._fig_prop, self._figsize * rows
def _close_figure(self):
"""Depending on what is disp_images, the figures are displayed or just closed"""
if self._disp_images:
plt.show()
else:
plt.close()
def getExtent(self, lats, lons, expand_ext=0.0):
'''
Obtains the bbox of the coordinates. If included threshold then increases the bbox in all directions with that thres
Args:
lats:
lons:
inc_threshold:
Returns:
'''
minLat = np.amin(lats) - expand_ext
maxLat = np.amax(lats) + expand_ext
minLon = np.amin(lons) - expand_ext
maxLon = np.amax(lons) + expand_ext
bbox = (minLon, maxLon, minLat, maxLat)
return bbox
def xr_summary(self, ds):
""" Prints a summary of the netcdf (global attributes, variables, etc)
:param ds:
:return:
"""
print("\n========== Global attributes =========")
for name in ds.attrs:
print(F"{name} = {getattr(ds, name)}")
print("\n========== Dimensions =========")
for name in ds.dims:
print(F"{name}: {ds[name].shape}")
print("\n========== Coordinates =========")
for name in ds.coords:
print(F"{name}: {ds[name].shape}")
print("\n========== Variables =========")
for cur_variable_name in ds.variables:
cur_var = ds[cur_variable_name]
print(F"{cur_variable_name}: {cur_var.dims} {cur_var.shape}")
def nc_summary(self, ds):
""" Prints a summary of the netcdf (global attributes, variables, etc)
:param ds:
:return:
"""
print("\n========== Global attributes =========")
for name in ds.ncattrs():
print(F"{name} = {getattr(ds, name)}")
print("\n========== Variables =========")
netCDFvars = ds.variables
for cur_variable_name in netCDFvars.keys():
cur_var = ds.variables[cur_variable_name]
print(F"Dimensions for {cur_variable_name}: {cur_var.dimensions} {cur_var.shape}")
def add_roads(self, ax):
# Names come from: https://www.naturalearthdata.com/features/
# -- Add states
roads = cfeature.NaturalEarthFeature(
category='cultural',
name='roads',
scale='10m',
facecolor='none')
ax.add_feature(roads, edgecolor='black')
return ax
def add_states(self, ax):
# Names come from: https://www.naturalearthdata.com/features/
# -- Add states
states_provinces = cfeature.NaturalEarthFeature(
category='cultural',
name='admin_1_states_provinces_lines',
scale='50m',
facecolor='none')
ax.add_feature(states_provinces, edgecolor='gray')
return ax
def plot_scatter_data(self, lats=None, lons=None, bbox=None, s=1, c='blue', cmap='plasma', title=''):
'''
This function plots points in a map
:param bbox:
:return:
'''
if bbox is None:
bbox = (-180, 180, -90, 90)
if lats is None:
lats = self.lats
if lons is None:
lons = self.lons
fig, ax = plt.subplots(1, 1, figsize=(self._figsize, self._figsize), subplot_kw={'projection': ccrs.PlateCarree()})
ax.set_extent(bbox) # If we do not set this, it will cropp it to the limits of the locations
ax.gridlines()
im = ax.scatter(lons, lats, s=s, c=c, cmap=cmap)
fig.colorbar(im, ax=ax, shrink=0.7)
ax.coastlines()
plt.title(title)
plt.show()
def plot_3d_data_npdict(self, np_variables:list, var_names:list, z_levels= [], title='',
file_name_prefix='', cmap=None, z_names = [],
show_color_bar=True, plot_mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan):
"""
Plots multiple z_levels for multiple fields.
It uses rows for each depth, and columns for each variable
"""
create_folder(self._output_folder)
orig_cmap = cmap
# If the user do not requires any z-leve, then all are plotted
if len(z_levels) == 0:
z_levels = range(np_variables[var_names[0]].shape[0])
cols = np.min((self._max_imgs_per_row, len(var_names)))
if cols == len(var_names):
rows = len(z_levels)
else:
rows = int(len(z_levels) * np.ceil(len(var_names)/cols))
fig, _axs = plt.subplots(rows, cols,
figsize=self.get_proper_size(rows, cols),
subplot_kw={'projection': self._projection})
for c_zlevel, c_slice in enumerate(z_levels): # Iterates over the z-levels
# Verify the index of the z_levels are the original ones.
if len(z_names) != 0:
c_slice_txt = z_names[c_slice]
else:
c_slice_txt = c_slice
c_mincbar = np.nan
c_maxcbar = np.nan
for idx_var, c_var in enumerate(var_names): # Iterate over the fields
if rows*cols == 1: # Single figure
ax = _axs
else:
ax = _axs.flatten()[c_zlevel*len(var_names) + idx_var]
# Here we chose the min and max colorbars for each field
if not(np.all(np.isnan(mincbar))):
if type(mincbar) is list:
c_mincbar = mincbar[idx_var]
else:
c_mincbar = mincbar
if not(np.all(np.isnan(maxcbar))):
if type(mincbar) is list:
c_maxcbar = maxcbar[idx_var]
else:
c_maxcbar = maxcbar
# By default we select the colorbar from the name of the variable
if self._auto_colormap and orig_cmap is None:
cmap = select_colormap(c_var)
else:
# If there is an array of colormaps we select the one for this field
if type(orig_cmap) is list:
cmap = orig_cmap[idx_var]
else:
# If it is just one cmap, then we use it for all the fields
cmap = orig_cmap
im = self.plot_slice_eoa(np_variables[c_var][c_slice,:,:], ax, cmap=cmap, mode=plot_mode,
mincbar=c_mincbar, maxcbar=c_maxcbar)
if self._show_var_names:
c_title = F'{var_names[idx_var]} {title}'
else:
c_title = F'{title}'
if len(z_levels) > 1:
c_title += F"Z - level: {c_slice_txt}"
ax.set_title(c_title, fontsize=self._font_size)
self.add_colorbar(fig, im, ax, show_color_bar)
plt.tight_layout(pad=.5)
file_name = F'{file_name_prefix}'
pylab.savefig(join(self._output_folder, F'{file_name}.png'), bbox_inches='tight')
self._close_figure()
def plot_2d_data_xr(self, np_variables:list, var_names:list, title='',
file_name_prefix='', cmap='viridis', show_color_bar=True, plot_mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan):
'''
Wrapper function to receive raw 2D numpy data. It calls the 'main' function for 3D plotting
:param np_variables:
:param var_names:
:param title:
:param file_name_prefix:
:param cmap:
:param flip_data:
:param rot_90:
:param show_color_bar:
:param plot_mode:
:param mincbar:
:param maxcbar:
:return:
'''
npdict_3d = {}
for i, field_name in enumerate(var_names):
npdict_3d[field_name] = np.expand_dims(np_variables[field_name], axis=0)
self.plot_3d_data_npdict(npdict_3d, var_names, z_levels=[0], title=title,
file_name_prefix=file_name_prefix, cmap=cmap, z_names = [],
show_color_bar=show_color_bar, plot_mode=plot_mode, mincbar=mincbar, maxcbar=maxcbar)
def plot_2d_data_np(self, np_variables:list, var_names:list, title='',
file_name_prefix='', cmap=None, flip_data=False,
rot_90=False, show_color_bar=True, plot_mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan):
'''
Wrapper function to receive raw 2D numpy data. It calls the 'main' function for 3D plotting
:param np_variables: Numpy variables. They can be with shape [fields, x, y] or just a single field with shape [x,y]
:param var_names:
:param title:
:param file_name_prefix:
:param cmap:
:param flip_data:
:param rot_90:
:param show_color_bar:
:param plot_mode:
:param mincbar:
:param maxcbar:
:return:
'''
npdict_3d = {}
for i, field_name in enumerate(var_names):
if len(np_variables.shape) == 3:
c_np_data = np_variables[i, :, :]
else:
c_np_data = np_variables # Single field
if rot_90:
c_np_data = np.rot90(c_np_data)
if flip_data:
c_np_data = np.flip( | np.flip(c_np_data) | numpy.flip |
import os
import string
from collections import Counter
from datetime import datetime
from functools import partial
from pathlib import Path
from typing import Optional
import numpy as np
import pandas as pd
from scipy.stats.stats import chisquare
from tangled_up_in_unicode import block, block_abbr, category, category_long, script
from pandas_profiling.config import Settings
from pandas_profiling.model.summary_helpers_image import (
extract_exif,
hash_image,
is_image_truncated,
open_image,
)
def mad(arr: np.ndarray) -> np.ndarray:
"""Median Absolute Deviation: a "Robust" version of standard deviation.
Indices variability of the sample.
https://en.wikipedia.org/wiki/Median_absolute_deviation
"""
return np.median(np.abs(arr - np.median(arr)))
def named_aggregate_summary(series: pd.Series, key: str) -> dict:
summary = {
f"max_{key}": | np.max(series) | numpy.max |
# ________
# /
# \ /
# \ /
# \/
import random
import textwrap
import emd_mean
import AdvEMDpy
import emd_basis
import emd_utils
import numpy as np
import pandas as pd
import cvxpy as cvx
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.ndimage import gaussian_filter
from emd_utils import time_extension, Utility
from scipy.interpolate import CubicSpline
from emd_hilbert import Hilbert, hilbert_spectrum
from emd_preprocess import Preprocess
from emd_mean import Fluctuation
from AdvEMDpy import EMD
# alternate packages
from PyEMD import EMD as pyemd0215
import emd as emd040
sns.set(style='darkgrid')
pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001)
pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time)
pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series)
# plot 0 - addition
fig = plt.figure(figsize=(9, 4))
ax = plt.subplot(111)
plt.gcf().subplots_adjust(bottom=0.10)
plt.title('First Iteration of Sifting Algorithm')
plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1)
plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()],
c='r', label=r'$M(t_i)$', zorder=2)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4)
plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()],
pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()],
c='c', label=r'$m(t_j)$', zorder=3)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5)
plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5)
plt.yticks(ticks=[-2, -1, 0, 1, 2])
plt.xticks(ticks=[0, np.pi, 2 * np.pi],
labels=[r'0', r'$\pi$', r'$2\pi$'])
box_0 = ax.get_position()
ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig('jss_figures/pseudo_algorithm.png')
plt.show()
knots = np.arange(12)
time = np.linspace(0, 11, 1101)
basis = emd_basis.Basis(time=time, time_series=time)
b_spline_basis = basis.cubic_b_spline(knots)
chsi_basis = basis.chsi_basis(knots)
# plot 1
plt.title('Non-Natural Cubic B-Spline Bases at Boundary')
plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $')
plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $')
plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $')
plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $')
plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $')
plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $'])
plt.xlim(4.4, 6.6)
plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-')
plt.legend(loc='upper left')
plt.savefig('jss_figures/boundary_bases.png')
plt.show()
# plot 1a - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
knots_uniform = np.linspace(0, 2 * np.pi, 51)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0]
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Uniform Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Uniform Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Uniform Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots_uniform)):
axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_uniform.png')
plt.show()
# plot 1b - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=1, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Statically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Statically Optimised Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Statically Optimised Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots)):
axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_1.png')
plt.show()
# plot 1c - addition
knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001)
knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time)
emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series)
imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric',
optimise_knots=2, verbose=False)
fig, axs = plt.subplots(3, 1)
fig.subplots_adjust(hspace=0.6)
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Time Series and Dynamically Optimised Knots')
axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100)
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].set_title('IMF 1 and Dynamically Knots')
axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[2].set_title('IMF 2 and Dynamically Knots')
axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100)
axs[2].set_yticks(ticks=[-2, 0, 2])
axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[0].legend(loc='lower left')
axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots')
for i in range(3):
for j in range(1, len(knots[i])):
axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey')
plt.savefig('jss_figures/knot_2.png')
plt.show()
# plot 1d - addition
window = 81
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Filtering Demonstration')
axs[1].set_title('Zoomed Region')
preprocess_time = pseudo_alg_time.copy()
np.random.seed(1)
random.seed(1)
preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time))
for i in random.sample(range(1000), 500):
preprocess_time_series[i] += np.random.normal(0, 1)
preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series)
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black',
label=textwrap.fill('Zoomed region', 10))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black')
axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black')
axs[0].set_yticks(ticks=[-2, 0, 2])
axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi])
axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$'])
axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12))
axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12))
axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13))
axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12))
axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1],
label=textwrap.fill('Windsorize interpolation filter', 14))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey',
label=textwrap.fill('Quantile window', 12))
axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey')
axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi)
axs[1].set_ylim(-3, 3)
axs[1].set_yticks(ticks=[-2, 0, 2])
axs[1].set_xticks(ticks=[np.pi])
axs[1].set_xticklabels(labels=[r'$\pi$'])
box_0 = axs[0].get_position()
axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15))
box_1 = axs[1].get_position()
axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height])
plt.savefig('jss_figures/preprocess_filter.png')
plt.show()
# plot 1e - addition
fig, axs = plt.subplots(2, 1)
fig.subplots_adjust(hspace=0.4)
figure_size = plt.gcf().get_size_inches()
factor = 0.8
plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1]))
plt.gcf().subplots_adjust(bottom=0.10)
axs[0].set_title('Preprocess Smoothing Demonstration')
axs[1].set_title('Zoomed Region')
axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)')
axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple',
label=textwrap.fill('Noiseless time series', 12))
axs[0].plot(preprocess_time, preprocess.hp()[1],
label=textwrap.fill('Hodrick-Prescott smoothing', 12))
axs[0].plot(preprocess_time, preprocess.hw(order=51)[1],
label=textwrap.fill('Henderson-Whittaker smoothing', 13))
downsampled_and_decimated = preprocess.downsample()
axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1],
label=textwrap.fill('Downsampled & decimated', 11))
downsampled = preprocess.downsample(decimate=False)
axs[0].plot(downsampled[0], downsampled[1],
label=textwrap.fill('Downsampled', 13))
axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * | np.ones(101) | numpy.ones |
import numpy as np
from typing import Tuple, Union, Optional
from autoarray.structures.arrays.two_d import array_2d_util
from autoarray.geometry import geometry_util
from autoarray import numba_util
from autoarray.mask import mask_2d_util
@numba_util.jit()
def grid_2d_centre_from(grid_2d_slim: np.ndarray) -> Tuple[float, float]:
"""
Returns the centre of a grid from a 1D grid.
