File size: 7,944 Bytes
c1c308b
 
 
f0a06da
abb5ce2
f0a06da
a7ad983
2c86744
0062dd9
a7ad983
d096766
a7ad983
 
d096766
 
 
a7ad983
d096766
 
a7ad983
 
 
 
 
7b132dd
d096766
a7ad983
 
d096766
a7ad983
 
d096766
a7ad983
 
 
 
 
 
 
 
 
 
 
d895ff8
a7ad983
 
 
d895ff8
 
a7ad983
d895ff8
a7ad983
 
d895ff8
a7ad983
d895ff8
a7ad983
d895ff8
a7ad983
 
d895ff8
a7ad983
d096766
d895ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63c8894
d895ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
license: mit
---

# AlphaNum Dataset

## Abstract
The AlphaNum dataset, curated by Louis Rädisch, is an extensive repository of grayscale, handwritten characters and numerals, each of 24x24 pixel dimensions. This dataset is designed to support Optical Character Recognition (OCR) tasks, offering labels that range from 33 to 126, and 999, aligning with ASCII characters from '!' to '~', and 'null', respectively. The 'null' category includes images generated through a noise injection process, resulting in normally distributed light pixels placed randomly.

Images drawn from the MNIST dataset have undergone color inversion to ensure consistency throughout the dataset. Vision Transformer Models have been fine-tuned to unify data sourced from varied origins, thereby augmenting the overall accuracy of the dataset. Notably, the 'A-Z handwritten alphabets' dataset, which initially did not distinguish between upper and lower case letters, has been modified to correct this in the present compilation.

## Data Sources
1) [Handwriting Characters Database](https://github.com/sueiras/handwritting_characters_database)
2) [MNIST](https://huggingface.co./datasets/mnist)
3) [AZ Handwritten Alphabets in CSV format](https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format)

In an effort to maintain uniformity, the dataset files have been resized to 24x24 pixels and recolored from white-on-black to black-on-white.

## Dataset Structure
### Instance Description
Each dataset instance contains an image of a handwritten character or numeral, paired with its corresponding ASCII label.

### Data Organization
The dataset, contained in a .rar file, is organized within a "dataset" folder. Each ASCII symbol is housed in a dedicated folder, the name of which corresponds to the ASCII value of the symbol.
Dataset size: 79.742.558 Bytes = 637.940.464 Bits

## Dataset Utility
The AlphaNum dataset caters to a variety of use cases including text recognition, document processing, and machine learning tasks. It is particularly instrumental in the development, fine-tuning, and enhancement of OCR models.

## Null Category Image Generation
The 'null' category comprises images generated by injecting noise to mimic randomly distributed light pixels. The creation of these images is accomplished through the following Python script:

```python
import os
import numpy as np
from PIL import Image, ImageOps, ImageEnhance

def generate_noisy_images(num_images, image_size=(28, 28), output_dir='NoisyImages', image_format='JPEG'):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        
    for i in range(num_images):
        variation_scale = abs(np.random.normal(30, 15))
        # Generate random noise with reduced strength
        noise = np.random.rand(image_size[0], image_size[1]) * 0.05
        noise = (noise * 255).astype(np.uint8)
        
        # Create a PIL image from the noise
        image = Image.fromarray(noise, mode='L')  # 'L' for grayscale
        
        # Invert the image
        inverted_image = ImageOps.invert(image)
        
        # Enhance the contrast with increased amplitude
        enhancer = ImageEnhance.Contrast(inverted_image)
        contrast_enhanced_image = enhancer.enhance(variation_scale)  # Increased amplitude (e.g., 3.0)
        
        # Save the image
        contrast_enhanced_image.save(os.path.join(output_dir, f'{i}.jpg'), format=image_format)

generate_noisy_images(5000)
```

## ASCII Table and Corresponding File Counts
| ASCII Value | Character | Number of Files |
|-------------|-----------|-----------------|
| 33          | !         | 207             |
| 34          | "         | 267             |
| 35          | #         | 152             |
| 36          | $         | 192             |
| 37          | %         | 190             |
| 38          | &         | 104             |
| 39          | '         | 276             |
| 40          | (         | 346             |
| 41          | )         | 359             |
| 42          | *         | 128             |
| 43          | +         | 146             |
| 44          | ,         | 320             |
| 45          | -         | 447             |
| 46          | .         | 486             |
| 47          | /         | 259             |
| 48          | 0         | 2664            |
| 49          | 1         | 2791            |
| 50          | 2         | 2564            |
| 51          | 3         | 2671            |
| 52          | 4         | 2530            |
| 53          | 5         | 2343            |
| 54          | 6         | 2503            |
| 55          | 7         | 2679            |
| 56          | 8         | 2544            |
| 57          | 9         | 2617            |
| 58          | :         | 287             |
| 59          | ;         | 223             |
| 60          | <         | 168             |
| 61          | =         | 254             |
| 62          | >         | 162             |
| 63          | ?         | 194             |
| 64          | @         | 83              |
| 65          | A         | 1923            |
| 66          | B         | 1505            |
| 67          | C         | 1644            |
| 68          | D         | 1553            |
| 69          | E         | 2171            |
| 70          | F         | 1468            |
| 71          | G         | 1443            |
| 72          | H         | 1543            |
| 73          | I         | 1888            |
| 74          | J         | 1470            |
| 75          | K         | 1504            |
| 76          | L         | 1692            |
| 77          | M         | 1484            |
| 78          | N         | 1683            |
| 79          | O         | 2097            |
| 80          | P         | 1605            |
| 81          | Q         | 1409            |
| 82          | R         | 1811            |
| 83          | S         | 1786            |
| 84          | T         | 1729            |
| 85          | U         | 1458            |
| 86          | V         | 1405            |
| 87          | W         | 1521            |
| 88          | X         | 1366            |
| 89          | Y         | 1456            |
| 90          | Z         | 1451            |
| 91          | [         | 111             |
| 93          | ]         | 104             |
| 94          | ^         | 88              |
| 95          | _         | 80              |
| 96          | `         | 42              |
| 97          | a         | 2219            |
| 98          | b         | 624             |
| 99          | c         | 880             |
| 100         | d         | 1074            |
| 101         | e         | 2962            |
| 102         | f         | 608             |
| 103         | g         | 760             |
| 104         | h         | 990             |
| 105         | i         | 2035            |
| 106         | j         | 427             |
| 107         | k         | 557             |
| 108         | l         | 1415            |
| 109         | m         | 879             |
| 110         | n         | 1906            |
| 111         | o         | 2048            |
| 112         | p         | 786             |
| 113         | q         | 427             |
| 114         | r         | 1708            |
| 115         | s         | 1557            |
| 116         | t         | 1781            |
| 117         | u         | 1319            |
| 118         | v         | 555             |
| 119         | w         | 680             |
| 120         | x         | 463             |
| 121         | y         | 680             |
| 122         | z         | 505             |
| 123         | {         | 73              |
| 124         | \|        | 91              |
| 125         | }         | 77              |
| 126         | ~         | 59              |
| 999         | null      | 4949            |