Parameters
----------
grid_2d_slim
The 1D grid of values which are mapped to a 2D array.
Returns
-------
(float, float)
The (y,x) central coordinates of the grid.
"""
centre_y = (np.max(grid_2d_slim[:, 0]) + np.min(grid_2d_slim[:, 0])) / 2.0
centre_x = (np.max(grid_2d_slim[:, 1]) + np.min(grid_2d_slim[:, 1])) / 2.0
return centre_y, centre_x
@numba_util.jit()
def grid_2d_slim_via_mask_from(
mask_2d: np.ndarray,
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into
a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates a the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned on an array of shape (total_unmasked_pixels*sub_size**2, 2). y coordinates are
stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked coordinates are therefore
removed and not included in the slimmed grid.
Grid2D are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0.
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
mask_2d
A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated
sub-grid.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A slimmed sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_unmasked_pixels*sub_size**2, 2).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_slim = grid_2d_slim_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0))
"""
total_sub_pixels = mask_2d_util.total_sub_pixels_2d_from(mask_2d, sub_size)
grid_slim = np.zeros(shape=(total_sub_pixels, 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=mask_2d.shape, pixel_scales=pixel_scales, origin=origin
)
sub_index = 0
y_sub_half = pixel_scales[0] / 2
y_sub_step = pixel_scales[0] / (sub_size)
x_sub_half = pixel_scales[1] / 2
x_sub_step = pixel_scales[1] / (sub_size)
for y in range(mask_2d.shape[0]):
for x in range(mask_2d.shape[1]):
if not mask_2d[y, x]:
y_scaled = (y - centres_scaled[0]) * pixel_scales[0]
x_scaled = (x - centres_scaled[1]) * pixel_scales[1]
for y1 in range(sub_size):
for x1 in range(sub_size):
grid_slim[sub_index, 0] = -(
y_scaled - y_sub_half + y1 * y_sub_step + (y_sub_step / 2.0)
)
grid_slim[sub_index, 1] = (
x_scaled - x_sub_half + x1 * x_sub_step + (x_sub_step / 2.0)
)
sub_index += 1
return grid_slim
def grid_2d_via_mask_from(
mask_2d: np.ndarray,
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a
finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size).
y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked pixels are
given values (0.0, 0.0).
Grids are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0.
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
mask_2d
A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated
sub-grid.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_2d = grid_2d_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0))
"""
grid_2d_slim = grid_2d_slim_via_mask_from(
mask_2d=mask_2d, pixel_scales=pixel_scales, sub_size=sub_size, origin=origin
)
return grid_2d_native_from(
grid_2d_slim=grid_2d_slim, mask_2d=mask_2d, sub_size=sub_size
)
def grid_2d_slim_via_shape_native_from(
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a
finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its slimmed dimensions with shape (total_pixels**2*sub_size**2, 2). y coordinates are
stored in the 0 index of the second dimension, x coordinates in the 1 index.
Grid2D are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0].
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
shape_native
The (y,x) shape of the 2D array the sub-grid of coordinates is computed for.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid is slimmed and has dimensions (total_unmasked_pixels*sub_size**2, 2).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_2d_slim = grid_2d_slim_via_shape_native_from(shape_native=(3,3), pixel_scales=(0.5, 0.5), sub_size=2, origin=(0.0, 0.0))
"""
return grid_2d_slim_via_mask_from(
mask_2d=np.full(fill_value=False, shape=shape_native),
pixel_scales=pixel_scales,
sub_size=sub_size,
origin=origin,
)
def grid_2d_via_shape_native_from(
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided
into a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes
the (y,x) scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size).
y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index.
Grids are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0].
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
shape_native
The (y,x) shape of the 2D array the sub-grid of coordinates is computed for.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size).
Examples
--------
grid_2d = grid_2d_via_shape_native_from(shape_native=(3, 3), pixel_scales=(1.0, 1.0), sub_size=2, origin=(0.0, 0.0))
"""
return grid_2d_via_mask_from(
mask_2d=np.full(fill_value=False, shape=shape_native),
pixel_scales=pixel_scales,
sub_size=sub_size,
origin=origin,
)
@numba_util.jit()
def grid_scaled_2d_slim_radial_projected_from(
extent: np.ndarray,
centre: Tuple[float, float],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
shape_slim: Optional[int] = 0,
) -> np.ndarray:
"""
Determine a projected radial grid of points from a 2D region of coordinates defined by an
extent [xmin, xmax, ymin, ymax] and with a (y,x) centre. This functions operates as follows:
1) Given the region defined by the extent [xmin, xmax, ymin, ymax], the algorithm finds the longest 1D distance of
the 4 paths from the (y,x) centre to the edge of the region (e.g. following the positive / negative y and x axes).
2) Use the pixel-scale corresponding to the direction chosen (e.g. if the positive x-axis was the longest, the
pixel_scale in the x dimension is used).
3) Determine the number of pixels between the centre and the edge of the region using the longest path between the
two chosen above.
4) Create a (y,x) grid of radial points where all points are at the centre's y value = 0.0 and the x values iterate
from the centre in increasing steps of the pixel-scale.
5) Rotate these radial coordinates by the input `angle` clockwise.
A schematric is shown below:
-------------------
| |
|<- - - - ->x | x = centre
| | <-> = longest radial path from centre to extent edge
| |
-------------------
Using the centre x above, this function finds the longest radial path to the edge of the extent window.
The returned `grid_radii` represents a radial set of points that in 1D sample the 2D grid outwards from its centre.
This grid stores the radial coordinates as (y,x) values (where all y values are the same) as opposed to a 1D data
structure so that it can be used in functions which require that a 2D grid structure is input.
Parameters
----------
extent
The extent of the grid the radii grid is computed using, with format [xmin, xmax, ymin, ymax]
centre : (float, flloat)
The (y,x) central coordinate which the radial grid is traced outwards from.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
shape_slim
Manually choose the shape of the 1D projected grid that is returned. If 0, the border based on the 2D grid is
used (due to numba None cannot be used as a default value).
Returns
-------
ndarray
A radial set of points sampling the longest distance from the centre to the edge of the extent in along the
positive x-axis.
"""
distance_to_positive_x = extent[1] - centre[1]
distance_to_positive_y = extent[3] - centre[0]
distance_to_negative_x = centre[1] - extent[0]
distance_to_negative_y = centre[0] - extent[2]
scaled_distance = max(
[
distance_to_positive_x,
distance_to_positive_y,
distance_to_negative_x,
distance_to_negative_y,
]
)
if (scaled_distance == distance_to_positive_y) or (
scaled_distance == distance_to_negative_y
):
pixel_scale = pixel_scales[0]
else:
pixel_scale = pixel_scales[1]
if shape_slim == 0:
shape_slim = sub_size * int((scaled_distance / pixel_scale)) + 1
grid_scaled_2d_slim_radii = np.zeros((shape_slim, 2))
grid_scaled_2d_slim_radii[:, 0] += centre[0]
radii = centre[1]
for slim_index in range(shape_slim):
grid_scaled_2d_slim_radii[slim_index, 1] = radii
radii += pixel_scale / sub_size
return grid_scaled_2d_slim_radii
@numba_util.jit()
def grid_pixels_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2d (y,x) scaled coordinates to a slimmed grid of 2d (y,x) pixel coordinate values. Pixel
coordinates are returned as floats such that they include the decimal offset from each pixel's top-left corner
relative to the input scaled coordinate.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled grid is defined by an origin and coordinates are shifted to this origin before computing their
1D grid pixel coordinate values.
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which are converted to pixel value coordinates.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted to.
Returns
-------
ndarray
A slimmed grid of 2D (y,x) pixel-value coordinates with dimensions (total_pixels, 2).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_pixels_2d_slim[slim_index, 0] = (
(-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0])
+ centres_scaled[0]
+ 0.5
)
grid_pixels_2d_slim[slim_index, 1] = (
(grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1])
+ centres_scaled[1]
+ 0.5
)
return grid_pixels_2d_slim
@numba_util.jit()
def grid_pixel_centres_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of 2D (y,x) pixel values. Pixel coordinates
are returned as integers such that they map directly to the pixel they are contained within.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted
Returns
-------
ndarray
A slimmed grid of 2D (y,x) pixel indexes with dimensions (total_pixels, 2).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_pixels_2d_slim[slim_index, 0] = int(
(-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0])
+ centres_scaled[0]
+ 0.5
)
grid_pixels_2d_slim[slim_index, 1] = int(
(grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1])
+ centres_scaled[1]
+ 0.5
)
return grid_pixels_2d_slim
@numba_util.jit()
def grid_pixel_indexes_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of pixel indexes. Pixel coordinates are
returned as integers such that they are the pixel from the top-left of the 2D grid going rights and then downwards.
The input and output grids are both slimmed and have shapes (total_pixels, 2) and (total_pixels,).
For example:
The pixel at the top-left, whose native index is [0,0], corresponds to slimmed pixel index 0.
The fifth pixel on the top row, whose native index is [0,5], corresponds to slimmed pixel index 4.
The first pixel on the second row, whose native index is [0,1], has slimmed pixel index 10 if a row has 10 pixels.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
The input and output grids are both of shape (total_pixels, 2).
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to slimmed pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted.
Returns
-------
ndarray
A grid of slimmed pixel indexes with dimensions (total_pixels,).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixel_indexes_2d_slim = grid_pixel_indexes_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = grid_pixel_centres_2d_slim_from(
grid_scaled_2d_slim=grid_scaled_2d_slim,
shape_native=shape_native,
pixel_scales=pixel_scales,
origin=origin,
)
grid_pixel_indexes_2d_slim = np.zeros(grid_pixels_2d_slim.shape[0])
for slim_index in range(grid_pixels_2d_slim.shape[0]):
grid_pixel_indexes_2d_slim[slim_index] = int(
grid_pixels_2d_slim[slim_index, 0] * shape_native[1]
+ grid_pixels_2d_slim[slim_index, 1]
)
return grid_pixel_indexes_2d_slim
@numba_util.jit()
def grid_scaled_2d_slim_from(
grid_pixels_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) pixel coordinates to a slimmed grid of 2D (y,x) scaled values.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate origin is defined by the class attribute origin, and coordinates are shifted to this
origin after computing their values from the 1D grid pixel indexes.
Parameters
----------
grid_pixels_2d_slim: np.ndarray
The slimmed grid of (y,x) coordinates in pixel values which is converted to scaled coordinates.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted.
Returns
-------
ndarray
A slimmed grid of 2d scaled coordinates with dimensions (total_pixels, 2).
Examples
--------
grid_pixels_2d_slim = np.array([[0,0], [0,1], [1,0], [1,1])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_pixels_2d_slim=grid_pixels_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_scaled_2d_slim = np.zeros((grid_pixels_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_scaled_2d_slim[slim_index, 0] = (
-(grid_pixels_2d_slim[slim_index, 0] - centres_scaled[0] - 0.5)
* pixel_scales[0]
)
grid_scaled_2d_slim[slim_index, 1] = (
grid_pixels_2d_slim[slim_index, 1] - centres_scaled[1] - 0.5
) * pixel_scales[1]
return grid_scaled_2d_slim
@numba_util.jit()
def grid_pixel_centres_2d_from(
grid_scaled_2d: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a native grid of 2D (y,x) scaled coordinates to a native grid of 2D (y,x) pixel values. Pixel coordinates
are returned as integers such that they map directly to the pixel they are contained within.
The input and output grids are both native resolution and therefore have shape (y_pixels, x_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
Parameters
----------
grid_scaled_2d: np.ndarray
The native grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted
Returns
-------
ndarray
A native grid of 2D (y,x) pixel indexes with dimensions (y_pixels, x_pixels, 2).
Examples
--------
grid_scaled_2d = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixel_centres_2d = grid_pixel_centres_2d_from(grid_scaled_2d=grid_scaled_2d, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d = np.zeros((grid_scaled_2d.shape[0], grid_scaled_2d.shape[1], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for y in range(grid_scaled_2d.shape[0]):
for x in range(grid_scaled_2d.shape[1]):
grid_pixels_2d[y, x, 0] = int(
(-grid_scaled_2d[y, x, 0] / pixel_scales[0]) + centres_scaled[0] + 0.5
)
grid_pixels_2d[y, x, 1] = int(
(grid_scaled_2d[y, x, 1] / pixel_scales[1]) + centres_scaled[1] + 0.5
)
return grid_pixels_2d
@numba_util.jit()
def relocated_grid_via_jit_from(grid, border_grid):
"""
Relocate the coordinates of a grid to its border if they are outside the border, where the border is
defined as all pixels at the edge of the grid's mask (see *mask._border_1d_indexes*).
This is performed as follows:
1: Use the mean value of the grid's y and x coordinates to determine the origin of the grid.
2: Compute the radial distance of every grid coordinate from the origin.
3: For every coordinate, find its nearest pixel in the border.
4: Determine if it is outside the border, by comparing its radial distance from the origin to its paired
border pixel's radial distance.
5: If its radial distance is larger, use the ratio of radial distances to move the coordinate to the
border (if its inside the border, do nothing).
The method can be used on uniform or irregular grids, however for irregular grids the border of the
'image-plane' mask is used to define border pixels.
Parameters
----------
grid : Grid2D
The grid (uniform or irregular) whose pixels are to be relocated to the border edge if outside it.
border_grid : Grid2D
The grid of border (y,x) coordinates.
"""
grid_relocated = np.zeros(grid.shape)
grid_relocated[:, :] = grid[:, :]
border_origin = np.zeros(2)
border_origin[0] = np.mean(border_grid[:, 0])
border_origin[1] = np.mean(border_grid[:, 1])
border_grid_radii = np.sqrt(
np.add(
np.square(np.subtract(border_grid[:, 0], border_origin[0])),
np.square(np.subtract(border_grid[:, 1], border_origin[1])),
)
)
border_min_radii = np.min(border_grid_radii)
grid_radii = np.sqrt(
np.add(
np.square(np.subtract(grid[:, 0], border_origin[0])),
np.square(np.subtract(grid[:, 1], border_origin[1])),
)
)
for pixel_index in range(grid.shape[0]):
if grid_radii[pixel_index] > border_min_radii:
closest_pixel_index = np.argmin(
np.square(grid[pixel_index, 0] - border_grid[:, 0])
+ np.square(grid[pixel_index, 1] - border_grid[:, 1])
)
move_factor = (
border_grid_radii[closest_pixel_index] / grid_radii[pixel_index]
)
if move_factor < 1.0:
grid_relocated[pixel_index, :] = (
move_factor * (grid[pixel_index, :] - border_origin[:])
+ border_origin[:]
)
return grid_relocated
@numba_util.jit()
def furthest_grid_2d_slim_index_from(
grid_2d_slim: np.ndarray, slim_indexes: np.ndarray, coordinate: Tuple[float, float]
) -> int:
distance_to_centre = 0.0
for slim_index in slim_indexes:
y = grid_2d_slim[slim_index, 0]
x = grid_2d_slim[slim_index, 1]
distance_to_centre_new = (x - coordinate[1]) ** 2 + (y - coordinate[0]) ** 2
if distance_to_centre_new >= distance_to_centre:
distance_to_centre = distance_to_centre_new
furthest_grid_2d_slim_index = slim_index
return furthest_grid_2d_slim_index
def grid_2d_slim_from(
grid_2d_native: np.ndarray, mask: np.ndarray, sub_size: int
) -> np.ndarray:
"""
For a native 2D grid and mask of shape [total_y_pixels, total_x_pixels, 2], map the values of all unmasked
pixels to a slimmed grid of shape [total_unmasked_pixels, 2].
The pixel coordinate origin is at the top left corner of the native grid and goes right-wards and downwards, such
that for an grid of shape (3,3) where all pixels are unmasked:
- pixel [0,0] of the 2D grid will correspond to index 0 of the 1D grid.
- pixel [0,1] of the 2D grid will correspond to index 1 of the 1D grid.
- pixel [1,0] of the 2D grid will correspond to index 4 of the 1D grid.
Parameters
----------
grid_2d_native : ndarray
The native grid of (y,x) values which are mapped to the slimmed grid.
mask_2d
A 2D array of bools, where `False` values mean unmasked and are included in the mapping.
sub_size
The size (sub_size x sub_size) of each unmasked pixels sub-array.
Returns
-------
ndarray
A 1D grid of values mapped from the 2D grid with dimensions (total_unmasked_pixels).
"""
grid_1d_slim_y = array_2d_util.array_2d_slim_from(
array_2d_native=grid_2d_native[:, :, 0], mask_2d=mask, sub_size=sub_size
)
grid_1d_slim_x = array_2d_util.array_2d_slim_from(
array_2d_native=grid_2d_native[:, :, 1], mask_2d=mask, sub_size=sub_size
)
return np.stack((grid_1d_slim_y, grid_1d_slim_x), axis=-1)
def grid_2d_native_from(
grid_2d_slim: np.ndarray, mask_2d: np.ndarray, sub_size: int
) -> np.ndarray:
"""
For a slimmed 2D grid of shape [total_unmasked_pixels, 2], that was computed by extracting the unmasked values
from a native 2D grid of shape [total_y_pixels, total_x_pixels, 2], map the slimmed grid's coordinates back to the
native 2D grid where masked values are set to zero.
This uses a 1D array 'slim_to_native' where each index gives the 2D pixel indexes of the grid's native unmasked
pixels, for example:
- If slim_to_native[0] = [0,0], the first value of the 1D array maps to the pixels [0,0,:] of the native 2D grid.
- If slim_to_native[1] = [0,1], the second value of the 1D array maps to the pixels [0,1,:] of the native 2D grid.
- If slim_to_native[4] = [1,1], the fifth value of the 1D array maps to the pixels [1,1,:] of the native 2D grid.
Parameters
----------
grid_2d_slim
The (y,x) values of the slimmed 2D grid which are mapped to the native 2D grid.
mask_2d
A 2D array of bools, where `False` values mean unmasked and are included in the mapping.
sub_size
The size (sub_size x sub_size) of each unmasked pixels sub-array.
Returns
-------
ndarray
A NumPy array of shape [total_y_pixels, total_x_pixels, 2] corresponding to the (y,x) values of the native 2D
mapped from the slimmed grid.
"""
grid_2d_native_y = array_2d_util.array_2d_native_from(
array_2d_slim=grid_2d_slim[:, 0], mask_2d=mask_2d, sub_size=sub_size
)
grid_2d_native_x = array_2d_util.array_2d_native_from(
array_2d_slim=grid_2d_slim[:, 1], mask_2d=mask_2d, sub_size=sub_size
)
return np.stack((grid_2d_native_y, grid_2d_native_x), axis=-1)
@numba_util.jit()
def grid_2d_slim_upscaled_from(
grid_slim: np.ndarray,
upscale_factor: int,
pixel_scales: Union[float, Tuple[float, float]],
) -> np.ndarray:
"""
From an input slimmed 2D grid, return an upscaled slimmed 2D grid where (y,x) coordinates are added at an
upscaled resolution to each grid coordinate, analogous to a sub-grid.
Parameters
----------
grid_slim
The slimmed grid of (y,x) coordinates over which a square uniform grid is overlaid.
upscale_factor
The upscaled resolution at which the new grid coordinates are computed.
pixel_scales
The pixel scale of the uniform grid that laid over the irregular grid of (y,x) coordinates.
"""
grid_2d_slim_upscaled = np.zeros(
shape=(grid_slim.shape[0] * upscale_factor ** 2, 2)
)
upscale_index = 0
y_upscale_half = pixel_scales[0] / 2
y_upscale_step = pixel_scales[0] / upscale_factor
x_upscale_half = pixel_scales[1] / 2
x_upscale_step = pixel_scales[1] / upscale_factor
for slim_index in range(grid_slim.shape[0]):
y_grid = grid_slim[slim_index, 0]
x_grid = grid_slim[slim_index, 1]
for y in range(upscale_factor):
for x in range(upscale_factor):
grid_2d_slim_upscaled[upscale_index, 0] = (
y_grid
+ y_upscale_half
- y * y_upscale_step
- (y_upscale_step / 2.0)
)
grid_2d_slim_upscaled[upscale_index, 1] = (
x_grid
- x_upscale_half
+ x * x_upscale_step
+ (x_upscale_step / 2.0)
)
upscale_index += 1
return grid_2d_slim_upscaled
def grid_2d_of_points_within_radius(
radius: float, centre: Tuple[float, float], grid_2d: np.ndarray
):
y_inside = []
x_inside = []
for i in range(len(grid_2d[:, 0])):
if (grid_2d[i, 0] - centre[0]) ** 2 + (
grid_2d[i, 1] - centre[1]
) ** 2 > radius ** 2:
y_inside.append(grid_2d[i, 0])
x_inside.append(grid_2d[i, 1])
return np.asarray(y_inside, x_inside)
def compute_polygon_area(points):
x = points[:, 1]
y = points[:, 0]
return 0.5 * np.abs(np.dot(x, | np.roll(y, 1) | numpy.roll |
import sys
import numpy as np
from matplotlib import pyplot as pl
from rw import WriteGTiff
fn = '../pozo-steep-vegetated-pcl.npy'
pts = np.load(fn)
x, y, z, c = pts[:, 0], pts[:, 1], pts[:, 2], pts[:, 5]
ix = (0.2 * (x - x.min())).astype('int')
iy = (0.2 * (y - y.min())).astype('int')
shape = (100, 100)
xb = np.arange(shape[1]+1)
yb = np.arange(shape[0]+1)
fg, ax = pl.subplots(ncols = 2, nrows = 2,
figsize = (10.24, 10.24),
sharex = True, sharey = True)
uc = (2, 5)
for j in range(len(uc)):
print('Class %i' % uc[j])
b = c == uc[j]
cx, cy, cz = ix[b], iy[b], z[b]
mean = | np.zeros(shape) | numpy.zeros |
from abc import ABCMeta, abstractmethod
import os
from vmaf.tools.misc import make_absolute_path, run_process
from vmaf.tools.stats import ListStats
__copyright__ = "Copyright 2016-2018, Netflix, Inc."
__license__ = "Apache, Version 2.0"
import re
import numpy as np
import ast
from vmaf import ExternalProgramCaller, to_list
from vmaf.config import VmafConfig, VmafExternalConfig
from vmaf.core.executor import Executor
from vmaf.core.result import Result
from vmaf.tools.reader import YuvReader
class FeatureExtractor(Executor):
"""
FeatureExtractor takes in a list of assets, and run feature extraction on
them, and return a list of corresponding results. A FeatureExtractor must
specify a unique type and version combination (by the TYPE and VERSION
attribute), so that the Result generated by it can be identified.
A derived class of FeatureExtractor must:
1) Override TYPE and VERSION
2) Override _generate_result(self, asset), which call a
command-line executable and generate feature scores in a log file.
3) Override _get_feature_scores(self, asset), which read the feature
scores from the log file, and return the scores in a dictionary format.
For an example, follow VmafFeatureExtractor.
"""
__metaclass__ = ABCMeta
@property
@abstractmethod
def ATOM_FEATURES(self):
raise NotImplementedError
def _read_result(self, asset):
result = {}
result.update(self._get_feature_scores(asset))
executor_id = self.executor_id
return Result(asset, executor_id, result)
@classmethod
def get_scores_key(cls, atom_feature):
return "{type}_{atom_feature}_scores".format(
type=cls.TYPE, atom_feature=atom_feature)
@classmethod
def get_score_key(cls, atom_feature):
return "{type}_{atom_feature}_score".format(
type=cls.TYPE, atom_feature=atom_feature)
def _get_feature_scores(self, asset):
# routine to read the feature scores from the log file, and return
# the scores in a dictionary format.
log_file_path = self._get_log_file_path(asset)
atom_feature_scores_dict = {}
atom_feature_idx_dict = {}
for atom_feature in self.ATOM_FEATURES:
atom_feature_scores_dict[atom_feature] = []
atom_feature_idx_dict[atom_feature] = 0
with open(log_file_path, 'rt') as log_file:
for line in log_file.readlines():
for atom_feature in self.ATOM_FEATURES:
re_template = "{af}: ([0-9]+) ([a-zA-Z0-9.-]+)".format(af=atom_feature)
mo = re.match(re_template, line)
if mo:
cur_idx = int(mo.group(1))
assert cur_idx == atom_feature_idx_dict[atom_feature]
# parse value, allowing NaN and inf
val = float(mo.group(2))
if np.isnan(val) or np.isinf(val):
val = None
atom_feature_scores_dict[atom_feature].append(val)
atom_feature_idx_dict[atom_feature] += 1
continue
len_score = len(atom_feature_scores_dict[self.ATOM_FEATURES[0]])
assert len_score != 0
for atom_feature in self.ATOM_FEATURES[1:]:
assert len_score == len(atom_feature_scores_dict[atom_feature]), \
"Feature data possibly corrupt. Run cleanup script and try again."
feature_result = {}
for atom_feature in self.ATOM_FEATURES:
scores_key = self.get_scores_key(atom_feature)
feature_result[scores_key] = atom_feature_scores_dict[atom_feature]
return feature_result
class VmafFeatureExtractor(FeatureExtractor):
TYPE = "VMAF_feature"
# VERSION = '0.1' # vmaf_study; Anush's VIF fix
# VERSION = '0.2' # expose vif_num, vif_den, adm_num, adm_den, anpsnr
# VERSION = '0.2.1' # expose vif num/den of each scale
# VERSION = '0.2.2' # adm abs-->fabs, corrected border handling, uniform reading with option of offset for input YUV, updated VIF corner case
# VERSION = '0.2.2b' # expose adm_den/num_scalex
# VERSION = '0.2.3' # AVX for VMAF convolution; update adm features by folding noise floor into per coef
# VERSION = '0.2.4' # Fix a bug in adm feature passing scale into dwt_quant_step
# VERSION = '0.2.4b' # Modify by adding ADM noise floor outside cube root; add derived feature motion2
VERSION = '0.2.4c' # Modify by moving motion2 to c code
ATOM_FEATURES = ['vif', 'adm', 'ansnr', 'motion', 'motion2',
'vif_num', 'vif_den', 'adm_num', 'adm_den', 'anpsnr',
'vif_num_scale0', 'vif_den_scale0',
'vif_num_scale1', 'vif_den_scale1',
'vif_num_scale2', 'vif_den_scale2',
'vif_num_scale3', 'vif_den_scale3',
'adm_num_scale0', 'adm_den_scale0',
'adm_num_scale1', 'adm_den_scale1',
'adm_num_scale2', 'adm_den_scale2',
'adm_num_scale3', 'adm_den_scale3',
]
DERIVED_ATOM_FEATURES = ['vif_scale0', 'vif_scale1', 'vif_scale2', 'vif_scale3',
'vif2', 'adm2', 'adm3',
'adm_scale0', 'adm_scale1', 'adm_scale2', 'adm_scale3',
]
ADM2_CONSTANT = 0
ADM_SCALE_CONSTANT = 0
def _generate_result(self, asset):
# routine to call the command-line executable and generate feature
# scores in the log file.
quality_width, quality_height = asset.quality_width_height
log_file_path = self._get_log_file_path(asset)
yuv_type=self._get_workfile_yuv_type(asset)
ref_path=asset.ref_workfile_path
dis_path=asset.dis_workfile_path
w=quality_width
h=quality_height
logger = self.logger
ExternalProgramCaller.call_vmaf_feature(yuv_type, ref_path, dis_path, w, h, log_file_path, logger)
@classmethod
def _post_process_result(cls, result):
# override Executor._post_process_result
result = super(VmafFeatureExtractor, cls)._post_process_result(result)
# adm2 =
# (adm_num + ADM2_CONSTANT) / (adm_den + ADM2_CONSTANT)
adm2_scores_key = cls.get_scores_key('adm2')
adm_num_scores_key = cls.get_scores_key('adm_num')
adm_den_scores_key = cls.get_scores_key('adm_den')
result.result_dict[adm2_scores_key] = list(
(np.array(result.result_dict[adm_num_scores_key]) + cls.ADM2_CONSTANT) /
(np.array(result.result_dict[adm_den_scores_key]) + cls.ADM2_CONSTANT)
)
# vif_scalei = vif_num_scalei / vif_den_scalei, i = 0, 1, 2, 3
vif_num_scale0_scores_key = cls.get_scores_key('vif_num_scale0')
vif_den_scale0_scores_key = cls.get_scores_key('vif_den_scale0')
vif_num_scale1_scores_key = cls.get_scores_key('vif_num_scale1')
vif_den_scale1_scores_key = cls.get_scores_key('vif_den_scale1')
vif_num_scale2_scores_key = cls.get_scores_key('vif_num_scale2')
vif_den_scale2_scores_key = cls.get_scores_key('vif_den_scale2')
vif_num_scale3_scores_key = cls.get_scores_key('vif_num_scale3')
vif_den_scale3_scores_key = cls.get_scores_key('vif_den_scale3')
vif_scale0_scores_key = cls.get_scores_key('vif_scale0')
vif_scale1_scores_key = cls.get_scores_key('vif_scale1')
vif_scale2_scores_key = cls.get_scores_key('vif_scale2')
vif_scale3_scores_key = cls.get_scores_key('vif_scale3')
result.result_dict[vif_scale0_scores_key] = list(
(np.array(result.result_dict[vif_num_scale0_scores_key])
/ np.array(result.result_dict[vif_den_scale0_scores_key]))
)
result.result_dict[vif_scale1_scores_key] = list(
(np.array(result.result_dict[vif_num_scale1_scores_key])
/ np.array(result.result_dict[vif_den_scale1_scores_key]))
)
result.result_dict[vif_scale2_scores_key] = list(
(np.array(result.result_dict[vif_num_scale2_scores_key])
/ np.array(result.result_dict[vif_den_scale2_scores_key]))
)
result.result_dict[vif_scale3_scores_key] = list(
(np.array(result.result_dict[vif_num_scale3_scores_key])
/ np.array(result.result_dict[vif_den_scale3_scores_key]))
)
# vif2 =
# ((vif_num_scale0 / vif_den_scale0) + (vif_num_scale1 / vif_den_scale1) +
# (vif_num_scale2 / vif_den_scale2) + (vif_num_scale3 / vif_den_scale3)) / 4.0
vif_scores_key = cls.get_scores_key('vif2')
result.result_dict[vif_scores_key] = list(
(
(np.array(result.result_dict[vif_num_scale0_scores_key])
/ np.array(result.result_dict[vif_den_scale0_scores_key])) +
(np.array(result.result_dict[vif_num_scale1_scores_key])
/ np.array(result.result_dict[vif_den_scale1_scores_key])) +
(np.array(result.result_dict[vif_num_scale2_scores_key])
/ np.array(result.result_dict[vif_den_scale2_scores_key])) +
(np.array(result.result_dict[vif_num_scale3_scores_key])
/ np.array(result.result_dict[vif_den_scale3_scores_key]))
) / 4.0
)
# adm_scalei = adm_num_scalei / adm_den_scalei, i = 0, 1, 2, 3
adm_num_scale0_scores_key = cls.get_scores_key('adm_num_scale0')
adm_den_scale0_scores_key = cls.get_scores_key('adm_den_scale0')
adm_num_scale1_scores_key = cls.get_scores_key('adm_num_scale1')
adm_den_scale1_scores_key = cls.get_scores_key('adm_den_scale1')
adm_num_scale2_scores_key = cls.get_scores_key('adm_num_scale2')
adm_den_scale2_scores_key = cls.get_scores_key('adm_den_scale2')
adm_num_scale3_scores_key = cls.get_scores_key('adm_num_scale3')
adm_den_scale3_scores_key = cls.get_scores_key('adm_den_scale3')
adm_scale0_scores_key = cls.get_scores_key('adm_scale0')
adm_scale1_scores_key = cls.get_scores_key('adm_scale1')
adm_scale2_scores_key = cls.get_scores_key('adm_scale2')
adm_scale3_scores_key = cls.get_scores_key('adm_scale3')
result.result_dict[adm_scale0_scores_key] = list(
(np.array(result.result_dict[adm_num_scale0_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale0_scores_key]) + cls.ADM_SCALE_CONSTANT)
)
result.result_dict[adm_scale1_scores_key] = list(
(np.array(result.result_dict[adm_num_scale1_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ (np.array(result.result_dict[adm_den_scale1_scores_key]) + cls.ADM_SCALE_CONSTANT)
)
result.result_dict[adm_scale2_scores_key] = list(
(np.array(result.result_dict[adm_num_scale2_scores_key]) + cls.ADM_SCALE_CONSTANT)
/ ( | np.array(result.result_dict[adm_den_scale2_scores_key]) | numpy.array |
import numpy as np
from typing import Tuple, Union, Optional
from autoarray.structures.arrays.two_d import array_2d_util
from autoarray.geometry import geometry_util
from autoarray import numba_util
from autoarray.mask import mask_2d_util
@numba_util.jit()
def grid_2d_centre_from(grid_2d_slim: np.ndarray) -> Tuple[float, float]:
"""
Returns the centre of a grid from a 1D grid.
Parameters
----------
grid_2d_slim
The 1D grid of values which are mapped to a 2D array.
Returns
-------
(float, float)
The (y,x) central coordinates of the grid.
"""
centre_y = (np.max(grid_2d_slim[:, 0]) + np.min(grid_2d_slim[:, 0])) / 2.0
centre_x = (np.max(grid_2d_slim[:, 1]) + np.min(grid_2d_slim[:, 1])) / 2.0
return centre_y, centre_x
@numba_util.jit()
def grid_2d_slim_via_mask_from(
mask_2d: np.ndarray,
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into
a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates a the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned on an array of shape (total_unmasked_pixels*sub_size**2, 2). y coordinates are
stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked coordinates are therefore
removed and not included in the slimmed grid.
Grid2D are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0.
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
mask_2d
A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated
sub-grid.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A slimmed sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_unmasked_pixels*sub_size**2, 2).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_slim = grid_2d_slim_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0))
"""
total_sub_pixels = mask_2d_util.total_sub_pixels_2d_from(mask_2d, sub_size)
grid_slim = np.zeros(shape=(total_sub_pixels, 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=mask_2d.shape, pixel_scales=pixel_scales, origin=origin
)
sub_index = 0
y_sub_half = pixel_scales[0] / 2
y_sub_step = pixel_scales[0] / (sub_size)
x_sub_half = pixel_scales[1] / 2
x_sub_step = pixel_scales[1] / (sub_size)
for y in range(mask_2d.shape[0]):
for x in range(mask_2d.shape[1]):
if not mask_2d[y, x]:
y_scaled = (y - centres_scaled[0]) * pixel_scales[0]
x_scaled = (x - centres_scaled[1]) * pixel_scales[1]
for y1 in range(sub_size):
for x1 in range(sub_size):
grid_slim[sub_index, 0] = -(
y_scaled - y_sub_half + y1 * y_sub_step + (y_sub_step / 2.0)
)
grid_slim[sub_index, 1] = (
x_scaled - x_sub_half + x1 * x_sub_step + (x_sub_step / 2.0)
)
sub_index += 1
return grid_slim
def grid_2d_via_mask_from(
mask_2d: np.ndarray,
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a
finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size).
y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index. Masked pixels are
given values (0.0, 0.0).
Grids are defined from the top-left corner, where the first unmasked sub-pixel corresponds to index 0.
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
mask_2d
A 2D array of bools, where `False` values are unmasked and therefore included as part of the calculated
sub-grid.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_2d = grid_2d_via_mask_from(mask=mask, pixel_scales=(0.5, 0.5), sub_size=1, origin=(0.0, 0.0))
"""
grid_2d_slim = grid_2d_slim_via_mask_from(
mask_2d=mask_2d, pixel_scales=pixel_scales, sub_size=sub_size, origin=origin
)
return grid_2d_native_from(
grid_2d_slim=grid_2d_slim, mask_2d=mask_2d, sub_size=sub_size
)
def grid_2d_slim_via_shape_native_from(
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided into a
finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes the (y,x)
scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its slimmed dimensions with shape (total_pixels**2*sub_size**2, 2). y coordinates are
stored in the 0 index of the second dimension, x coordinates in the 1 index.
Grid2D are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0].
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
shape_native
The (y,x) shape of the 2D array the sub-grid of coordinates is computed for.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid is slimmed and has dimensions (total_unmasked_pixels*sub_size**2, 2).
Examples
--------
mask = np.array([[True, False, True],
[False, False, False]
[True, False, True]])
grid_2d_slim = grid_2d_slim_via_shape_native_from(shape_native=(3,3), pixel_scales=(0.5, 0.5), sub_size=2, origin=(0.0, 0.0))
"""
return grid_2d_slim_via_mask_from(
mask_2d=np.full(fill_value=False, shape=shape_native),
pixel_scales=pixel_scales,
sub_size=sub_size,
origin=origin,
)
def grid_2d_via_shape_native_from(
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
For a sub-grid, every unmasked pixel of its 2D mask with shape (total_y_pixels, total_x_pixels) is divided
into a finer uniform grid of shape (total_y_pixels*sub_size, total_x_pixels*sub_size). This routine computes
the (y,x) scaled coordinates at the centre of every sub-pixel defined by this 2D mask array.
The sub-grid is returned in its native dimensions with shape (total_y_pixels*sub_size, total_x_pixels*sub_size).
y coordinates are stored in the 0 index of the second dimension, x coordinates in the 1 index.
Grids are defined from the top-left corner, where the first sub-pixel corresponds to index [0,0].
Sub-pixels that are part of the same mask array pixel are indexed next to one another, such that the second
sub-pixel in the first pixel has index 1, its next sub-pixel has index 2, and so forth.
Parameters
----------
shape_native
The (y,x) shape of the 2D array the sub-grid of coordinates is computed for.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
origin : (float, flloat)
The (y,x) origin of the 2D array, which the sub-grid is shifted around.
Returns
-------
ndarray
A sub grid of (y,x) scaled coordinates at the centre of every pixel unmasked pixel on the 2D mask
array. The sub grid array has dimensions (total_y_pixels*sub_size, total_x_pixels*sub_size).
Examples
--------
grid_2d = grid_2d_via_shape_native_from(shape_native=(3, 3), pixel_scales=(1.0, 1.0), sub_size=2, origin=(0.0, 0.0))
"""
return grid_2d_via_mask_from(
mask_2d=np.full(fill_value=False, shape=shape_native),
pixel_scales=pixel_scales,
sub_size=sub_size,
origin=origin,
)
@numba_util.jit()
def grid_scaled_2d_slim_radial_projected_from(
extent: np.ndarray,
centre: Tuple[float, float],
pixel_scales: Union[float, Tuple[float, float]],
sub_size: int,
shape_slim: Optional[int] = 0,
) -> np.ndarray:
"""
Determine a projected radial grid of points from a 2D region of coordinates defined by an
extent [xmin, xmax, ymin, ymax] and with a (y,x) centre. This functions operates as follows:
1) Given the region defined by the extent [xmin, xmax, ymin, ymax], the algorithm finds the longest 1D distance of
the 4 paths from the (y,x) centre to the edge of the region (e.g. following the positive / negative y and x axes).
2) Use the pixel-scale corresponding to the direction chosen (e.g. if the positive x-axis was the longest, the
pixel_scale in the x dimension is used).
3) Determine the number of pixels between the centre and the edge of the region using the longest path between the
two chosen above.
4) Create a (y,x) grid of radial points where all points are at the centre's y value = 0.0 and the x values iterate
from the centre in increasing steps of the pixel-scale.
5) Rotate these radial coordinates by the input `angle` clockwise.
A schematric is shown below:
-------------------
| |
|<- - - - ->x | x = centre
| | <-> = longest radial path from centre to extent edge
| |
-------------------
Using the centre x above, this function finds the longest radial path to the edge of the extent window.
The returned `grid_radii` represents a radial set of points that in 1D sample the 2D grid outwards from its centre.
This grid stores the radial coordinates as (y,x) values (where all y values are the same) as opposed to a 1D data
structure so that it can be used in functions which require that a 2D grid structure is input.
Parameters
----------
extent
The extent of the grid the radii grid is computed using, with format [xmin, xmax, ymin, ymax]
centre : (float, flloat)
The (y,x) central coordinate which the radial grid is traced outwards from.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the 2D mask array.
sub_size
The size of the sub-grid that each pixel of the 2D mask array is divided into.
shape_slim
Manually choose the shape of the 1D projected grid that is returned. If 0, the border based on the 2D grid is
used (due to numba None cannot be used as a default value).
Returns
-------
ndarray
A radial set of points sampling the longest distance from the centre to the edge of the extent in along the
positive x-axis.
"""
distance_to_positive_x = extent[1] - centre[1]
distance_to_positive_y = extent[3] - centre[0]
distance_to_negative_x = centre[1] - extent[0]
distance_to_negative_y = centre[0] - extent[2]
scaled_distance = max(
[
distance_to_positive_x,
distance_to_positive_y,
distance_to_negative_x,
distance_to_negative_y,
]
)
if (scaled_distance == distance_to_positive_y) or (
scaled_distance == distance_to_negative_y
):
pixel_scale = pixel_scales[0]
else:
pixel_scale = pixel_scales[1]
if shape_slim == 0:
shape_slim = sub_size * int((scaled_distance / pixel_scale)) + 1
grid_scaled_2d_slim_radii = np.zeros((shape_slim, 2))
grid_scaled_2d_slim_radii[:, 0] += centre[0]
radii = centre[1]
for slim_index in range(shape_slim):
grid_scaled_2d_slim_radii[slim_index, 1] = radii
radii += pixel_scale / sub_size
return grid_scaled_2d_slim_radii
@numba_util.jit()
def grid_pixels_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2d (y,x) scaled coordinates to a slimmed grid of 2d (y,x) pixel coordinate values. Pixel
coordinates are returned as floats such that they include the decimal offset from each pixel's top-left corner
relative to the input scaled coordinate.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled grid is defined by an origin and coordinates are shifted to this origin before computing their
1D grid pixel coordinate values.
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which are converted to pixel value coordinates.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted to.
Returns
-------
ndarray
A slimmed grid of 2D (y,x) pixel-value coordinates with dimensions (total_pixels, 2).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_pixels_2d_slim[slim_index, 0] = (
(-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0])
+ centres_scaled[0]
+ 0.5
)
grid_pixels_2d_slim[slim_index, 1] = (
(grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1])
+ centres_scaled[1]
+ 0.5
)
return grid_pixels_2d_slim
@numba_util.jit()
def grid_pixel_centres_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of 2D (y,x) pixel values. Pixel coordinates
are returned as integers such that they map directly to the pixel they are contained within.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted
Returns
-------
ndarray
A slimmed grid of 2D (y,x) pixel indexes with dimensions (total_pixels, 2).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = np.zeros((grid_scaled_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_pixels_2d_slim[slim_index, 0] = int(
(-grid_scaled_2d_slim[slim_index, 0] / pixel_scales[0])
+ centres_scaled[0]
+ 0.5
)
grid_pixels_2d_slim[slim_index, 1] = int(
(grid_scaled_2d_slim[slim_index, 1] / pixel_scales[1])
+ centres_scaled[1]
+ 0.5
)
return grid_pixels_2d_slim
@numba_util.jit()
def grid_pixel_indexes_2d_slim_from(
grid_scaled_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) scaled coordinates to a slimmed grid of pixel indexes. Pixel coordinates are
returned as integers such that they are the pixel from the top-left of the 2D grid going rights and then downwards.
The input and output grids are both slimmed and have shapes (total_pixels, 2) and (total_pixels,).
For example:
The pixel at the top-left, whose native index is [0,0], corresponds to slimmed pixel index 0.
The fifth pixel on the top row, whose native index is [0,5], corresponds to slimmed pixel index 4.
The first pixel on the second row, whose native index is [0,1], has slimmed pixel index 10 if a row has 10 pixels.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
The input and output grids are both of shape (total_pixels, 2).
Parameters
----------
grid_scaled_2d_slim: np.ndarray
The slimmed grid of 2D (y,x) coordinates in scaled units which is converted to slimmed pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted.
Returns
-------
ndarray
A grid of slimmed pixel indexes with dimensions (total_pixels,).
Examples
--------
grid_scaled_2d_slim = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixel_indexes_2d_slim = grid_pixel_indexes_2d_slim_from(grid_scaled_2d_slim=grid_scaled_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d_slim = grid_pixel_centres_2d_slim_from(
grid_scaled_2d_slim=grid_scaled_2d_slim,
shape_native=shape_native,
pixel_scales=pixel_scales,
origin=origin,
)
grid_pixel_indexes_2d_slim = np.zeros(grid_pixels_2d_slim.shape[0])
for slim_index in range(grid_pixels_2d_slim.shape[0]):
grid_pixel_indexes_2d_slim[slim_index] = int(
grid_pixels_2d_slim[slim_index, 0] * shape_native[1]
+ grid_pixels_2d_slim[slim_index, 1]
)
return grid_pixel_indexes_2d_slim
@numba_util.jit()
def grid_scaled_2d_slim_from(
grid_pixels_2d_slim: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a slimmed grid of 2D (y,x) pixel coordinates to a slimmed grid of 2D (y,x) scaled values.
The input and output grids are both slimmed and therefore shape (total_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate origin is defined by the class attribute origin, and coordinates are shifted to this
origin after computing their values from the 1D grid pixel indexes.
Parameters
----------
grid_pixels_2d_slim: np.ndarray
The slimmed grid of (y,x) coordinates in pixel values which is converted to scaled coordinates.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted.
Returns
-------
ndarray
A slimmed grid of 2d scaled coordinates with dimensions (total_pixels, 2).
Examples
--------
grid_pixels_2d_slim = np.array([[0,0], [0,1], [1,0], [1,1])
grid_pixels_2d_slim = grid_scaled_2d_slim_from(grid_pixels_2d_slim=grid_pixels_2d_slim, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_scaled_2d_slim = np.zeros((grid_pixels_2d_slim.shape[0], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for slim_index in range(grid_scaled_2d_slim.shape[0]):
grid_scaled_2d_slim[slim_index, 0] = (
-(grid_pixels_2d_slim[slim_index, 0] - centres_scaled[0] - 0.5)
* pixel_scales[0]
)
grid_scaled_2d_slim[slim_index, 1] = (
grid_pixels_2d_slim[slim_index, 1] - centres_scaled[1] - 0.5
) * pixel_scales[1]
return grid_scaled_2d_slim
@numba_util.jit()
def grid_pixel_centres_2d_from(
grid_scaled_2d: np.ndarray,
shape_native: Tuple[int, int],
pixel_scales: Union[float, Tuple[float, float]],
origin: Tuple[float, float] = (0.0, 0.0),
) -> np.ndarray:
"""
Convert a native grid of 2D (y,x) scaled coordinates to a native grid of 2D (y,x) pixel values. Pixel coordinates
are returned as integers such that they map directly to the pixel they are contained within.
The input and output grids are both native resolution and therefore have shape (y_pixels, x_pixels, 2).
The pixel coordinate origin is at the top left corner of the grid, such that the pixel [0,0] corresponds to
the highest (most positive) y scaled coordinate and lowest (most negative) x scaled coordinate on the gird.
The scaled coordinate grid is defined by the class attribute origin, and coordinates are shifted to this
origin before computing their 1D grid pixel indexes.
Parameters
----------
grid_scaled_2d: np.ndarray
The native grid of 2D (y,x) coordinates in scaled units which is converted to pixel indexes.
shape_native
The (y,x) shape of the original 2D array the scaled coordinates were computed on.
pixel_scales
The (y,x) scaled units to pixel units conversion factor of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the scaled grid is shifted
Returns
-------
ndarray
A native grid of 2D (y,x) pixel indexes with dimensions (y_pixels, x_pixels, 2).
Examples
--------
grid_scaled_2d = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixel_centres_2d = grid_pixel_centres_2d_from(grid_scaled_2d=grid_scaled_2d, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels_2d = np.zeros((grid_scaled_2d.shape[0], grid_scaled_2d.shape[1], 2))
centres_scaled = geometry_util.central_scaled_coordinate_2d_from(
shape_native=shape_native, pixel_scales=pixel_scales, origin=origin
)
for y in range(grid_scaled_2d.shape[0]):
for x in range(grid_scaled_2d.shape[1]):
grid_pixels_2d[y, x, 0] = int(
(-grid_scaled_2d[y, x, 0] / pixel_scales[0]) + centres_scaled[0] + 0.5
)
grid_pixels_2d[y, x, 1] = int(
(grid_scaled_2d[y, x, 1] / pixel_scales[1]) + centres_scaled[1] + 0.5
)
return grid_pixels_2d
@numba_util.jit()
def relocated_grid_via_jit_from(grid, border_grid):
"""
Relocate the coordinates of a grid to its border if they are outside the border, where the border is
defined as all pixels at the edge of the grid's mask (see *mask._border_1d_indexes*).
This is performed as follows:
1: Use the mean value of the grid's y and x coordinates to determine the origin of the grid.
2: Compute the radial distance of every grid coordinate from the origin.
3: For every coordinate, find its nearest pixel in the border.
4: Determine if it is outside the border, by comparing its radial distance from the origin to its paired
border pixel's radial distance.
5: If its radial distance is larger, use the ratio of radial distances to move the coordinate to the
border (if its inside the border, do nothing).
The method can be used on uniform or irregular grids, however for irregular grids the border of the
'image-plane' mask is used to define border pixels.
Parameters
----------
grid : Grid2D
The grid (uniform or irregular) whose pixels are to be relocated to the border edge if outside it.
border_grid : Grid2D
The grid of border (y,x) coordinates.
"""
grid_relocated = np.zeros(grid.shape)
grid_relocated[:, :] = grid[:, :]
border_origin = np.zeros(2)
border_origin[0] = np.mean(border_grid[:, 0])
border_origin[1] = np.mean(border_grid[:, 1])
border_grid_radii = np.sqrt(
np.add(
np.square(np.subtract(border_grid[:, 0], border_origin[0])),
np.square(np.subtract(border_grid[:, 1], border_origin[1])),
)
)
border_min_radii = np.min(border_grid_radii)
grid_radii = np.sqrt(
np.add(
np.square(np.subtract(grid[:, 0], border_origin[0])),
np.square(np.subtract(grid[:, 1], border_origin[1])),
)
)
for pixel_index in range(grid.shape[0]):
if grid_radii[pixel_index] > border_min_radii:
closest_pixel_index = np.argmin(
np.square(grid[pixel_index, 0] - border_grid[:, 0])
+ np.square(grid[pixel_index, 1] - border_grid[:, 1])
)
move_factor = (
border_grid_radii[closest_pixel_index] / grid_radii[pixel_index]
)
if move_factor < 1.0:
grid_relocated[pixel_index, :] = (
move_factor * (grid[pixel_index, :] - border_origin[:])
+ border_origin[:]
)
return grid_relocated
@numba_util.jit()
def furthest_grid_2d_slim_index_from(
grid_2d_slim: np.ndarray, slim_indexes: np.ndarray, coordinate: Tuple[float, float]
) -> int:
distance_to_centre = 0.0
for slim_index in slim_indexes:
y = grid_2d_slim[slim_index, 0]
x = grid_2d_slim[slim_index, 1]
distance_to_centre_new = (x - coordinate[1]) ** 2 + (y - coordinate[0]) ** 2
if distance_to_centre_new >= distance_to_centre:
distance_to_centre = distance_to_centre_new
furthest_grid_2d_slim_index = slim_index
return furthest_grid_2d_slim_index
def grid_2d_slim_from(
grid_2d_native: np.ndarray, mask: np.ndarray, sub_size: int
) -> np.ndarray:
"""
For a native 2D grid and mask of shape [total_y_pixels, total_x_pixels, 2], map the values of all unmasked
pixels to a slimmed grid of shape [total_unmasked_pixels, 2].
The pixel coordinate origin is at the top left corner of the native grid and goes right-wards and downwards, such
that for an grid of shape (3,3) where all pixels are unmasked:
- pixel [0,0] of the 2D grid will correspond to index 0 of the 1D grid.
- pixel [0,1] of the 2D grid will correspond to index 1 of the 1D grid.
- pixel [1,0] of the 2D grid will correspond to index 4 of the 1D grid.
Parameters
----------
grid_2d_native : ndarray
The native grid of (y,x) values which are mapped to the slimmed grid.
mask_2d
A 2D array of bools, where `False` values mean unmasked and are included in the mapping.
sub_size
The size (sub_size x sub_size) of each unmasked pixels sub-array.
Returns
-------
ndarray
A 1D grid of values mapped from the 2D grid with dimensions (total_unmasked_pixels).
"""
grid_1d_slim_y = array_2d_util.array_2d_slim_from(
array_2d_native=grid_2d_native[:, :, 0], mask_2d=mask, sub_size=sub_size
)
grid_1d_slim_x = array_2d_util.array_2d_slim_from(
array_2d_native=grid_2d_native[:, :, 1], mask_2d=mask, sub_size=sub_size
)
return np.stack((grid_1d_slim_y, grid_1d_slim_x), axis=-1)
def grid_2d_native_from(
grid_2d_slim: np.ndarray, mask_2d: np.ndarray, sub_size: int
) -> np.ndarray:
"""
For a slimmed 2D grid of shape [total_unmasked_pixels, 2], that was computed by extracting the unmasked values
from a native 2D grid of shape [total_y_pixels, total_x_pixels, 2], map the slimmed grid's coordinates back to the
native 2D grid where masked values are set to zero.
This uses a 1D array 'slim_to_native' where each index gives the 2D pixel indexes of the grid's native unmasked
pixels, for example:
- If slim_to_native[0] = [0,0], the first value of the 1D array maps to the pixels [0,0,:] of the native 2D grid.
- If slim_to_native[1] = [0,1], the second value of the 1D array maps to the pixels [0,1,:] of the native 2D grid.
- If slim_to_native[4] = [1,1], the fifth value of the 1D array maps to the pixels [1,1,:] of the native 2D grid.
Parameters
----------
grid_2d_slim
The (y,x) values of the slimmed 2D grid which are mapped to the native 2D grid.
mask_2d
A 2D array of bools, where `False` values mean unmasked and are included in the mapping.
sub_size
The size (sub_size x sub_size) of each unmasked pixels sub-array.
Returns
-------
ndarray
A NumPy array of shape [total_y_pixels, total_x_pixels, 2] corresponding to the (y,x) values of the native 2D
mapped from the slimmed grid.
"""
grid_2d_native_y = array_2d_util.array_2d_native_from(
array_2d_slim=grid_2d_slim[:, 0], mask_2d=mask_2d, sub_size=sub_size
)
grid_2d_native_x = array_2d_util.array_2d_native_from(
array_2d_slim=grid_2d_slim[:, 1], mask_2d=mask_2d, sub_size=sub_size
)
return | np.stack((grid_2d_native_y, grid_2d_native_x), axis=-1) | numpy.stack |
# -*- encoding:utf-8 -*-
# @Time : 2021/1/3 15:15
# @Author : gfjiang
import os.path as osp
import mmcv
import numpy as np
import cvtools
import matplotlib.pyplot as plt
import cv2.cv2 as cv
from functools import partial
import torch
import math
from cvtools.utils.path import add_prefix_filename_suffix
from mmdet.ops import nms
from mmdet.apis import init_detector, inference_detector
def draw_features(module, input, output, work_dir='./'):
x = output.cpu().numpy()
out_channels = list(output.shape)[1]
height = int(math.sqrt(out_channels))
width = height
if list(output.shape)[2] < 128:
return
fig = plt.figure(figsize=(32, 32))
fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, wspace=0.05, hspace=0.05)
for i in range(height * width):
plt.subplot(height, width, i + 1)
plt.axis('off')
img = x[0, i, :, :]
pmin = np.min(img)
pmax = np.max(img)
img = ((img - pmin) / (pmax - pmin + 0.000001))*255 # float在[0,1]之间,转换成0-255
img = img.astype(np.uint8) # 转成unit8
img = cv.applyColorMap(img, cv.COLORMAP_JET) # 生成heat map
img = img[:, :, ::-1] # 注意cv2(BGR)和matplotlib(RGB)通道是相反的
plt.imshow(img)
# print("{}/{}".format(i,width*height))
savename = get_image_name_for_hook(module, work_dir)
fig.savefig(savename, dpi=100)
fig.clf()
plt.close()
def get_image_name_for_hook(module, work_dir='./'):
"""
Generate image filename for hook function
Parameters:
-----------
module: module of neural network
"""
# os.makedirs(work_dir, exist_ok=True)
module_name = str(module)
base_name = module_name.split('(')[0]
index = 0
image_name = '.' # '.' is surely exist, to make first loop condition True
while osp.exists(image_name):
index += 1
image_name = osp.join(
work_dir, 'feats', '%s_%d.png' % (base_name, index))
return image_name
class AerialDetectionOBB(object):
def __init__(self, config, pth):
self.imgs = []
self.cfg = mmcv.Config.fromfile(config)
self.pth = pth
print('loading model {} ...'.format(pth))
self.model = init_detector(self.cfg, self.pth, device='cuda:0')
self.results = []
self.img_detected = []
# self.vis_feats((torch.nn.Conv2d, torch.nn.MaxPool2d))
def __call__(self,
imgs_or_path,
det_thrs=0.5,
vis=False,
vis_thr=0.5,
save_root=''):
if isinstance(imgs_or_path, str):
self.imgs += cvtools.get_files_list(imgs_or_path)
else:
self.imgs += imgs_or_path
prog_bar = mmcv.ProgressBar(len(self.imgs))
for _, img in enumerate(self.imgs):
self.detect(img, det_thrs=det_thrs, vis=vis,
vis_thr=vis_thr, save_root=save_root)
prog_bar.update()
def detect(self,
img,
det_thrs=0.5,
vis=False,
vis_thr=0.5,
save_root=''):
result = inference_detector(self.model, img)
# result = self.nms(result)
if isinstance(det_thrs, float):
det_thrs = [det_thrs] * len(result)
if vis:
to_file = osp.join(save_root, osp.basename(img))
to_file = add_prefix_filename_suffix(to_file, suffix='_obb')
self.vis(img, result, vis_thr=vis_thr, to_file=to_file)
result = [det[det[..., -1] > det_thr] for det, det_thr
in zip(result, det_thrs)]
if len(result) == 0:
print('detect: image {} has no object.'.format(img))
self.img_detected.append(img)
self.results.append(result)
return result
def nms(self, result, nms_th=0.3):
dets_num = [len(det_cls) for det_cls in result]
result = | np.vstack(result) | numpy.vstack |
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 28 12:10:11 2019
@author: Omer
"""
## File handler
## This file was initially intended purely to generate the matrices for the near earth code found in: https://public.ccsds.org/Pubs/131x1o2e2s.pdf
## The values from the above pdf were copied manually to a txt file, and it is the purpose of this file to parse it.
## The emphasis here is on correctness, I currently do not see a reason to generalise this file, since matrices will be saved in either json or some matrix friendly format.
import numpy as np
from scipy.linalg import circulant
#import matplotlib.pyplot as plt
import scipy.io
import common
import hashlib
import os
projectDir = os.environ.get('LDPC')
if projectDir == None:
import pathlib
projectDir = pathlib.Path(__file__).parent.absolute()
## <NAME>: added on 01/12/2020, need to make sure this doesn't break anything.
import sys
sys.path.insert(1, projectDir)
FILE_HANDLER_INT_DATA_TYPE = np.int32
GENERAL_CODE_MATRIX_DATA_TYPE = np.int32
NIBBLE_CONVERTER = np.array([8, 4, 2, 1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
def nibbleToHex(inputArray):
n = NIBBLE_CONVERTER.dot(inputArray)
if n == 10:
h = 'A'
elif n== 11:
h = 'B'
elif n== 12:
h = 'C'
elif n== 13:
h = 'D'
elif n== 14:
h = 'E'
elif n== 15:
h = 'F'
else:
h = str(n)
return h
def binaryArraytoHex(inputArray):
d1 = len(inputArray)
assert (d1 % 4 == 0)
outputArray = np.zeros(d1//4, dtype = str)
outputString = ''
for j in range(d1//4):
nibble = inputArray[4 * j : 4 * j + 4]
h = nibbleToHex(nibble)
outputArray[j] = h
outputString = outputString + h
return outputArray, outputString
def hexStringToBinaryArray(hexString):
outputBinary = np.array([], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
for i in hexString:
if i == '0':
nibble = np.array([0,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '1':
nibble = np.array([0,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '2':
nibble = np.array([0,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '3':
nibble = np.array([0,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '4':
nibble = np.array([0,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '5':
nibble = np.array([0,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '6':
nibble = np.array([0,1,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '7':
nibble = np.array([0,1,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '8':
nibble = np.array([1,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == '9':
nibble = np.array([1,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'A':
nibble = np.array([1,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'B':
nibble = np.array([1,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'C':
nibble = np.array([1,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'D':
nibble = np.array([1,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'E':
nibble = np.array([1,1,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE)
elif i == 'F':
nibble = | np.array([1,1,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) | numpy.array |
#
# Copyright (c) 2021 The GPflux Contributors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import abc
import numpy as np
import pytest
import tensorflow as tf
import tensorflow_probability as tfp
from gpflow.kullback_leiblers import gauss_kl
from gpflux.encoders import DirectlyParameterizedNormalDiag
from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer
tf.keras.backend.set_floatx("float64")
############
# Utilities
############
def _zero_one_normal_prior(w_dim):
""" N(0, I) prior """
return tfp.distributions.MultivariateNormalDiag(loc=np.zeros(w_dim), scale_diag=np.ones(w_dim))
def get_distributions_with_w_dim():
distributions = []
for d in [1, 5]:
mean = np.zeros(d)
scale_tri_l = np.eye(d)
mvn = tfp.distributions.MultivariateNormalTriL(mean, scale_tri_l)
std = np.ones(d)
mvn_diag = tfp.distributions.MultivariateNormalDiag(mean, std)
distributions.append((mvn, d))
distributions.append((mvn_diag, d))
return distributions
############
# Tests
############
@pytest.mark.parametrize("distribution, w_dim", get_distributions_with_w_dim())
def test_local_kls(distribution, w_dim):
lv = LatentVariableLayer(encoder=None, prior=distribution)
# test kl is 0 when posteriors == priors
posterior = distribution
assert lv._local_kls(posterior) == 0
# test kl > 0 when posteriors != priors
batch_size = 10
params = distribution.parameters
posterior_params = {
k: [v + 0.5 for _ in range(batch_size)]
for k, v in params.items()
if isinstance(v, np.ndarray)
}
posterior = lv.distribution_class(**posterior_params)
local_kls = lv._local_kls(posterior)
assert np.all(local_kls > 0)
assert local_kls.shape == (batch_size,)
@pytest.mark.parametrize("w_dim", [1, 5])
def test_local_kl_gpflow_consistency(w_dim):
num_data = 400
means = np.random.randn(num_data, w_dim)
encoder = DirectlyParameterizedNormalDiag(num_data, w_dim, means)
lv = LatentVariableLayer(encoder=encoder, prior=_zero_one_normal_prior(w_dim))
posteriors = lv._inference_posteriors(
[np.random.randn(num_data, 3), np.random.randn(num_data, 2)]
)
q_mu = posteriors.parameters["loc"]
q_sqrt = posteriors.parameters["scale_diag"]
gpflow_local_kls = gauss_kl(q_mu, q_sqrt)
tfp_local_kls = tf.reduce_sum(lv._local_kls(posteriors))
np.testing.assert_allclose(tfp_local_kls, gpflow_local_kls, rtol=1e-10)
class ArrayMatcher:
def __init__(self, expected):
self.expected = expected
def __eq__(self, actual):
return np.allclose(actual, self.expected, equal_nan=True)
@pytest.mark.parametrize("w_dim", [1, 5])
def test_latent_variable_layer_losses(mocker, w_dim):
num_data, x_dim, y_dim = 43, 3, 1
prior_shape = (w_dim,)
posteriors_shape = (num_data, w_dim)
prior = tfp.distributions.MultivariateNormalDiag(
loc=np.random.randn(*prior_shape),
scale_diag= | np.random.randn(*prior_shape) | numpy.random.randn |
'''
<NAME>
set up :2020-1-9
intergrate img and label into one file
-- fiducial1024_v1
'''
import argparse
import sys, os
import pickle
import random
import collections
import json
import numpy as np
import scipy.io as io
import scipy.misc as m
import matplotlib.pyplot as plt
import glob
import math
import time
import threading
import multiprocessing as mp
from multiprocessing import Pool
import re
import cv2
# sys.path.append('/lustre/home/gwxie/hope/project/dewarp/datasets/') # /lustre/home/gwxie/program/project/unwarp/perturbed_imgaes/GAN
import utils
def getDatasets(dir):
return os.listdir(dir)
class perturbed(utils.BasePerturbed):
def __init__(self, path, bg_path, save_path, save_suffix):
self.path = path
self.bg_path = bg_path
self.save_path = save_path
self.save_suffix = save_suffix
def save_img(self, m, n, fold_curve='fold', repeat_time=4, fiducial_points = 16, relativeShift_position='relativeShift_v2'):
origin_img = cv2.imread(self.path, flags=cv2.IMREAD_COLOR)
save_img_shape = [512*2, 480*2] # 320
# reduce_value = np.random.choice([2**4, 2**5, 2**6, 2**7, 2**8], p=[0.01, 0.1, 0.4, 0.39, 0.1])
reduce_value = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.02, 0.18, 0.2, 0.3, 0.1, 0.1, 0.08, 0.02])
# reduce_value = np.random.choice([8*2, 16*2, 24*2, 32*2, 40*2, 48*2], p=[0.01, 0.02, 0.2, 0.4, 0.19, 0.18])
# reduce_value = np.random.choice([16, 24, 32, 40, 48, 64], p=[0.01, 0.1, 0.2, 0.4, 0.2, 0.09])
base_img_shrink = save_img_shape[0] - reduce_value
# enlarge_img_shrink = [1024, 768]
# enlarge_img_shrink = [896, 672] # 420
enlarge_img_shrink = [512*4, 480*4] # 420
# enlarge_img_shrink = [896*2, 768*2] # 420
# enlarge_img_shrink = [896, 768] # 420
# enlarge_img_shrink = [768, 576] # 420
# enlarge_img_shrink = [640, 480] # 420
''''''
im_lr = origin_img.shape[0]
im_ud = origin_img.shape[1]
reduce_value_v2 = np.random.choice([2*2, 4*2, 8*2, 16*2, 24*2, 28*2, 32*2, 48*2], p=[0.02, 0.18, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1])
# reduce_value_v2 = np.random.choice([16, 24, 28, 32, 48, 64], p=[0.01, 0.1, 0.2, 0.3, 0.25, 0.14])
if im_lr > im_ud:
im_ud = min(int(im_ud / im_lr * base_img_shrink), save_img_shape[1] - reduce_value_v2)
im_lr = save_img_shape[0] - reduce_value
else:
base_img_shrink = save_img_shape[1] - reduce_value
im_lr = min(int(im_lr / im_ud * base_img_shrink), save_img_shape[0] - reduce_value_v2)
im_ud = base_img_shrink
if round(im_lr / im_ud, 2) < 0.5 or round(im_ud / im_lr, 2) < 0.5:
repeat_time = min(repeat_time, 8)
edge_padding = 3
im_lr -= im_lr % (fiducial_points-1) - (2*edge_padding) # im_lr % (fiducial_points-1) - 1
im_ud -= im_ud % (fiducial_points-1) - (2*edge_padding) # im_ud % (fiducial_points-1) - 1
im_hight = np.linspace(edge_padding, im_lr - edge_padding, fiducial_points, dtype=np.int64)
im_wide = np.linspace(edge_padding, im_ud - edge_padding, fiducial_points, dtype=np.int64)
# im_lr -= im_lr % (fiducial_points-1) - (1+2*edge_padding) # im_lr % (fiducial_points-1) - 1
# im_ud -= im_ud % (fiducial_points-1) - (1+2*edge_padding) # im_ud % (fiducial_points-1) - 1
# im_hight = np.linspace(edge_padding, im_lr - (1+edge_padding), fiducial_points, dtype=np.int64)
# im_wide = np.linspace(edge_padding, im_ud - (1+edge_padding), fiducial_points, dtype=np.int64)
im_x, im_y = np.meshgrid(im_hight, im_wide)
segment_x = (im_lr) // (fiducial_points-1)
segment_y = (im_ud) // (fiducial_points-1)
# plt.plot(im_x, im_y,
# color='limegreen',
# marker='.',
# linestyle='')
# plt.grid(True)
# plt.show()
self.origin_img = cv2.resize(origin_img, (im_ud, im_lr), interpolation=cv2.INTER_CUBIC)
perturbed_bg_ = getDatasets(self.bg_path)
perturbed_bg_img_ = self.bg_path+random.choice(perturbed_bg_)
perturbed_bg_img = cv2.imread(perturbed_bg_img_, flags=cv2.IMREAD_COLOR)
mesh_shape = self.origin_img.shape[:2]
self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 256, dtype=np.float32)#np.zeros_like(perturbed_bg_img)
# self.synthesis_perturbed_img = np.full((enlarge_img_shrink[0], enlarge_img_shrink[1], 3), 0, dtype=np.int16)#np.zeros_like(perturbed_bg_img)
self.new_shape = self.synthesis_perturbed_img.shape[:2]
perturbed_bg_img = cv2.resize(perturbed_bg_img, (save_img_shape[1], save_img_shape[0]), cv2.INPAINT_TELEA)
origin_pixel_position = np.argwhere(np.zeros(mesh_shape, dtype=np.uint32) == 0).reshape(mesh_shape[0], mesh_shape[1], 2)
pixel_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(self.new_shape[0], self.new_shape[1], 2)
self.perturbed_xy_ = np.zeros((self.new_shape[0], self.new_shape[1], 2))
# self.perturbed_xy_ = pixel_position.copy().astype(np.float32)
# fiducial_points_grid = origin_pixel_position[im_x, im_y]
self.synthesis_perturbed_label = np.zeros((self.new_shape[0], self.new_shape[1], 2))
x_min, y_min, x_max, y_max = self.adjust_position_v2(0, 0, mesh_shape[0], mesh_shape[1], save_img_shape)
origin_pixel_position += [x_min, y_min]
x_min, y_min, x_max, y_max = self.adjust_position(0, 0, mesh_shape[0], mesh_shape[1])
x_shift = random.randint(-enlarge_img_shrink[0]//16, enlarge_img_shrink[0]//16)
y_shift = random.randint(-enlarge_img_shrink[1]//16, enlarge_img_shrink[1]//16)
x_min += x_shift
x_max += x_shift
y_min += y_shift
y_max += y_shift
'''im_x,y'''
im_x += x_min
im_y += y_min
self.synthesis_perturbed_img[x_min:x_max, y_min:y_max] = self.origin_img
self.synthesis_perturbed_label[x_min:x_max, y_min:y_max] = origin_pixel_position
synthesis_perturbed_img_map = self.synthesis_perturbed_img.copy()
synthesis_perturbed_label_map = self.synthesis_perturbed_label.copy()
foreORbackground_label = np.full((mesh_shape), 1, dtype=np.int16)
foreORbackground_label_map = np.full((self.new_shape), 0, dtype=np.int16)
foreORbackground_label_map[x_min:x_max, y_min:y_max] = foreORbackground_label
# synthesis_perturbed_img_map = self.pad(self.synthesis_perturbed_img.copy(), x_min, y_min, x_max, y_max)
# synthesis_perturbed_label_map = self.pad(synthesis_perturbed_label_map, x_min, y_min, x_max, y_max)
'''*****************************************************************'''
is_normalizationFun_mixture = self.is_perform(0.2, 0.8)
# if not is_normalizationFun_mixture:
normalizationFun_0_1 = False
# normalizationFun_0_1 = self.is_perform(0.5, 0.5)
if fold_curve == 'fold':
fold_curve_random = True
# is_normalizationFun_mixture = False
normalizationFun_0_1 = self.is_perform(0.2, 0.8)
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
fold_curve_random = self.is_perform(0.1, 0.9) # False # self.is_perform(0.01, 0.99)
alpha_perturbed = random.randint(80, 160) / 100
# is_normalizationFun_mixture = False # self.is_perform(0.01, 0.99)
synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 256)
# synthesis_perturbed_img = np.full_like(self.synthesis_perturbed_img, 0, dtype=np.int16)
synthesis_perturbed_label = np.zeros_like(self.synthesis_perturbed_label)
alpha_perturbed_change = self.is_perform(0.5, 0.5)
p_pp_choice = self.is_perform(0.8, 0.2) if fold_curve == 'fold' else self.is_perform(0.1, 0.9)
for repeat_i in range(repeat_time):
if alpha_perturbed_change:
if fold_curve == 'fold':
if is_normalizationFun_mixture:
alpha_perturbed = random.randint(80, 120) / 100
else:
if normalizationFun_0_1 and repeat_time < 8:
alpha_perturbed = random.randint(50, 70) / 100
else:
alpha_perturbed = random.randint(70, 130) / 100
else:
alpha_perturbed = random.randint(80, 160) / 100
''''''
linspace_x = [0, (self.new_shape[0] - im_lr) // 2 - 1,
self.new_shape[0] - (self.new_shape[0] - im_lr) // 2 - 1, self.new_shape[0] - 1]
linspace_y = [0, (self.new_shape[1] - im_ud) // 2 - 1,
self.new_shape[1] - (self.new_shape[1] - im_ud) // 2 - 1, self.new_shape[1] - 1]
linspace_x_seq = [1, 2, 3]
linspace_y_seq = [1, 2, 3]
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_p = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
if ((r_x == 1 or r_x == 3) and (r_y == 1 or r_y == 3)) and p_pp_choice:
linspace_x_seq.remove(r_x)
linspace_y_seq.remove(r_y)
r_x = random.choice(linspace_x_seq)
r_y = random.choice(linspace_y_seq)
perturbed_pp = np.array(
[random.randint(linspace_x[r_x-1] * 10, linspace_x[r_x] * 10),
random.randint(linspace_y[r_y-1] * 10, linspace_y[r_y] * 10)])/10
# perturbed_p, perturbed_pp = np.array(
# [random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10]) \
# , np.array([random.randint(0, self.new_shape[0] * 10) / 10,
# random.randint(0, self.new_shape[1] * 10) / 10])
# perturbed_p, perturbed_pp = np.array(
# [random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10]) \
# , np.array([random.randint((self.new_shape[0]-im_lr)//2*10, (self.new_shape[0]-(self.new_shape[0]-im_lr)//2) * 10) / 10,
# random.randint((self.new_shape[1]-im_ud)//2*10, (self.new_shape[1]-(self.new_shape[1]-im_ud)//2) * 10) / 10])
''''''
perturbed_vp = perturbed_pp - perturbed_p
perturbed_vp_norm = np.linalg.norm(perturbed_vp)
perturbed_distance_vertex_and_line = np.dot((perturbed_p - pixel_position), perturbed_vp) / perturbed_vp_norm
''''''
# perturbed_v = np.array([random.randint(-3000, 3000) / 100, random.randint(-3000, 3000) / 100])
# perturbed_v = np.array([random.randint(-4000, 4000) / 100, random.randint(-4000, 4000) / 100])
if fold_curve == 'fold' and self.is_perform(0.6, 0.4): # self.is_perform(0.3, 0.7):
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
perturbed_v = np.array([random.randint(-10000, 10000) / 100, random.randint(-10000, 10000) / 100])
# perturbed_v = np.array([random.randint(-11000, 11000) / 100, random.randint(-11000, 11000) / 100])
else:
# perturbed_v = np.array([random.randint(-9000, 9000) / 100, random.randint(-9000, 9000) / 100])
# perturbed_v = np.array([random.randint(-16000, 16000) / 100, random.randint(-16000, 16000) / 100])
perturbed_v = np.array([random.randint(-8000, 8000) / 100, random.randint(-8000, 8000) / 100])
# perturbed_v = np.array([random.randint(-3500, 3500) / 100, random.randint(-3500, 3500) / 100])
# perturbed_v = np.array([random.randint(-600, 600) / 10, random.randint(-600, 600) / 10])
''''''
if fold_curve == 'fold':
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
if is_normalizationFun_mixture:
if self.is_perform(0.5, 0.5):
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
else:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), random.randint(1, 2))
else:
if normalizationFun_0_1:
perturbed_d = self.get_0_1_d(np.abs(perturbed_distance_vertex_and_line), 2)
else:
perturbed_d = np.abs(self.get_normalize(perturbed_distance_vertex_and_line))
''''''
if fold_curve_random:
# omega_perturbed = (alpha_perturbed+0.2) / (perturbed_d + alpha_perturbed)
# omega_perturbed = alpha_perturbed**perturbed_d
omega_perturbed = alpha_perturbed / (perturbed_d + alpha_perturbed)
else:
omega_perturbed = 1 - perturbed_d ** alpha_perturbed
'''shadow'''
if self.is_perform(0.6, 0.4):
synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] = np.minimum(np.maximum(synthesis_perturbed_img_map[x_min:x_max, y_min:y_max] - np.int16(np.round(omega_perturbed[x_min:x_max, y_min:y_max].repeat(3).reshape(x_max-x_min, y_max-y_min, 3) * abs(np.linalg.norm(perturbed_v//2))*np.array([0.4-random.random()*0.1, 0.4-random.random()*0.1, 0.4-random.random()*0.1]))), 0), 255)
''''''
if relativeShift_position in ['position', 'relativeShift_v2']:
self.perturbed_xy_ += np.array([omega_perturbed * perturbed_v[0], omega_perturbed * perturbed_v[1]]).transpose(1, 2, 0)
else:
print('relativeShift_position error')
exit()
'''
flat_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(
self.new_shape[0] * self.new_shape[1], 2)
vtx, wts = self.interp_weights(self.perturbed_xy_.reshape(self.new_shape[0] * self.new_shape[1], 2), flat_position)
wts_sum = np.abs(wts).sum(-1)
# flat_img.reshape(flat_shape[0] * flat_shape[1], 3)[:] = interpolate(pixel, vtx, wts)
wts = wts[wts_sum <= 1, :]
vtx = vtx[wts_sum <= 1, :]
synthesis_perturbed_img.reshape(self.new_shape[0] * self.new_shape[1], 3)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_img_map.reshape(self.new_shape[0] * self.new_shape[1], 3), vtx, wts)
synthesis_perturbed_label.reshape(self.new_shape[0] * self.new_shape[1], 2)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_label_map.reshape(self.new_shape[0] * self.new_shape[1], 2), vtx, wts)
foreORbackground_label = np.zeros(self.new_shape)
foreORbackground_label.reshape(self.new_shape[0] * self.new_shape[1], 1)[wts_sum <= 1, :] = self.interpolate(foreORbackground_label_map.reshape(self.new_shape[0] * self.new_shape[1], 1), vtx, wts)
foreORbackground_label[foreORbackground_label < 0.99] = 0
foreORbackground_label[foreORbackground_label >= 0.99] = 1
# synthesis_perturbed_img = np.around(synthesis_perturbed_img).astype(np.uint8)
synthesis_perturbed_label[:, :, 0] *= foreORbackground_label
synthesis_perturbed_label[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 0] *= foreORbackground_label
synthesis_perturbed_img[:, :, 1] *= foreORbackground_label
synthesis_perturbed_img[:, :, 2] *= foreORbackground_label
self.synthesis_perturbed_img = synthesis_perturbed_img
self.synthesis_perturbed_label = synthesis_perturbed_label
'''
'''perspective'''
perspective_shreshold = random.randint(26, 36)*10 # 280
x_min_per, y_min_per, x_max_per, y_max_per = self.adjust_position(perspective_shreshold, perspective_shreshold, self.new_shape[0]-perspective_shreshold, self.new_shape[1]-perspective_shreshold)
pts1 = np.float32([[x_min_per, y_min_per], [x_max_per, y_min_per], [x_min_per, y_max_per], [x_max_per, y_max_per]])
e_1_ = x_max_per - x_min_per
e_2_ = y_max_per - y_min_per
e_3_ = e_2_
e_4_ = e_1_
perspective_shreshold_h = e_1_*0.02
perspective_shreshold_w = e_2_*0.02
a_min_, a_max_ = 70, 110
# if self.is_perform(1, 0):
if fold_curve == 'curve' and self.is_perform(0.5, 0.5):
if self.is_perform(0.5, 0.5):
while True:
pts2 = np.around(
np.float32([[x_min_per - (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_min_per + (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold]])) # right
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
else:
while True:
pts2 = np.around(
np.float32([[x_min_per + (random.random()) * perspective_shreshold, y_min_per - (random.random()) * perspective_shreshold],
[x_max_per + (random.random()) * perspective_shreshold, y_min_per + (random.random()) * perspective_shreshold],
[x_min_per - (random.random()) * perspective_shreshold, y_max_per - (random.random()) * perspective_shreshold],
[x_max_per - (random.random()) * perspective_shreshold, y_max_per + (random.random()) * perspective_shreshold]]))
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
else:
while True:
pts2 = np.around(np.float32([[x_min_per+(random.random()-0.5)*perspective_shreshold, y_min_per+(random.random()-0.5)*perspective_shreshold],
[x_max_per+(random.random()-0.5)*perspective_shreshold, y_min_per+(random.random()-0.5)*perspective_shreshold],
[x_min_per+(random.random()-0.5)*perspective_shreshold, y_max_per+(random.random()-0.5)*perspective_shreshold],
[x_max_per+(random.random()-0.5)*perspective_shreshold, y_max_per+(random.random()-0.5)*perspective_shreshold]]))
e_1 = np.linalg.norm(pts2[0]-pts2[1])
e_2 = np.linalg.norm(pts2[0]-pts2[2])
e_3 = np.linalg.norm(pts2[1]-pts2[3])
e_4 = np.linalg.norm(pts2[2]-pts2[3])
if e_1_+perspective_shreshold_h > e_1 and e_2_+perspective_shreshold_w > e_2 and e_3_+perspective_shreshold_w > e_3 and e_4_+perspective_shreshold_h > e_4 and \
e_1_ - perspective_shreshold_h < e_1 and e_2_ - perspective_shreshold_w < e_2 and e_3_ - perspective_shreshold_w < e_3 and e_4_ - perspective_shreshold_h < e_4 and \
abs(e_1-e_4) < perspective_shreshold_h and abs(e_2-e_3) < perspective_shreshold_w:
a0_, a1_, a2_, a3_ = self.get_angle_4(pts2)
if (a0_ > a_min_ and a0_ < a_max_) or (a1_ > a_min_ and a1_ < a_max_) or (a2_ > a_min_ and a2_ < a_max_) or (a3_ > a_min_ and a3_ < a_max_):
break
M = cv2.getPerspectiveTransform(pts1, pts2)
one = np.ones((self.new_shape[0], self.new_shape[1], 1), dtype=np.int16)
matr = np.dstack((pixel_position, one))
new = np.dot(M, matr.reshape(-1, 3).T).T.reshape(self.new_shape[0], self.new_shape[1], 3)
x = new[:, :, 0]/new[:, :, 2]
y = new[:, :, 1]/new[:, :, 2]
perturbed_xy_ = np.dstack((x, y))
# perturbed_xy_round_int = np.around(cv2.bilateralFilter(perturbed_xy_round_int, 9, 75, 75))
# perturbed_xy_round_int = np.around(cv2.blur(perturbed_xy_, (17, 17)))
# perturbed_xy_round_int = cv2.blur(perturbed_xy_round_int, (17, 17))
# perturbed_xy_round_int = cv2.GaussianBlur(perturbed_xy_round_int, (7, 7), 0)
perturbed_xy_ = perturbed_xy_-np.min(perturbed_xy_.T.reshape(2, -1), 1)
# perturbed_xy_round_int = np.around(perturbed_xy_round_int-np.min(perturbed_xy_round_int.T.reshape(2, -1), 1)).astype(np.int16)
self.perturbed_xy_ += perturbed_xy_
'''perspective end'''
'''to img'''
flat_position = np.argwhere(np.zeros(self.new_shape, dtype=np.uint32) == 0).reshape(
self.new_shape[0] * self.new_shape[1], 2)
# self.perturbed_xy_ = cv2.blur(self.perturbed_xy_, (7, 7))
self.perturbed_xy_ = cv2.GaussianBlur(self.perturbed_xy_, (7, 7), 0)
'''get fiducial points'''
fiducial_points_coordinate = self.perturbed_xy_[im_x, im_y]
vtx, wts = self.interp_weights(self.perturbed_xy_.reshape(self.new_shape[0] * self.new_shape[1], 2), flat_position)
wts_sum = np.abs(wts).sum(-1)
# flat_img.reshape(flat_shape[0] * flat_shape[1], 3)[:] = interpolate(pixel, vtx, wts)
wts = wts[wts_sum <= 1, :]
vtx = vtx[wts_sum <= 1, :]
synthesis_perturbed_img.reshape(self.new_shape[0] * self.new_shape[1], 3)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_img_map.reshape(self.new_shape[0] * self.new_shape[1], 3), vtx, wts)
synthesis_perturbed_label.reshape(self.new_shape[0] * self.new_shape[1], 2)[wts_sum <= 1,
:] = self.interpolate(synthesis_perturbed_label_map.reshape(self.new_shape[0] * self.new_shape[1], 2), vtx, wts)
foreORbackground_label = np.zeros(self.new_shape)
foreORbackground_label.reshape(self.new_shape[0] * self.new_shape[1], 1)[wts_sum <= 1, :] = self.interpolate(foreORbackground_label_map.reshape(self.new_shape[0] * self.new_shape[1], 1), vtx, wts)
foreORbackground_label[foreORbackground_label < 0.99] = 0
foreORbackground_label[foreORbackground_label >= 0.99] = 1
self.synthesis_perturbed_img = synthesis_perturbed_img
self.synthesis_perturbed_label = synthesis_perturbed_label
self.foreORbackground_label = foreORbackground_label
'''draw fiducial points
stepSize = 0
fiducial_points_synthesis_perturbed_img = self.synthesis_perturbed_img.copy()
for l in fiducial_points_coordinate.astype(np.int64).reshape(-1,2):
cv2.circle(fiducial_points_synthesis_perturbed_img, (l[1] + math.ceil(stepSize / 2), l[0] + math.ceil(stepSize / 2)), 5, (0, 0, 255), -1)
cv2.imwrite('/lustre/home/gwxie/program/project/unwarp/unwarp_perturbed/TPS/img/cv_TPS_large.jpg', fiducial_points_synthesis_perturbed_img)
'''
'''clip'''
perturbed_x_min, perturbed_y_min, perturbed_x_max, perturbed_y_max = -1, -1, self.new_shape[0], self.new_shape[1]
for x in range(self.new_shape[0] // 2, perturbed_x_max):
if | np.sum(self.synthesis_perturbed_img[x, :]) | numpy.sum |